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ABSTRACT 

Recent advances in computational modeling have led to significant discoveries about the 

representation and acquisition of phonological knowledge and the limits on language learning 

and variation. These discoveries are the result of applying computational learning models to 

increasingly rich and complex natural language data while making increasingly realistic 

assumptions about the learning task. This article reviews the recent developments in 

computational modeling that have made the connections between fully explicit theories of 

learning, naturally occurring corpus data, and the richness of psycholinguistic and typological 

data possible. These advances fall into two broad research threads 1) the development of 

models capable of learning the quantitative, noisy, and inconsistent patterns that are 

characteristic of naturalistic data, and 2) the development of models with the capacity to learn 

hidden phonological structure from unlabeled data. After reviewing these advances, the article 

summarizes some of the most significant discoveries they have led to. 
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1.   INTRODUCTION 

Recent advances in computational modeling of phonological learning have had a 

transformative impact on the field. These developments have made it possible to test and 

compare formally precise theories of learning and linguistic endowment while making 

increasingly realistic assumptions about the nature of the learning data and the learning task. 

Computational models have led to significant discoveries about the fundamental characteristics 

of the human language acquisition device: how language knowledge is represented and 

acquired and what limits exist on learning and variation. These discoveries would not have 

been possible without the formalization of the connection between natural language input and 

linguistic behavior that computational models of learning provide. This link makes it possible 

to test theoretical assumptions by comparing the predictions of computational models to 

measurable linguistic behavior in psycholinguistic experiments, typological evidence, and 

empirical observations about language change and loanword adaptation. 

 Computational modeling of phonological learning has become an essential tool of 

modern phonological research. It complements the rise of experimental work on phonological 

knowledge and learning and the increase in available linguistic databases, both of which 

provide a rich and complex empirical base for developing and evaluating learning models and 

phonological theories. The mutually informing link between computational modeling and these 

growing empirical resources has been made possible by modeling developments that can be 

broadly classified into two strands of research.  

First, the development of learning models that can deal with the quantitative, variable, 

and inconsistent patterns that are characteristic of naturalistic data has made it possible to apply 

and test learning models on data representative of the language experience of human language 

learners. While simulations with toy data that abstract from the irregularities of natural 

language are often an essential step in the development of new computational models, more 
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realistic assumptions about the nature of the linguistic input permit more confidence that 

resulting conclusions are applicable to human language learning. This is especially true when 

making claims about the sufficiency or insufficiency of the language input to support learning 

of some linguistic property or generalization – these questions can only be answered by 

examining the distribution and nature of the evidence in naturally occurring data. Likewise, it 

is only through detailed comparison of the quantitative patterns in natural language data and 

the generalizations learners infer on the basis of that data that systematic biases can be fully 

understood. Section 2 reviews the most significant recent developments that have made it 

possible to model learning of phonology from naturalistic corpus data, arguing that these 

capabilities require the use of frequency-sensitive learning approaches such as those inherent 

to statistical learning models. 

The second group of advances in computational modeling involves the learning of 

hidden linguistic structure, which is an intrinsic property of language at various levels of 

representation. Hidden structure includes all representations that learners must infer but which 

cannot be directly observed in the learning data. Depending on theoretical assumptions, hidden 

structure in phonology may include metrical feet, underlying representations, syllables, moraic 

structure, autosegmental associations, derivational ordering, word and other prosodic 

boundaries, and even the constraints, rules, and features themselves if they are not innately 

specified to the learner. Since children learn language without direct access to hidden 

representations, the capacity to learn these representations is essential to making realistic 

assumptions about the learning task. How these representations are inferred and how their 

learning interacts can only be understood via the development of explicit learning models 

capable of learning from incomplete and massively ambiguous data. Section 3 reviews 

significant discoveries in this area, arguing that statistical methods and other frequency-

sensitive approaches have also been crucial to progress on hidden structure learning. 
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 Lastly, Section 4 reviews significant discoveries that have resulted from the application 

of frequency-sensitive models to psycholinguistic and typological questions. A recurring theme 

in many of these studies is the fundamental question of nature versus nurture. What is the 

precise balance of experience sensitivity and innate predisposition that accounts for human 

learners’ generalization from limited exposure to ambiguous, incomplete, and inconsistent 

natural language input? In what ways do learners systematically diverge from their language 

experience and can these learning biases account for observed restrictions in language typology 

and language change? Evaluating models on their abilities to account for human learning and 

generalization is essential to answering these questions, providing a strict litmus test that has 

already revealed subtle complexities and strong constraints on the language acquisition device. 

