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Recent Work on Theoretical Models
of Biological Memory*

Frank Rosenblatt

CORNELL UNIVERSITY
ITHACA, NEW YORK

At the First COINS Symposium, a model for long-term sequential memory in the
nervous system was described. Since that time, this model has been improved by the
introduction of a simpler and more biologically plausible C-system (a network which
serves as a sequential clock for maintaining the temporal order of stored events),
and simulation studies of the entire system have been completed. At the same time,
an improved biochemical model for the postulated synaptic changes has been
developed, and will be evaluated in relation to recent experimental evidence on the
biochemical basis of memory. In addition to providing an explanatory model, the
new theory suggests a number of biological experiments which are currently being
carried out.

I was at the Mathematical School, where the Master taught his Pupils after a
Method scarce imaginable to us in Europe. The Proposition and Demonstration
were fairly written on a thin Wafer, with Ink composed of a Cephalick Tincture.
This the Student was to swallow upon a fasting Stomach, and for three Days
following eat nothing but Bread and Water. As the Wafer digested, the Tincture
mounted to his Brain, bearing the Proposition along with it. But the Success
hath not hitherto been answerable, partly by some Error in the Quantum or
Composition, and partly by the Perverseness of Lads; to whom this Bolus is so
nauseous, that they generally steal aside, and discharge it upwards before it can
operate; neither have they been yet persuaded to use so long in Abstinence as
the Prescription requires.

Jonathan Swift, Gulliver’s Travels

I. Introduction

Some three years ago, I was privileged to present a theory on the storage
of memory in neural networks at the First Symposium on Computer and

* This work was supported by the Office of Naval Research contract Nonr 401(40),
and the National Science Foundation contract GK-250.
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Information Sciences [13]. The Second Symposium seems an apt occasion to
bring this theory up to date and to attempt to integrate it with the results of
a most surprising series of experiments which have been performed during
the last year, both at our laboratory and elsewhere. These experiments have
confronted us with an increasing accumulation of evidence that *“ memory,”
or at least a number of varieties of learned behavior, can be transfered from
one brain to another by means of chemical extracts. While such a phenomenon
has been hypothesized for some time in flatworms [3,10}, it was never
completely established to the satisfaction of the scientific community, and it
is only with the more recent experiments of the last year that such a pheno-
menon has been demonstrated in vertebrates. These new experiments, which
have employed rats, hamsters, and mice as subjects in various laboratories
[1,2,6,17], have finally convinced this theorist, at least, that the phenomenon
of ““memory transfer” is a real one, which must be taken into account in
any theoretical approach to biological memory. It is the main objective of
this paper to show how the previously developed mathematical theory of
memory, in terms of perceptron-type networks, can be reconciled with the
data on chemical transfer. )

In proposing a chemical model for memory at this time, it must be recog-
nized that we are, in fact, entering the realm of science fiction; the present
experiments, although suggestive, leave us completely in doubt as to the
mechanism at work in the transfer phenomenon. While the early reports on
the transfer of learned behavior suggested that RNA was the molecule respon-
sible for the effect [1,2,6], subsequent experiments at our laboratory and
elsewhere [14-17] have thrown considerable doubt on this contention, and
have suggested that some form of polypeptide is a more likely candidate. This
means that an explanation in terms of genetic coding mechanisms, which
several theorists have attempted (c.f., Hydén [9]), is less plausible than it
might seem to be at first glance. In what follows, we present an entirely
different model which, although speculative, has the virtue of being complete
in the sense that it shows on the one hand how the molecular mechanism
might operate to modify selected synapses between simultaneously active
neurons, and on the other hand how such modifications could lead to
the storage and recall of experiential information in a form which would
permit the organism to respond to it selectively. The theory is sufficiently
rigorous and quantitative that numerical predictions as to the information
capacity of a network can be made, and it may serve as a guide in the design
of experiments to test the biochemical hypotheses.

We begin this exposition by reviewing the main features of the mathematical
theory presented in the previous paper [13], although without repeating the
detailed analysis which has been adequately handled there. The following
section then discusses some of the work which has been done during the last
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three years on improving the model of the C-network which provides the
sequential control for the storage and recall of series of events. Section III
also.includes some illustrations of digital simulation studies which have been
carried out on the entire system. We then proceed to an examination of the
conditions which must be satisfied at a microscopic or molecular level if this
mpdel is to be valid, and propose a molecular model which is compatible both
with the memory transfer experiments and with the mathematical properties
required for the C-system to operate.

II. A Review of the Mathematical Model

In the previous paper [13], two somewhat different mathematical models
were developed in parallel, which were designated the * asymmetric” and the
*“symmetric” model. It was shown that the asymmetric model, in which
only connections terminating on active neurons (or A-units) are modified, is
more efficient under plausible conditions of biological activity (in which, at
most, a few percent of the neurons would be active at any time) than the
symmetric model, in which connections to inactive units are also subject
to modification. In the following presentation, therefore, we limit ourselves
to the asymmetric case.

Before presenting the equations which govern this system, a concrete illus-

‘tration of a miniature C-system network may be helpful in seeing how it

works. Such a system is shown in Fig. 1. It contains three A-units, of which
the first is activated by a vertical line on the left side of the visual field, the
second by a vertical line on the right side of the field, and the third by a
horizontal line across the middle. Thus a figure shaped like the letter “ H ”’ would
activate all three units. There are eight C-units, and, because this is a very
small system in which realism has been sacrificed to some extent to provide
the distribution properties which would normally be found in much larger
networks, we assume that the system is fully connected, each C-unit sending
a connection to each of the three A-units. We assume a sequence of four
stirpuli, Sy, ..., S;, which are illustrated in the figure. Each of these stimuli
a(_:tlv?ltes a unique pattern in the association system, and could be readily
discriminated by an R-unit which might form part of this system in a percep-
tron [12]. We assume that the initial weights of all C-to-A connections are
4, and that in each state of the C-system, 509 of its units are active. Assume
the threshold of the A-units to be 18. The weights of the C-A4 connections
are modified according to a y-system rule [12] which requires that the sum of
all weights terminating on any one unit remain constant. In this case, the
rule states that whenever a C-unit and an A-unit to which it is connected are
both active simultaneously, the connection between them will gain one unit
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of weight, the remaining connections to the same A-ur}it losing a gorrespond-
ing decrement which just balances the gain in the active connection. ‘