2.   LEARNING QUANTITATIVE GENERALIZATIONS 

Perhaps the most interesting and challenging aspect of modeling language acquisition is 

understanding how learners generalize from data that are inconsistent and incomplete. This 

section discusses the challenge posed by inconsistency while the next focuses on 

incompleteness, but these are two sides of the same coin: ambiguity. Ambiguity means that 

there are multiple interpretations, multiple analytic decisions that the learner could make to 

account for the same data. Understanding how learners disambiguate between the wealth of 

possible analyses of the same inconsistent, incomplete data gets at the very essence of language 

learning. To explain the choices learners make, it is necessary to make fully explicit how 

learners balance various considerations against one another and how they integrate various 

sources of information. Modeling acquisition from ambiguous data also provides the greatest 

opportunity to observe and formalize pressures that may bias learners’ decisions toward 

phonetically natural, typologically common, and more systematic generalizations. 

 Inconsistencies in natural language data take on many forms. The child learning their 

first language is not told which data tokens are errors that should be ignored, nor which 
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examples are exceptions to the general patterns they must infer. Language acquisition is robust 

enough to detect general patterns in the face of a few exceptions. Language acquisition must 

also be flexible enough to detect and differentiate these occasional divergences from the 

systematic variability that arises when the realizations of individual words or morphemes vary 

probabilistically and unpredictably in the same phonological environment. Speakers’ 

knowledge of such free variation includes not only the categorical restrictions on the observed 

variability but also how the rate of variation depends on various phonological factors (see 

Anttila 2007; Coetzee & Pater 2011 for reviews). In the domain of gradient phonotactics, 

speakers show sensitivity to generalizations of varying degrees of productivity, and this 

sensitivity reflects quantitative properties of the language data, such as the probability of sound 

co-occurrences and the (under-)attestation of certain sound combinations (Bailey & Hahn 

2001; Coleman & Pierrehumbert 1997; Frisch et al. 2000; Hayes & Wilson 2008). Another sort 

of inconsistency often found in natural language phonologies arises when lexical classes 

partition the lexicon into strata, each associated with distinct constellations of phonological 

processes and properties (Inkelas et al. 1997; Itô & Mester 1999). In patterned exceptionality, 

speakers have knowledge of language-wide quantitative trends while simultaneously encoding 

the fixed behavior of particular morphemes or morpheme combinations (Becker et al. 2011; 

Ernestus & Baayen 2003; Gouskova & Becker 2013; Hayes & Londe 2006; Zuraw 2000). In 

all of these cases, the learner is faced with patterns where phonologically similar words or 

morphemes behave inconsistently in the same phonological environments. 

 The following sections address these various forms of inconsistency, reviewing the 

approaches that have been developed to cope with them1. Tackling these inconsistencies 

                                                
1  Inconsistency can also arise through phonetic (Boersma 2011; Pierrehumbert 2001) and 

phonological (Legendre et al. 2006; Smolensky & Goldrick 2016) gradience. 
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requires sensitivity to quantitative properties of the data, and therefore much of the section 

focuses on ways in which computational models make use of quantitative information. 

2.1   Preliminaries 

Many of the models that have been developed to cope with quantitative phonological 

generalizations rely on probabilistic extensions of Optimality Theory (OT; Prince & 

Smolensky 2004) or Harmonic Grammar (HG; Legendre et al. 1990; Smolensky & Legendre 

2006). Stochastic OT (Boersma 1997; Boersma & Hayes 2001), Noisy HG (Boersma & Pater 

2016), and Maximum Entropy HG (MaxEnt; Goldwater & Johnson 2003; Jäger 2007; Johnson 

2002; Wilson 2006) are three commonly utilized probabilistic extensions of these frameworks 

(see also Jarosz 2015). Each of these frameworks encodes a stochastic grammar that assigns 

conditional probabilities to surface realizations of a given underlying representation. This 

section illustrates these approaches using the MaxEnt model as an example (for in-depth 

comparisons, see Hayes 2017; Smith & Pater 2017). 

 Probabilistic constraint grammars formalize phonological mappings in terms of 

interactions of violable constraints, their language-specific prioritization, and the optimization 

that determines which among a set of candidate pronunciations is selected as the surface 

realization of a given underlying representation. In MaxEnt (and HG), constraints are 

numerically weighted, and these weights are multiplied by the constraint violations incurred 

by each candidate and then summed to determine each candidate’s overall harmony: 𝐻(𝑥, 𝑦) =

	
  ∑ 𝑤+𝑣++∈. (𝑥, 𝑦). The harmony 𝐻(𝑥, 𝑦) of an input-output pair (𝑥, 𝑦) is the summation over 

all constraints 𝑐 ∈ 𝐶, of the product of the weight of each constraint 𝑤+ and the number of 

violations 𝑣+(𝑥, 𝑦)  assigned to (𝑥, 𝑦)  by that constraint. Violations 𝑣+(𝑥, 𝑦)  are usually 

expressed as negative integers and weights 𝑤+  as non-negative real values so that overall 

harmony is a negative real number, with values closer to zero being more harmonic. 



Modeling Phonological Learning 

 8 

Table 1 illustrates harmony calculations in MaxEnt using an example of free variation, 

English t/d-deletion, based on Coetzee & Pater (2011). This table shows three tableaux that 

compare faithful and deleted realizations of stem-final, post-consonantal [t] in three 

environments (pre-pausal (i), pre-consonantal (ii), and pre-vocalic (iii)). There is one constraint 

that penalizes post-consonantal [t] (*CT), one general MAX constraint, and two contextual 

variants of MAX, one specific to the pre-vocalic context (MAX-P-V) and one to the phrase-final 

context (MAX-FIN). The table shows the harmony calculations assuming weights of <4, 1, 2, 

3> for the constraints <*CT, MAX-P-V, MAX-FIN, MAX>, respectively. Each violation has a 

numeric value of -1. In the first tableau (i), MAX-FIN (2) and MAX (3) together assign a harmony 

of -5 to the deletion candidate (/Ct/, [C_]), while the faithful candidate (/Ct/, [Ct]) violates only 

*CT, receiving a harmony of -4. Thus, in the pre-pausal context, the faithful candidate has 

higher harmony and is preferred according to these weights. In the second competition 

representing the preconsonantal context (ii), the deletion candidate (/CtC/, [C_C]) violates only 

the general MAX (3), making it more harmonic than the faithful candidate (/CtC/, [CtC]), while 

in the final tableau representing the pre-vocalic context (iii), the two candidates tie. 

 In MaxEnt, harmony is used to define the conditional probability 𝑃(𝑦|𝑥) of an output 

y given an input x: 𝑃(𝑦|𝑥) = 345	
  (∑ 6787(9,:)7∈; )
<

. The probability is proportional to the 

exponential of the harmony, and the constant Z is a normalizing term to ensure the conditional 

probabilities sum to 1 for each input. Specifically, Z is the sum of the exponentiated harmonies 

for all output candidates 𝑦 ∈ 𝑌(𝑥) for a given input x: 𝑍 = ∑ exp	
  (∑ 𝑤+𝑣+(𝑥, 𝑦)+∈. ):∈B(9) . 