We assume that the C-system is initially in state Cy, concurrently with the
presentation of stimulus S ; this is followed by state C, with stimulus S?,
C, with S5, and C, with S,. The active C-units in each state are shown in

Retinal

Connections

Stimulus: S, S, S, S,

Retinal

pattern: l I l— _{ H
a, 1 1 0 1
a, 1 0 1 1
a, 0 1 1 1

(b)

C-states: C, C, Cs C,
c, 1 1 1 1
¢, 1 1 0 0
¢, 1 0 1 0
C, 1 0 0 1
C, 0 1 0 0
Cq 0 1 1 1
¢, 0 0 0 1
Cq 0 0 1 0

(c)

Fic. 1. Illustration of a small C-system model. (a) A-C network, showing stimulus
features activating each A4-unit. (b) Four stimuli, and A-unit activity vectors for each.
(c) Succession of four C-states assumed to occur during stimulus sequence.
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Fig. 1(c). We are not concerned at the moment with the mechanism responsible
for setting the C-system to different states, but it is important to note that the
four states shown in the figure are pairwise independent, as they would be in
a much larger system in which a certain percentage of units was activated at
random in each successive state. In this case, this means that every pair of
C-states has two active units in common, and two inactive units in common.

TABLE 1

MATRICES OF WEIGHTS AND SIGNALS FROM C-STATES TO EACH A-UNIT, OBTAINED AFTER
EACH SUCCESSIVE STIMULUS HAS OGCURRED?

Total signals from

Weights of connections C-states to A-units

€4 ¢ €3 €4 C€s €6 €7 Cg C, C, Cs Ca

Initial a, 4 4 4 4 4 4 4 4 16 16 16 16

state: a, 4 4 4 4 4 4 4 4 16 16 16 16

a; 4 4 4 4 4 4 4 4 16 16 16 16

c* o* et et s s c7 oy C, C, Cs Cs

After a* 5 5 5 5 3 3 3 3 20 16 16 16

Syt a* 5 5 5 5 3 3 3 3 20 16 16 16

a 4 4 4 4 4 4 4 4 16 16 16 16

c* c* 3 ¢4 cs* ce* 07 oy C, C, Cs Cs

After a* 6 6 4 4 4 4 2 2 20 20 16 16

St a 5 5 5 5 3, 3 3 3 20 16 16 16

a* 5 5 3 3 5 5 3 3 16 20 16 16

Cl* Ca CJ* Ca Cs Cﬁ* Cy Cs* Cl Cz C3 C4

After a, 6 6 4 4 4 4 2 2 20 20 16 16

Ss: a* 6 4 6 4 2 4 2 4 20 16 20 16

a* 6 4 4 2 4 6 2 4 16 20 20 16

c* €2 €3 ¢t cs  ce* ot g C, C, Cs Cas

After a* 7 5 3 5 3 5 3 1 20 20 16 20

Sa: a* 7 3 5 5 1 5 3 3 20 16 20 20

azy* 7 3 3 3 3 7 3 3 16 20 20 20

Cl* Cz* (.'3* C4* Cs Ce Cq Cg Cl Cz C;; C4

After a,* 8 6 4 6 2 4 2 0 24 20 16 20

repeti- a,* 8§ 4 6 6 0 4 2 2 24 16 20 20

tionof a; 7 3 3 3 3 7 3 3 16 20 20 20
Sy with
state C,

@ Asterisks indicate active units.
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Now suppose the four stimuli occur in order, while the C-system is made to
run through the four states shown in Fig. 1, and the connections are modified
according to the rule given. The successive values of the 24 C-A connections
are given by the succession of matrices shown in Table I. Now suppose,
without further modification of the connections, and without any stimuli
present on the retina, the C-system is made to run through the same four
states a second time. The signals to each A-unit from each of the four C-states
will then correspond to the values given in the four right-hand columns of
Table 1. Note that the responding A-units in each case (those for which the
signal is greater than the threshold of 18) are identical to those originally
activated by the stimulus which accompanied the C-state when it first occurred.
This is true not only for the final condition of the C-system, but at any time
during the recording process. Note also that the addition of a new stimulus,
or a repetition of one which occurred earlier, does not in any way change the
signals from other C-states to the A-units: after stimulus S, has occurred, for
example, a repetition of state C; would transmit a signal of 20 to the appro-
priate A-units, but states C,, C5, and C, all continue to transmit total signals
of 16 to each A-unit, just as they did at the outset. Finally, we note that it is
not at all necessary to discontinue the memory operation during recall, as we
have supposed here; if it continues to operate, it will merely reinforce the bias
previously introduced, without modifying any other stored information.

The equations previously found to characterize networks of this type [13]
are repeated here in summary form:

It is assumed that the basic perceptron network (the connections from the
A-units to some R-unit) has been previously taught to identify stimulus S,
which occurs at some point during the sequence of stimuli presented for
recording by the C-system. After the sequence of stimuli has been presented,
the succession of C-states is assumed to be regenerated (by one of several
mechanisms to be considered in the following section). The probability
P(R,) that the correct response of the R-unit to stimulus S, will now be evoked
by the C-state which originally accompanied S, is to be computed for a system
with a large number of A-units. The following terms are defined:

N, = number of A-units
N, = number of A-units activated by S (* proper units*’)
No = number of A-units inactive for S (“improper units )
N, = number of C-units
M = fraction of C-units connected to each A-unit (0 < M < 1)
0, = proportion of A-units activated by a stimulus
0, — the fraction of stimuli to which one of the ** proper units " responds
O, = the fraction of stimuli to which an **improper unit” responds
Q. = proportion of C-units active in any one state

E(u,) = expected value of signal to R-unit when S, occurs

a(u,) = standard deviation of the signal () to the R-unit
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d),(z) = cumulative normal distribution function, integrated from — o to z
®’(z) = normal density function
t = number of stimuli in the recorded sequence.