The last column of Table 1 shows the MaxEnt probabilities for each tableau. In (i), the faithful 

candidate has probability 345	
  (CD)
345(CD)E345	
  (CF)

≅ 73.1%  while the deletion candidate gets 

345	
  (CF)
345(CD)E345	
  (CF)

≅ 26.9%. With these weights, the probabilities of the faithful candidates in the 

second (ii) and third tableau (iii) are roughly 26.9% and 50%.  
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Coetzee & Pater (2011) show how different weightings of these constraints can account 

for empirically observed, phonologically conditioned rates of t/d-deletion across a wide range 

of English dialects. MaxEnt, Stochastic OT, and Noisy HG are all able to achieve a close fit 

with the observed rates. Beyond t/d-deletion, there are many other successful examples of 

modelling free variation in the literature using these frameworks (see e.g. Boersma & Hayes 

2001; Coetzee & Pater 2008; Goldwater & Johnson 2003). 

2.2   Learning Free Variation 

Numerous successful algorithms have been developed for learning categorical OT rankings 

and HG weightings from full structural descriptions2 (Boersma & Pater 2016; Goldwater & 

Johnson 2003; Jäger 2007; Magri 2012; Soderstrom et al. 2006; Tesar 1995). There are a 

number of online and batch algorithms for both OT and HG that are guaranteed to find a 

categorical target grammar for any set of input-output pairs, as long as such a target grammar 

exists. The online, error-driven constraint demotion (EDCD) algorithm (Tesar 1995) forms the 

basis for a number of frequency-sensitive models. Error-driven (Gibson & Wexler 1994; 

Rosenblatt 1958; Wexler & Culicover 1980) means that updates to the grammar are triggered 

when the learner’s own predicted output fails to match the observed output in the learning data.  

Online algorithms for learning free variation include the error-driven Gradual Learning 

Algorithm for Stochastic OT (OT-GLA; Boersma 1997; Boersma & Hayes 2001) and the 

closely related version for Noisy HG (HG-GLA; Boersma & Pater 2016). Grammar updates 

work similarly in both algorithms. Suppose the learning data includes the input-output pair 

(𝑥, 𝑦), and the learner incorrectly selects (𝑥, 𝑦′) as the winning candidate, an error. The learner 

                                                
2 Learning from full structural descriptions means the learner is provided with access to all 

representations referenced by constraints, including hidden representations. Moving beyond 

this simplifying assumption is the focus of the next section. 
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compares the constraint violations of the observed (𝑥, 𝑦)	
  to the violations of the error (𝑥, 𝑦′), 

slightly demoting constraints that favor the error and slightly promoting constraints that favor 

the observed form. Each update results in a small adjustment to the probability distribution 

defined by the stochastic grammar, making the observed candidate slightly more likely than 

the error (for technical details, see Boersma & Pater 2016; Jarosz 2016a). 

When there is free variation, the same input occurs with multiple different outputs in 

the learning data. For example, the word ‘cost’ in English might sometimes be realized as [kɑs] 

and sometimes as [kɑst] in the same environment. This creates inconsistency, but the GLA is 

oblivious to this. Each time the learner observes (/kɑst/, [kɑst]), it must predict [kɑst] as the 

output, and [kɑs] will be treated as an error, while each time the learner observes (/kɑst/, [kɑs]), 

the opposite is true. The right outcome in each case is unpredictable so the learner will continue 

to make small updates in opposite directions throughout learning, but these updates will be 

made in proportion to the rate at which these variants occur in the data. Updates favoring the 

more frequent variant will be made more often, and the learned grammar will therefore generate 

the frequent variant more often. In this way, systematic free variation yields variable final 

grammars which generally match the empirical rates of variation quite well. The GLA often 

works well in practice; however, it is not guaranteed to find a grammar compatible with the 

data in all cases, even for categorical patterns (Pater 2008).  