The values of @ for different A-units will all approach @, in a sufficiently
heterogeneous and nonrepetitive environment. In a stereotyped environment
howF:ver, in which a small number of stimuli keep recurring, or in which’
particular stimulus features reoccur many times, 0, is likely to be much
greater than Q, . (The following expressions are simplified, in that they assume
only these two values of @; in a more general treatment, there should be a
separate‘term for each possible value of @ corresponding to different subsets
of A-units.) The expectation and variance of signals to the R-unit [E(u,)
and gz(u,)] depend on how the perceptron was trained in the discriminatioxn
of stimulus S,, and can be computed for a number of representative cases
(see Rosenblatt, [13]). The probability of obtaining a correct response for the
recall of the test stimulus S, is then given by the expression

Ny No
o= 3 3 (0) (o) e, moerzim, no, M
where

Zons, mey < II2aN = [nol(1 = 0IN] By
[0t + 1IN o(ay) )
Pl ng) = [ FYIE = Fy0T" " FEIL - Foa]™ ™ dx ()

xM1V? 4+ h;
F(x) = q>(—4 o ) 4
_[MN(1 - )]

hi = [ 4Qit ] )

Thc? function Z represents the expected ratio of the expected value to the
variance of the signal to the R-unit when n, *“ proper units”’ and ny ““ improper
upfts " are reactivated by signals from the C-system. P(n;, n,) is the proba-
!)l]lty that these numbers of units will, in fact, be activated. It is seen that this
iIs a function of / which is the ratio of the expected signal from the C-system
to the standard deviation of that signal, for any one A-unit, at the time that
the proper C-state for recall of stimulus S, occurs. The probability P(n,, n,)
woulq simply be equal to ®"(h,) - ®™(h,) if the signals to the different
A-units could be assumed to be statistically independent. Correlation effects,
however, come from two sources: one is the fact that the sets of C-units
connected to different 4-units are likely to have a fraction M of their units in
common; the other is the effect of frequent joint activation (and correlated
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reinforcement) of those A-units which respond to recurrent stimuli in a
repetitive environment. These two effects lead to. the appearance of the quan-
tities M and @, in expression (4), and the relatively cfompllcaFed expression
(3) for the probability. The analysis which leads to th}s result is presented in
detail in Rosenblatt [13]. It is assumed in this analysis t.hat the threshold of
the A-units is maintained at a level which guarantees a uniform Q,, regardless
of the source and magnitude of signals to the A-units. o

An approximation, which holds accurately for large values of N,? is given
in Ref. 13, which replaces the summations in Eq. (1) by appropriate ‘mteg.rals.
Numerical computations have been done chiefly by means of that ‘sxrr'lplfﬁca-
tion. This treatment also permits the computation of an asymptotlg limit for
P(R,) as the number of A4-units increases. Specifically, we find that if the d‘lS-
crimination of S, from other stimuli was originally learned perfectly, and with
hy =hy=h,

: h [ Nl~ Qc)]”’ y
Jim PR = g = ] S5 ©

From this it is easy to see that the performance will be improved if Q,is

small and N, large; also that the probability will asymptotically approach
increases.

0.515xasmtjmber of representative tables have been computed from these equa-
tions [13], which demonstrate that extremely long sequences can be §tored
and recalled correctly by networks of this type. For examp?e, assuming an
ideal limiting case in which Q; ~ 0, we find that a network with 1000 A-units
and 1000 C-units, with 1000 connections per 4-unit, could record‘a sequence
of 10° stimuli before the probability of correct recall of a test stlmulus.falls
to 0.994. With 10° A-units, 10° C-units, and 1000 connections per A-unit, as
before, a sequence of 10'! stimuli could be stored with the same performance
level. If Q; is taken at a more reasonable level for a neurolo.glcal'system‘, say
0.05 (so that we expect, on the average, about 5% of .the stimuli to‘acgvate
any one A-unit), then we find that with 1000 connections per A4-unit, if t'he
number of stimuli recorded is kept equal to the number of A- .and C-umt.s,
the probability of correct recall will remain abf)ut 0.997. This means, in
effect, that each additional A-unit and C-unit pair added to ‘the system per-
mits the recording and recall of one adéitional stimulus without lowering
the performance probability. As Q, (or Q) incre'ases, the nu.n}ber of A4 alnd
C-units required per stimulus to maintain a given probability level, also
increases. In the previous paper [13], it was shown that as the system saturates,
the information stored per connection (in bits) approaches

He T 4Q,mIn2’
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For Q. close to zero and 0, at 0.05, this gives 2.296 bits per connection as the
limiting information density. This means that as further stimuli are shown to
the system, the total amount of information stored remains constant, the loss
per stimulus being reflected in the diminishing probability of correct recall.

It should be noted that these results assume that there is no deterioration
or decay of stored information as long as it is left alone; connections which
are not modified as a result of neural activity are assumed, in this model, to
maintain their weights without decrement. If we were to assume a slow decay
function, such as an exponential return to the initial, unmodified conditions,
then the equations given would still hold accurately for short sequences, but
for longer sequences we would be obliged to introduce a time-dependent
weighting function, which would favor the more recent stimuli at the expense
of the earlier ones.

It has also been tacitly assumed that the succession of C-system states can
be generated and regenerated without error. This is a somewhat implausible
assumption for any real system by which such state sequences might be gener-
ated, as will be seen in the following section.

The most important mathematical property of the model just described is
the fact that the expected signal to any A-unit from a C-state which has not
been previously reinforced, remains equal to its initial value, regardless of
how many stimuli have been recorded in the network. This effect, which was
illustrated in the small network of Fig. 1, is what makes it possible to store
such long sequences without mutual interference between previously recorded
events. The deterioration in performance which ultimately occurs is not
due to the accumulation of any systematic bias, but rather to the accumulation
of variance in the signals from the random intersections of sets connected
to different A-units. This property also makes the system highly resistant to
the addition of random noise or to the extirpation of portions of the C-system,
as long as the removal is not systematically correlated with any of the C-states
which have been employed. Thus the phenomenon of “distributed memory
is admirably illustrated by a network of this type. This independence effect
depends basically on two conditions which must be satisfied in the initial
design of the model: (1) The intersections between any two C-states should
have an expected value equal to the product of the measures of the active
sets; i.e., the states should have the same intersection properties that they
would satisfy if they were chosen at random. Also, the connections from A-
units to C-units should not be systematically correlated with any particular
C-states, thus guaranteeing that the intersection property just stated holds
within the set of C-units connected to any one A-unit, as well as for the sys-
tem as a whole. (2) The weight modifications should follow the y-system rule,
whereby the gain in active connections to any given unit is Just balanced by
a compensating loss in the weights of inactive connections to the same unit,
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It is the combination of the y-system with the quasi-random gssignrqent of
C-units to different states which guarantees the type of behavior which we

have observed.