MaxEnt models have been widely utilized outside of linguistics in a variety of machine 

learning and natural language processing contexts, and there are numerous well-understood 

optimization algorithms for finding weights that optimize fit with the data (Berger et al. 1996; 

Della Pietra et al. 1997; Goldwater & Johnson 2003; Hayes & Wilson 2008; Jäger 2007; 

Johnson 2002; Wilson 2006). For example, standard algorithms exist for performing 

(stochastic) gradient descent for these models, and they are guaranteed to find the weights that 

best fit the observed distribution. Jäger (2007) shows that the stochastic gradient descent 
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updates for MaxEnt look exactly like the HG-GLA updates. Data fit in MaxEnt modeling is 

usually defined in terms of likelihood maximization: likelihood is maximized when the learned 

grammar matches observed probabilities in the data as well as possible. In MaxEnt models it 

is also straightforward to include priors, or regularization terms, in the objective function to 

keep weights low and prevent overfitting (Goldwater & Johnson 2003) or to encode other 

biases on weightings of constraints (Pater et al. 2012; Wilson 2006).  This capacity plays an 

important role in modeling the learning biases discussed in Section 4. 

2.3   Gradient Phonotactics 

The MaxEnt, Stochastic OT, and Noisy HG frameworks can all be used for modeling graded 

acceptability and phonotactics as well (Boersma & Hayes 2001; Coetzee & Pater 2008; Hayes 

& Wilson 2008)3. The most common approach follows Hayes and Wilson (2008) in using only 

markedness constraints to define a probability distribution over the entire space of possible 

word forms in the language. Rather than defining probabilistic mappings (conditional 

distributions over outputs for each input), phonotactic grammars simply define a single 

distribution over all possible output forms. The predicted probabilities of various word forms 

can then be numerically transformed and correlated with acceptability scales or other 

behavioral measures. The Hayes and Wilson Phonotactic Learner (Hayes & Wilson 2008) has 

been especially broadly applied in recent years and has performed well in predicting 

experimentally elicited phonotactic scales (see e.g. Albright 2009; Daland et al. 2011). These 

applications will be discussed further in Section 4. In addition to dealing with inconsistency, 

the Phonotactic Learner also takes on a hidden structure learning problem, learning constraints, 

which will be discussed further in Section 3. 

                                                
3 For other approaches to modeling gradient phonotactics see (Albright 2009; Bailey & Hahn 

2001; Coleman & Pierrehumbert 1997; Frisch et al. 2000; Vitevitch & Luce 2004). 
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2.4   Classes, Exceptions, and Lexicalized Variation 

Learning classes, exceptions, and lexicalized variation faces both inconsistency and hidden 

structure challenges: phonologically similar morphemes behave differently in the same 

environments, and the learner must infer the hidden classification underlying this 

inconsistency. If the learner is faced with just a few exceptions to a general pattern, they must 

infer which examples should be treated as exceptions and which can be treated as part of the 

general pattern. Similarly, if the learning data has lexical strata with distinct phonological 

properties, the learner must infer which examples fall into each stratum while learning the 

grammars corresponding to these strata and how they differ from one another. 

 Due to the difficulty of this learning task, most approaches are rather recent. The earliest 

work on learning lexical exceptionality in a constraint-based framework (Becker 2009; Coetzee 

2009; Pater 2010) builds on the categorical constraint learning algorithm Recursive Constraint 

Demotion (RCD) and its ability to detect inconsistency (Tesar & Smolensky 1998). RCD keeps 

track of winner-loser pairs, efficiently finds a ranking that favors all winners over losers if one 

exists, and efficiently detects inconsistency otherwise. When there are exceptions in the data, 

there will be inconsistency. Pater (2010) proposes an extension of this algorithm that constructs 

lexically-specific constraints for the data forms that triggered the inconsistency. These 

lexically-specific constraints are indexed to the deviant morphemes and can be ranked 

separately from their general versions to resolve the inconsistency. 

 While the RCD-based exceptionality approach can deal with one kind of inconsistency 

(exceptions), it cannot cope with learning data that has exceptions and other kinds of 

inconsistency or ambiguity, like variability or hidden structure. A variety of approaches to 

learning exceptions or classes in the face of variability have recently been developed by 

extending frequency-sensitive approaches (Nazarov 2016, 2018; Pater et al. 2012; Shih 2018). 