III. Models for the C-Network and Simulation Results

In the original version of this theory (Rosenblatt [13]) it was shown _that
the required properties of state sequences in the C—sy_stem could be obtalqed
by a randomly coupled network with 1: 1 cqnnegtlons between _the units.
The system is started by turning on some arbitrarily chos.en fraction Q. of
the units, and is then allowed to run freely through successive states. As !qng
as the unit-to-unit transmission remains synchronized, the level of activity
will remain exactly what it was initially, and if the initial state was cho'sen at
random, the successive states will satisfy the conditions dgscrlbed in th‘e
preceding section. The identical sequence will be regenerated 1§ the sys‘tem is
set back to its first state. Although logically satisfactory as an illustration of
the type of system which we are seeking, it was clear from the out§et that such
a network was totally implausible as a biological model. It§ requirements for
perfect synchronization, as well as the one-to-one constraint on the connec-
tions, make it unacceptable. Several alternative models were proposed, which
would advance their state only when signaled to do so by the momenta}ry
interruption of their activity by an inhibitory signz_ll. The assumptions which
went into these models, however, were speculative in the ex'treme, and a more
satisfactory model was sought for at least two years following the publication

aper.
Of'gl:f?rslt) family of models to be investigated assumed that t}}e C"-nq»york
might consist of a randomly connected network of neurons, w1.th mhxbltc?ry
connections between the cells. It was assumed that a stea.dy (excitatory) drlv.e
signal to all of the C-units would normally tend to sustain some level pf acti-
vity in the network, and that the signal to change staFes .would cgnsxst of a
momentary suppression of this drive signal. The functlonlpg of‘thls network
is as follows: Assume that initially some set of uniFs C,is actlvaFed by t.he
drive signal. Those units which are most strongly act{vated, and whlgh receive
a minimum of inhibition from other active units, will tend .to remam‘actl.ve,
while the remainder of the network (consisting of the m.aj(?nty f’f the C-units,
if it is strongly coupled) will be inhibited, and will remain mactlve‘. As long as
the drive signal continues without interruption, the same.do?'nfnant §et of
C-units will remain on, and the state C, continues. But the 1nl?1b1tory signals
which are continuously bombarding the remaining neurons in thg network
will have the effect of *“ priming” them, so that if the drive sngna} is momen-
tarily stopped, not only does the previously aCthC‘ set sFop firing, but the
neurons which were previously most strongly inhibited will now tend to be-
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come active, as a result of the well-known post-inhibitory rebound pheno-
menon in biological neurons. Thus when the drive signal is restored, a new set
of neurons are already firing, and have inhibited the remainder of the system.
This constitutes state C,, which will again remain stable until the drive is
interrupted a second time when the neurons most strongly inhibited by C,
will emerge as the elements of the third active set, and so on.

Extensive simulation studies of this type of network were carried out on the
IBM 7090 and 7094 computers, using neuron models which incorporated
many of the known details of a neuron’s response including temporal sum-
mation, adaptation to excitatory and inhibitory signals, and realistic bounds
on such quantities as the magnitude of the membrane potential, maximum
hyperpolarization, excitatory and inhibitory post-synaptic potentials, and
other relevant features. The general results, though disappointing, were
instructive. It was found that a steady state could indeed be maintained in
such a network, provided the inhibitory coupling was strong enough to com-
pletely suppress the activity of the ““off” neurons, allowing complete domi-
nance of a small subset. In some cases, activity would fluctuate between
several subsets of competing neurons, but with appropriate choice of para-
meters, this could generally be prevented. It was also found that parameters
could be found in which the system would advance through a succession of
States, as predicted, each state in turn becoming stable until the drive was
interrupted. Although the networks simulated were small (rarely over twenty
neurons) it appeared plausible that in large systems, very long state sequences
could in principle be obtained before returning to a previous state.

The main difficulty with this model was found to be in the sensitivity of
the state succession to minor variations in timing, and to noise effects which
manifested themselves during the transitional period between one state and
the following one. As lon g as the drive was on, and a particular state remained
dominant, it might be held indefinitely, and would be highly noise resistant
under proper parametric conditions. But in the choice of the next state, the
decision as to which state would emerge was found to depend upon very
slight differences between the signals from competing neurons. Suppose, for
example, neuron ¢, has mutually inhibitory connections with ¢;. Then if
¢, fires slightly in advance of ¢, , it will become dominant, together with any
neurons which might be supported by its activity, while if c, fires first, it
becomes dominant, keeping ¢, from ever firing at all. Thus differences of less
than a millisecond in the time of firing of a particular neuron could seriously
alter the composition of the following active set. Although many seemingly
Plausible treatments of this effect were tried in attempts to cure it, none were
successful, and it now appears that the phenomenon is inherent in the uniform
randomness of the design, whereby an active set not only primes those neurons
which are supposed to follow it, but a great many unwanted nuerons as well,




44 FRANK ROSENBLATT

many of which have nearly as strong a tendency to become active as do the
proper neurons. This clnse competition between wanted and unwanted neur-
ons makes the system inescapably sensitive to noise effects or minor variations
in timing whenever a transition is to occur. Thus, while a state sequence having
the required properties can be generated successfully, it is unlikely to repeat
itself for more than one or two successive states on a second run from the
same starting point.

This finding led us to an examination of increasingly constrained networks,
in which each active set would prime a selected following set consisting of
noncompetitive neurons, which would therefore have a clear superiority as
the next state of the system. While a number of possible models can be
constructed in this fashion, with ¢ pre-wired” connections, the most interest-
ing possibility which emerged was that of using the same memory principle
as in the C—4 connections, to enable each C-state to “learn” to select an
appropriate following state. An example of such a network is shown in Fig. 2.
The basic organization of the network [Fig. 2(a)] consists of a perceptron with
a sensory system (A-units and R-units) plus a C-system which is subdivided
into two kinds of units: an excitatory set (Cg) and an inhibitory set (C;). Con-
nections to the A-units are drawn from the excitatory set, and follow the
same adaptive rules as before. The E-units also have adaptive connections
to other C-units, both E and 1, at random. The inhibitory (/) set (which has
fixed output connections terminating on random sets of E-units) does not
affect the A-units directly, but helps in determining the sequence of C-states,
as shown in Fig. 2(b). A random generator (or any other mechanism for state
selection, such as a vector of signals from the currently active R-units) is
used to select an initial state C; consisting of the active sets E; and /;. The
set 1, strongly inhibits some set of E-units, designated F; in the figure. While
E, and I, are both on, their interconnections are strengthened in accordance
with the y-system rule, so that, eventually, turning on only a portion of the
E-set is likely to activate the entire E; and I, state. Note, however, that due to
the use of the y-system, turning on an independently chosen E-set will not
have any net effect (other than random noise) on the units of state C,. The
state may now be advanced to C,. This occurs when the random generator
elects a new state (E,, I,), by transmitting some new signal vector to the
C-system. As soon as the former state C; is no longer maintained and /;
ceases to fire, the * follower set” F, is activated by a post-inhibitory rebound
phenomenon. For a short period therefore (say about 100 msec), F, continues
to fire jointly with the new set E,, and becomes integrated with it (and with
I, as well) by the augmentation of its excitatory connections. I, in turn, now
selects a follower set F,, which will subsequently become integrated with a
new randomly chosen set, E; and [;.

The main advantages of this system are, first, that the following state which
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is “primed” by any given C-state is highly selective, and the primed units
(the members of the F-set) do not compete with one another for dominance
put rather te.nd to support one another through the development of excitator :
mtergonnectnons. Thus, having turned on a portion of a previous C set th)el
remainder of that set tends to be reactivated in its entirety, just as a sét of

s -—-*R

State
Advance

LRandom Ganeratoq

(a)

Connoc(lom to A Random Generator

Fic. 2. Adaptively coupled C-system:

g (a) basic set organization; (b) state-sequence

A-l{mts is turned on by a previously associated C-state. There is, in fact
logical difference between the use of a C-state to turn on an A-st,ate and’ tlllmo
use o_f the same C-state to turn on an E-unit or J-unit which was previousle
assoc.lated with it. As with the A-system, there should be no net effect on any
C-units from a new, randomly chosen C-state, and * improper units”’ l}ll
not be affected. A threshold servo may be used, as in t o

> affe : he association system
to maintain a desired level of activity (Q,) at all times. With proper choice of"

parameters, the activation of only a few percent of the proper C-units will



46 FRANK ROSENBLATT

define a state sufficiently so that the remainder will * pop in,” in the manner
of a flip-flop. The second advantage of this system is the possibility of arbi-
trarily selecting the sequence of C-states by means of the external driving
function. While the F-sets are a deterministic consequence of the preceding
state, the portions designated E; are freely selected, and are tied to the pre-
ceding states only through the F’s. Thus a preceding sequence can be ““ edited,”
sections deleted and new sections interpolated, by forcing a new successor
state to accompany a previous F-set. This forcing might be done by the use
of adaptive connections from R-units to key states in Cp which initiate
particular sequences. If this is done, note that an F-state can become coupled
to two or more alternative E-sets, but that with a threshold servo to keep Q.
constant, only one of these is likely to become dominant at one time due
to the excitatory cross-coupling which develops within each E-set and the
weakened connections between them. Thus one of two rival associations
(but not a mixture of both) will tend to become dominant at one time.

In “playing back ™ previously established sequences, the function of the
random state generator is replaced by the *“state advance” system, which
merely suppresses the activity of the existing E-state whenever the C-system
1s to be advanced to the next state. This permits the primed F-set to become
active, and this in turn activates the associated E- and /-units.

While the internal structure which results in such a system may become
quite complicated, note that the initial constraints necessary to construct it
are strikingly simple, and concern only the statistical parameters of the sys-
tem. While no quantitative studies of this system have been completed at

[oA] ¢

FiG. 3. Simulation results, showing P(R,) as function of length of stored sequence (¢).
Each curve is for mean of 10 perceptrons, with 100 A-units and 100 C-units each, fully
coupled. Q. = 0.14. Curve A: sequence consists of horizontal bar, followed by vertical
bar, followed by ¢ random dot stimuli. Curve B: sequence consists exclusively of alternating
horizontal and vertical bar.
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It)}rnosvzlrtrz)e,b ;t \:,eoir]?:b]]ﬁe]y that a wide latitude of admissible parameters will
Several simulation studies of complete C-system perceptrons have now been
com;.)]e‘ted (on the 7094 computer), which indicate that our quantitative
predlctxoqs of performance actually hold quite well for systems of about
100 A-units and C-units, with sequences of simple geometric stimuli. Some
examples of curves obtained in these experiments are given in Figs 3.and 4
_ For curve A in Fig. 3, the perceptron was first trained to dist.inguish a;
sgngle hor{zontal bar (4 units wide and 20 long on a 20 x 20 retina) from
single vertical bar. These two bars formed the first two members of a stimulués1

G. Sl"lulanoll lesults for F . I, Vi . q consists
I I 4. > same pel'ceptrons as 1g 3 Cu e A sequence
of twe"ty hotlzoﬂtal and twellty vertical balS, io"owed by 4 la“dolll dot stimuli

< sequ cons
B €Nce consists excluslve]y Of Iepeated CyCleS Of twe"ty hOIlZo"tal and t

Curve
wenty

sequence which was recorded in the C-system, the remainder of the se uenc
being made up of random dot stimuli of 80 retinal points each. The Ci:urv .
show_ thf: average performance of ten perceptrons, with 100 A-u;lits and IOCS
C-UI?ItS in each, which are fully coupled. The A4-units had three excitatory and
one inhibitory connection from the retina, with activity held at 9 %b n}l’e ;
of a threshold servo. The C-system was a free-running binomial crooss-}::ou 2lm;
netv\(ork (see Rosenblatt [12]), with three excitatory and one inhibitor goe
;ectlons to each C—ynit, originating from randomly chosen points in tze sel:
fol:'esQe p:;a(l)n;e;te;s give a value for Q, of about 0.14. (Other curves obtained
gor c;rve S.ho s (t)l:v a poorer performance, as anticipated from the theory.)
; Shows the propprtxon P of correctly recalled identifications of the
Wo test stimuli as a function of the number of stimuli stored in the memor
when the first two C-states were repeated. A test was run after every 1038
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additional stimuli were recorded. The second curve B shows the effect of a
stereotyped sequence consisting entirely of the horizontal bar alternating
with the vertical bar (H, V, H, V, ...), the first twenty stimuli being tested to
obtain an estimate of P.