While the details vary, all approaches crucially rely on the ability to model general statistical 
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trends in the learning data while allowing individual lexical items the ability to counter the 

broader language-wide grammatical pressures. Related modeling work focuses on the gradient 

productivity of morpho-phonological transformations using rules (Albright & Hayes 2003) and 

constraints (Allen & Becker 2015; Becker & Gouskova 2016; Moore-Cantwell & Staubs 2014).  

An empirical and theoretical problem of particular interest in recent modeling work is 

that of gradient, or patterned, exceptionality. A number of experimental studies across multiple 

languages have now shown that modeling speaker’s generalization abilities requires the 

capacity to predict the fixed behavior of particular lexical items while simultaneously making 

gradient predictions for novel forms (Becker et al. 2011; Ernestus & Baayen 2003; Gouskova 

& Becker 2013; Hayes & Londe 2006; Zuraw 2000). For example, Zuraw (2000) shows that, 

across the lexicon in Tagalog, the rate of nasal substitution is statistically conditioned by 

phonological factors – voicing and place – and that native speakers reproduce these statistical 

trends for nonce words even though most prefix-stem combinations exhibit fixed behavior. 

Approaches to this problem model the lawful, phonologically-conditioned statistical patterns 

in the lexicon using the GLA or MaxEnt models discussed earlier while incorporating 

constraints that allow individual lexical items’ memorized pronunciations to be utilized when 

available (Moore-Cantwell & Pater 2016; Smith 2015; Zuraw 2000).  

Lexicalized variation presents a version of the notoriously difficult subset problem 

(Berwick 1985). Since the target grammar requires lexicalization, and lexicalization perfectly 

accounts for the learning data, what prevents the learner from simply memorizing the 

exceptions and failing to learn anything general about the language-wide phonological patterns 

and restrictions? Put differently, what ensures that the learner will acquire a grammar that 

generalizes appropriately beyond the learning data? Several recent studies have shown these 

models generally learn language-wide patterns more quickly than lexically-specific patterns 

(Moore-Cantwell & Pater 2016; Pater et al. 2012; Zuraw 2000). This is because of these 
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models’ sensitivity to frequency: all the learning data support language-wide patterns, while 

support for lexically-specific patterns occurs rarely, only when the particular lexical item is 

observed. This allows the models to learn language-wide statistical preferences early on, before 

the memorized properties of individual lexical items begin to dominate production and cause 

learning to slow.  

3.   LEARNING HIDDEN PHONOLOGICAL STRUCTURE 

Learning of hidden phonological structure pushes the bounds of current learnability 

capabilities. In the presence of hidden structure, no known approach is guaranteed to succeed 

at efficiently learning every (arbitrary) phonological system. To deal with the massive 

ambiguity created by hidden structure, models place restrictions on the kinds of phonological 

patterns that can be learned in principle or learned reliably well. For frequency-sensitive 

models, it also means that quantitative properties of the data can dramatically influence learning 

success. In either case, certain patterns or phenomena are predicted to be more difficult (or 

impossible) to learn. Modeling thus raises difficult and important questions about the kinds of 

patterns and representations learning models must account for and the kinds of biases that are 

needed. What are the limits on learnability and to what extent are observable typological 

generalizations derivable from these limits? Modeling hidden structure learning also affords a 

unique opportunity to investigate the richness and universality of phonological representations. 

What aspects of phonological representations must be innate and which can be acquired? How 

abstract and structured is phonological knowledge? Which theoretical frameworks and 

assumptions lead to better learning outcomes or better fits to behavioral observations? 

Answering these questions requires a tight connection between computational modeling and 

the empirical sources of evidence for learning outcomes and learning biases: typology, 

psycholinguistic studies, and sound change. 
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This section will not attempt a comprehensive review of the rich and ever-growing 

literature on hidden structure learning in phonology (for recent overviews, see Jarosz 2013, 

2015, 2016a; Tesar 2013). Rather, after highlighting some of the unique challenges posed by 

hidden structure and the developments that led to the existing range of solutions, the section 

outlines some of the major learnability results and discuss the novels insights on long-standing 

debates that recent modeling work has begun to produce. 