Figure 4 shows analogous curves, with the same parameters, but with a
set of twenty different horizontal bars and twenty different vertical bars fol-
lowed by random stimuli for curve A (the heterogeneous environment case),
and continuously repeated cycles of all forty horizontal and vertical bars for
curve B (the stereotyped environment case). Note that the difference between
the two cases is less than in Fig. 3 where the entire sequence for curve B is
made up of only two stimuli, but that the overall performance for the hetero-
geneous case is poorer, due to the greater difficulty of the discrimination
problem in the 40-bar environment. It is noteworthy that for the easy problem
of identifying the single horizontal and vertical bar in the sequence of random
stimuli [Fig. 3, A], none of the ten perceptrons made a single mistake for
recorded sequences of up to 300 stimuli.

These results demonstrate that the general scheme of the C-system model,
employing a y-system memory mechanism, is indeed capable of recording
and reproducing long sequences of stimuli successfully. A number of other
studies now in progress suggest that such systems may be consulted at ran-
domly chosen states by means of adaptive connections from the R-units, and
may participate in much more elaborate cognitive processes than the problems
of simple recall which are illustrated here. For present purposes, however, the
preceding demonstration seems sufficient to demonstrate the adequacy of the
y-system mechanism to produce many of the chief phenomena of human
long-term memory. In the following section, we show that the y-system is
capable of being generated by a plausible (albeit completely hypothetical)
biochemical mechanism, and that this mechanism might readily yield the

phenomena of *“ memory transfer > which we have demonstrated in our recent

experiments.

IV. A Biochemical Model for the y-System

In our 1963 paper, we proposed a biochemical model which might produce
the logical effect of a y-system as required by the mathematical theory. This
model assumed that pores in the subsynaptic membrane at inhibitory synapses
might be blocked as a result of chemical changes occurring during the corre-
lated activity of the presynaptic inhibitory neuron (a C-unit) and the post-
synaptic cell (an 4-unit) thus leading to an over-all gain in the net excitatory
signal to an A-unit. The effect of the blockage upon synaptic functioning
depends on the finding that an inhibitory transmitter substance seems to
open pores of limited size in the post-synaptic membrane, thus selectively
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Increasing its permeability to potassium, but not to sodium (c.f. Eccles [5])
In order to obtain the y-system effect, it was assumed that the bl.ockin mol-.
gcule, called a ““recorder substance,” was held in an equilibrium concgentra--
tion bY means of an antagonist, so that only a certain percentage of the total
Synaptic sites on a cell could be blocked at any one time. This latter mechanism
now seems particularly dubious, and the entire theory, which depends on the
postulation of four types of molecules which have yet to be discovered
seems someyvhat tenuous as an explanation of long-term memory, althou l;
the un.der]ymg concept of synaptic blockage of inhibitory sites ;till seeris
attractive as a possible mechanism for short-term memory, where the y-
rule need not be strictly followed. ’ st
The n“,lflm impetus to seek a new biochemical model came from the memor
transfer‘ experiments mentioned in our introduction. The previous mode}l,
seemed incompatible with this phenomenon, and it was felt that in tryin
to meet the cl?allenge of finding a plausible theory for the transfer effects a}xlndg
at th.e same time, satisfying the conditions for the y-system model, we I’Tli ht’
possibly come closer to depicting the true state of affairs. The mc’)del whgch
has resulted is, of course, still in the realm of science fiction, but it has 5111 -
gested a number of laboratory experiments and has so far co,rrect]y redicteii
several of the properties of the active factor found in our transfer slt)udies
We have seen that the most essential mathematical property that must.be
sat.lsﬁed by the model is that of *“conservation of the weights” to any giv
unit, }'epresented by the y-system. In addition to this, the transfer pheno);ngen on
now imposes several additional conditions: , o

(1) Since the modifications necessary for storage of information in
model are specific to particular combinations of pre- and post-synaptic ne?lur
ons, the information-carrying molecules must somehow identify partic lr-
pre- and pf)st-synaptic cell combinations, either individually or by Sets -
angZ) T.he mform.atlon carrying'molecules must either be capable of reziching
e factmg.selectlve]y upon their corresponding active sites, or must induce
sjt:s c;;me:;;)ir;u(l)f an:logously coded m'olecules which selectively affect these
e t;] g_ ular, t e molecule§ or their products must be capable of crossing

; ood-brain barrier in sufficient quantity to produce the observed effects

(3) The obse.rveq ?ﬂ'ef:ts seem to take a period of at least a few hours tc;
appear, following injection, and typically reach their peak only after 12 h

(Rosenblatt and Miller [16]). The ti
. € time course of an
the model must be commensurate with this, Y process posiulated by

W .

Shor:tzs::r;z th?t son;e process such as synaptic blocking is responsible for
- ention of memory, with a completely se

on of R parate process for long-

::;$ memory, .Wthh is what we shall describe here. It is assumed that long-

memory involves the preferential gain in stability of connections from
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certain presynaptic cells (e.g., C-units) to certain pos.t-synap(;kii c;lll:r tSei.sg.i;
i i i hat when an event is recorded,

A-units or R-units). It is assumed t . ‘ e e ally
i to a few days during which some o :
period of a few hours ‘ e

i - tic cell are lost, and are rep
weaker connections to the post-synap ‘ placed in &
iti i dings emanating from the approp!
competitive fashion by new en € g from e B o thus
tic cells. The stability of the ““correct ™ cell jun > Wi
?;::r)\,:g pis assumed to be enhanced by the production of an adk;leswe rtno;i(:;l;;
; i he pre-synaptic and post-§
lex, specifically coded for both t . |
(r:rc\):npbranespof the appropriate cell pairs, and made up of congtltuents released
by the pre- and post-synaptic cells when they are jointly active.

Endbulb

Soma of

B-codons

(3) Protected
Complex
FiG. 5. Molecular memory trace mechanism.

i in Fi i highly

i i e illustrated in Fig. 5. This shows a
e e ntation of 2 5 synaptic region, including an endbulb
left, and the subsynaptic mem!)rane
rge fraction of synapses In the

schematic representation of a single
coming from cell A, the synaptic ch b e
i i that a la
elonging to cell B. It is now known ge : he
:entragl ngervous system contain a network of ¢ intrasynaptic filaments,

fibrils. about 100 A or less in diameter, and spaced aboutt i(r)‘(; Asz;ll;:::lt ; t:g::-
adi i i reparations.
eadily seen in many electron microscope p : ) ‘
arrip;ringya preliminary version (about a year ago) of the picture vyhlgllc;pe
pears in Fig. 5, | was intrigued to find a report of some electron mlc; rv}:d
Svork by Gra); (in Robertson [11]), in which he claims to haye o s;rane
intrasynaptic fibrils emanating from both the pre- ans polst;‘:yrﬁitlfer;m orane
o . o c cleft.
ing a hooklike junction within the synapti ft.
2?%?;;[’2 d%awing to our postulated structure is most striking. It should also
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be borne in mind that the endbulb and subsynaptic membrane typically form
a structural unit strong enough so that when an endbulb is torn away from a
cell, as in differential centrifugation procedures (cf. Gray and Whittaker [7]),
it tears off a piece of subsynaptic membrane which continues to adhere to it.
Since the synaptic cleft itself is typically some 200 A wide, additional struc-
tural elements, such as the intrasynaptic filaments, must be responsible for
the structural strength of the synaptic junction. For present purposes, how-
ever, the postulation of these filaments is a convenient, rather than a necessary
assumption for the theory.

In Fig. 5, these filaments are assumed to be made up of structural protein,
with template regions which specifically characterize the cell from which they
originate. The specificity of this characterization, which is one of the more
startling claims of this theory, requires some examination. There is already
ample evidence of an extreme degree of specificity in some of the innate
connections of the vertebrate brain. For example, Hubel and Wiesel [8] have
reported in the visual cortex of the cat, various types of cells which respond
to lines and edges in a particular location and orientation in the visual field,
and moving in a given direction within specific velocity limits. These cells
typically respond binocularly, the identical conditions which activate the
cell for the left eye being those which activate it for the right eye. This already
calls for a highly sophisticated mechanism for growing synaptic connections
from the two eyes (by way of the lateral geniculate and other intervening
stages) so that just the right types of cells from both retinae are ultimately
connected to the same neuron, by way of the same types of intervening an-
alyzing mechanisms. It should be noted, moreover, that such a cell in the visual
cortex may have as its immediate neighbor a cell which responds to a substan-
tially different set of stimulus conditions. To date, the only assumption which
seems adequate to account for this degree of specificity is that each type of
cell and function which it subserves, as well as its location in the nervous
system, is represented by a chemical code which can be detected and matched
by the ingrowing fibers. The postulation of continued growth or replacement
of these fibers in the adult brain is still conjectural, but receives increasing
support from observations of degeneration and regeneration,* and studies
of growth of new connections in tissue culture (c.f. Crain [4]). In our model
we assume that each of the specific template sites on the neurofibrils is the
result of induction of a specific gene during the differentiation of the cell.
If some choice of 50 out of 100 genes were specifically induced in each cell,
then this would permit the coding of (‘%) different protein structures—a

* Of particular interest here are Wiesel and Hubel’s studies on young kittens with light
deprivation of one or both eyes resulting in changes in the responses of neurons in the

visual cortex suggesting a competition among active fibers to active cells, as postulated in
our model.
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umber far greater than the number of cells in the human central nervous
n
SYSItCH;Ch cell (4 and B, in Fig. 5) it is assumed that a set ofhpoéypeptlge
n ? M ‘6 L2 I re,
fragments (or other molecular types) designated codons1 in nttis %}l:e pro)-'
analogy to the genetic terminology, are ‘produce.d, comp emte1 ﬁb%il > Pro-
tein of that cell’s intrasynaptic fibrils. It is con'celvable that the or ;:) ol
': lnlf might serve as a template for the production qf the app.ropnafetc 1até
iI'i:)’us if %he fibril protein of cell 4 contains fifty dlﬂ'ef;nt l(;nr.ldst l?e ct;ﬁlpand
i i ill be produced in ,
i responding fifty codon species wi . .
§:t'es;ua c:;;ed tI;lat theyarestored in the endbulb, either freely in the cytog;ﬁsr:
or | osI;?bly in vesicles, along with transmitter substaqces. When.e\;er cell 4
gr : a small batch of these codons are assumed to be dlschargecll in od e rz_
rest"c cleft (again either by passive diffusion th.rough the depg a_rllzel mem-
Eap :3 or by discharge of a vesicle, as in transmitter rglease). Slr;u :—;lr y,ormal
l-ﬁnB’ﬁres its characteristic codons are releaseq. Outside the cel l, i . : :nzyme
;':et of the’se molecules is to be destroyed ragxdly by a proteolyti nzyme
, erkf:d E in the Figure). This state of affairs is shoyvn in the upperttpck on
(rfl'utlhe figure, in the region marked (1). The enzyme I assume(;l‘ to f,heamdon
. don a% its,active site, marked X, which remains exposed “',1 en
;::tches to its corresponding tem;')la'te on ;n:eost;l tclzsr;;eou;ogzx; es‘.,er « process
lis fire in unison or in immedia , s ss
ill Izt?:::dc:t location (2) in the figure is assumed to take place. Eici::doetlcl) cin;e
lhl;n es its codons into the cleft, as befor‘e, and these tenc(l1 t; iy
zorrfsponding receptor sites on the proteins of cells A in . ordin pre:
they would promptly be destroyed by the enzyme E. W er:mz:) tﬁer of pre-
synaptic and post synaptic fillaments happendto c:li)osskotl;l)eback her in close
i lined up back-to- .
imity. however, the codons which are . .
fc:ot)'(cifxlrlxtyc,lis&ﬁde bonds (or other readily forming %onds) v:l;:lzlttxlycgror;t:;:;
i ly provide a cov
i mplex. In this form, they not on . !
:)t:'irir;;nt::tsv::n trl)le fibrils of cell 4 and the fibrils of cgll .thl')lg c’;httzt):ea;zt}::’ri(t)y
h a structure 1s initiated,