3.1   Hidden Structure Challenges 

Ambiguity is particularly challenging for hidden structure learning: the space of possible 

analyses the learner must be capable of navigating is too large to search exhaustively. Even 

when the space is finite, such as with metrical footing (Prince 2010), it grows exponentially or 

worse with the number of words, features, or constraints. In the case of learning abstract 

underlying representations, rules, or constraints the space is potentially infinite, even for 

categorical languages. To take a simple example, in a language that deletes final consonants, 

there is no bound in principle on the number of final consonants that may be posited 

underlyingly. Likewise, there is no bound in principle on the maximal length of phonotactic 

constraints (see Hayes & Wilson 2008) or on the length of phonological contexts of rules (see 

Albright and Hayes 2003). The learner must therefore somehow constrain their search through 

this vast space of possibilities while finding ways to explain generalizations that can only be 

discovered with reference to patterns across many lexical items. 

 One kind of ambiguity that arises in hidden structure learning is the credit (or blame) 

problem (Dresher 1999), which has a ‘chicken and egg’ character. When the learner’s current 

hypothesis makes an erroneous prediction, hidden structure prevents the learner from directly 

observing the source of the error. For example, when learning phonological mappings and 

underlying representations, an error could be the result of an incorrect lexical representation or 

an incorrect phonological mapping, and the learner must somehow determine which should be 
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blamed. Similarly, since metrical footing cannot be directly observed, when an error occurs, it 

is not clear which constraints, parameters, or rules must be blamed. For example, when the 

learner observes a trisyllabic word with stress on the medial syllable, such as [tɛˈlɛfɔn], it is 

not clear whether this form supports left-aligned iambs [(tɛˈlɛ)fɔn] or right-aligned trochees 

[tɛ(ˈlɛfɔn)]. If the learner knew the target footing, they could determine the constraint violations 

of the observed form and the necessary update to the grammar. As discussed in Section 2.1, 

this learning sub-problem has been solved. Conversely, if they knew the target grammar, they 

could make inferences about the footing of this form. Since learners have prior knowledge of 

neither, they must overcome this chicken and egg ambiguity if they are to get anywhere with 

hidden structure learning. 

 Another source of ambiguity in hidden structure learning is the relative breadth or 

narrowness of inferred generalizations. The subset problem discussed earlier for exceptionality 

arises when learning underlying representations or any other lexically-specific properties4. A 

related issues arises when learning rules or constraints: how broad or narrow should constraints 

or rules be? The learner must generalize from the incomplete data sample representing the 

target language’s patterns. The observed data (and indeed, entire language lexicons) do not 

contain every combination of segments, features, and contexts to which a rule or constraint is 

potentially relevant (for related discussion, see (Wilson & Gallagher to appear)). On what basis 

does the learner generalize, and how broadly? Relatedly, when does the learner have enough 

evidence to abstract a general rule or constraint rather than treating a pattern as accidental? 

Modeling human learning requires just the right balance between restrictively fitting the 

                                                
4  There is a sizable literature on strategies that favor restrictive phonological grammars 

(Alderete & Tesar 2002; Hayes 2004; Jarosz 2006, 2009; Jesney & Tessier 2011; Prince & 

Tesar 2004; Tesar & Prince 2007; Tessier 2009).  
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observed data – with its noise and accidental gaps – and generalizing appropriately to ‘similar’ 

unseen data. This is sometimes called the bias-variance trade-off. Defining precisely what 

‘similar’ means in phonological learning – and how features, representations, substantive and 

quantitative factors influence this process – is an important area of ongoing research.   

3.2   Approaches & Progress 

A common theme unifies many of the results summarized in this section: much of the progress 

on hidden structure learning in phonology can be traced to a productive integration of linguistic 

theory with machine learning approaches. Numerous models discussed in this section build on 

well-studied techniques in machine learning like likelihood maximization for incomplete data 

(Dempster et al. 1977), minimum description length (Solomonoff 1964), and information 

theory and maximum entropy modeling (Berger et al. 1996). These successes are a testament 

to the possibilities that actively integrative computational modeling research can yield. 