m enzyme E. Note that once suc ruc in iy
tet? et:?glgrrocell algne is likely to add to it by providing addltlonalfctcl):;onrso ::,cied
fatch into the free positions at the ends, where they form part o p
Strlgcf)l:rrlet.ime to time, portions of this complex may break. off due to :ilggze;;

for f synapses, enzyme action, or physical damage asin the prepa ton of
atlo'n (})mrr):ogenat;s. If one of these pieces should ﬁnq its way to ‘?: n}u ched
]s::f lcl)lf templates on either a presynaptic or postsy(rilaptg:1 ﬁlatx::rn:; dle “,,; ! bind
ind to the o .
i itti omplementary filament to bin ' '
o lttl’x'se(::;::lsniizw bI:idge has been established, and will lclontll:\uee‘t,:rgtrhoewy
by ac : iti h of the two cells when

i f additional codons from eac of tl : :

EZ ai‘;ﬂ:g: I:lc(»)rmal intact brain, this mechanism is the one which ultimately
€. ;

THEORETICAL MODELS OF BIOLOGICAL MEMORY 53

leads to an increase in the effectiveness of cell Au
ment in the weight of the 4-B connection. Suppose, for example, that cell B
has a fixed number (4) of sybsynaptic sites available on its somatic membrane,
as shown in Fig. 6. Two cells, 4 and C, each occupy two of these sites at the

pon cell B, i.e., to an incre-

F1G. 6. Competition for synaptic sites.

outset, as shown in the figure, and each is assumed to have one extra uncon-
nected ending available in the vicinity. Now suppose 4 and B are jointly
active for a short period, resulting in the initiation of a number of adhesive
complexes at the two 4-B synapses. This leads to a strengthening of the 4-B
synapses, structurally, relative to the C-B synapses, but it does not alter
A’s effect upon B, which depends entirely on the amount of transmitter sub-
stance released by A at its synaptic Jjunctions. It does, however, stabilize A’s
Synapses, so that if a general decay process is initiated (either by controlled
enzymatic triggering or as a result of 4 normal turnover process) one of the
C-B synapses is likely to be lost before either of the 4-B synapses. The
“spare” nerve endings from cells 4 and C, which are assumed to be continu-
ously probing the neighborhood for available points of
compete for the vacant synaptic site. If a fiber from cell C
contact first, the previous situation is restored; but if the e
one to make contact, free pieces of adhesive complex from the neighboring
sites, which are likely to occur in the local medium, will tend to stabilize it
relative to the surviving C-B synapse, so that cell 4 now has three stable sy-
napses on B, while cell C has only one relatively unstable synapse on B.
While the number of synapses in this illustration is unrealistically small
(typical CNS cells might have over a thousand synapses), it serves to illustrate
the principle of ““survival of the stickiest” upon which this model depends.
Note that a y-system has been strictly observed, since it is assumed that each
postsynaptic cell is limited to a certain fixed number of available sites for
attachment of endbulbs, and this available space is at all times fully occupied
by competing fibers. The conservation of space on the cell surface more or
less guarantees that the y-system will hold; even if the entire cell changes in

attachment, now
happens to make
xtra A fiber is the
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filament. The stripping of a chemical mask from the binding site is a third
possibility, suggesting a possible mechanism for enzymatic control over the
MEMOry process.
Since most of the adhesive substance in the brain is assumed to be bound,
at any one time, to the intrasynaptic filaments, we might predict that a
preparation of nerve-ending particles (obtained by differential centrifugation
from a sucrose homogenate of brain tissue) would yield a highly active
preparationin a transfer experiment. While this prediction remains to be tested,
we have found that most of the activity seems to be associated with the preci-
pitated particle fractions of brain homogenates after centrifugation, rather
than remaining in the soluble phase. Prolonged washing with water or deter-
gents, however, has been shown to progressively potentiate the soluble phase
at the expense of the particle fractions [16]. This is at least consistent with,
although not a proof of, the hypothesis of membrane binding.

As I have tried to emphasize throughout this paper, we can do no more at
this time than speculate about the nature of the mechanism responsible for
the “memory transfer”” phenomenon. The purpose of such speculation is,
on the one hand, to see how far we might have to modify previous thinking
in order to accomodate the new findings, and on the other hand to provide
some suggestions as to reasonable directions for biological experimentation.
The transfer phenomenon gives us, for the first time, a technique by which
many theoretical questions about the mechanisms of memory may ultimately
be answered. Since the return to be expected at this time from further experi-
mentation is likely to prove of far greater value than that to be obtained from
further speculation, it seems reasonable to hold intensive work on the develop-

ment of more detailed models in abeyance until some of the questions already
raised here have been answered.
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Some Approaches to Optimum
Feature Extraction*
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The basic problem of feature extraction is divided into two general categories: intraset
feature extraction and interset feature extraction. The intraset feature extraction
problem is studied from three points of view; namely, estimation, clustering, and
minimization of population entropy. The interset feature extraction problem is
approached from the concept of divergent information. A class of linear transfor-
mations is proposed to reduce the dimensionality of measurement vectors and at the
same time to maximize or minimize a performance criterion function describing the
information transmitted by the patterns or some measure of error resulting from the
feature extraction process. The patterns are assumed to originate from a normal
multivariate distribution. The transformed patterns represent a set of feature vectors
the elements of which describe the important properties of the patterns and provide
the necessary information for discriminating between pattern classes. The proposed
approaches are applied to feature extraction and recognition of alphabetic characters
as an illustration, and computer simulation results are obtained.

I. Introduction

Among the challenging problems in the design of pattern recognition
systems, two problems are of utmost importance: (1) the extraction of pattern
features, and (2) the optimum classification of pattern classes. The first is
concerned with the problem of what to measure, and the second deals with the
problem of making optimum decisions in classification. During the past
decade, considerable work has been done in solving the optimal classification
problem. Various theories and techniques have been developed on the basis of
modern mathematics. The literature is well documented with research reports,

* The work reported here was supported in part by the Office of Naval Research.
t Also with the Department of Electrical Engineering, The Ohio State University,
Columbus, Ohio.
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