The previous section argued that frequency-sensitive learning models are necessary for 

modeling human learning of quantitative patterns like variability and exceptionality.  

Frequency-sensitive learning approaches can also provide a way to ‘break into’ the chicken 

and egg ambiguity that hidden structure creates. Modeling work on various linguistic interfaces 

has shown that learning of quantitative preferences, even if those preferences are based on 

incomplete or noisy data, can guide subsequent learning. For example, learning of phonotactic 

distributions can facilitate learning of phonological rules (Calamaro & Jarosz 2015; Le Calvez 

et al. 2007; Peperkamp et al. 2006) and word boundaries (Blanchard et al. 2010; Daland & 

Pierrehumbert 2011; Jarosz & Johnson 2013; Johnson 2008a) from noisy corpus data. Learning 

of lexical entries (Feldman et al. 2009) and phonemes (Dillon et al. 2013) can help with the 

learning of phonetic categories, and simultaneous learning of word co-occurrences and word 

boundaries can be mutually informing (Goldwater et al. 2009; Johnson 2008b). Quantitative 

modeling also enables general and principled solutions to the subset problem, making it 
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possible to formalize mathematically how learners balance conflicting considerations like the 

simultaneous pressures to tightly fit ambiguous and gappy observed data and to extract broad 

and simple generalizations (Dillon et al. 2013; Hayes & Wilson 2008; Jarosz 2006; Rasin & 

Katzir to appear; Wilson & Gallagher to appear).  

3.3   Significant Results 

3.3.1   Prosodic Structure 

One of the most well-studied hidden structure learning problems in phonology is that of 

metrical structure. While metrical structure has been given particular emphasis, many of the 

approaches discussed below could be applied equally well to other types of abstract 

representations, such as syllables or autosegments. 

Modeling learning of metrical parameter settings in the Principles and Parameters 

framework (Chomsky 1981) provides a concrete example of how learning models can address 

fundamental questions about innate linguistic knowledge. To tackle the overwhelming 

ambiguity created by metrical footing, pioneering work (Dresher 1999; Dresher & Kaye 1990) 

developed an approach called cue-based learning. In the cue-based learning approach, each 

parameter is innately associated with a ‘cue’ – a pattern in the data that prompts the learner to 

set that parameter to a certain value. For example, upon observing that stress occasionally falls 

on the rightmost syllable, the learner may determine that (right) extrametricality is set to ‘off’ 

in the target language. In addition to innate cues, Dresher and Kaye furthermore hypothesized 

that successful learning requires that parameters have default settings and an inherent ordering. 

Pearl (2011) recently applied a statistical learning model proposed for syntactic parameters 

(Yang 2002) to the learning of metrical structure, which made it possible to learn parameter 

settings from noisy data. In support of innate language-learning processes, Pearl found that the 

statistical learning algorithm needed to be supplemented with cues and parameter ordering. 

However, building on statistical machine learning approaches (see Jarosz 2015), Nazarov & 
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Jarosz (2017) recently found that the more nuanced statistical inference capabilities of their 

proposed learning model allowed it to succeed at learning a wide range of metrical parameter 

systems without the need for cues, default settings, or inherent ordering, thereby weakening 

the arguments for innate domain-specific learning processes.  

Prosodic structure was also the first hidden structure domain addressed in Optimality 

Theory. Tesar & Smolensky (1998, 2000) proposed a parsing strategy called Robust 

Interpretive Parsing (RIP) that allowed the learner to make an educated guess about the 

prosodic structure of the learning data. RIP adapts a standard statistical machine learning 

approach called Expectation Maximization (EM) to the categorical OT setting (Dempster et al. 

1977). The basic intuition behind RIP (and EM) is that the learner can use their own current 

grammar to choose among competing interpretations, or parses, of the overt forms in the data. 

This allows the learner to circumvent the chicken and egg problem discussed earlier: they use 

their current grammar to guess at the hidden structure in the learning data, and then they use 

that hidden structure to calculate the update to their grammar. Returning to the example of 

structurally ambiguous [tɛˈlɛfɔn], RIP works by limiting the candidate set to metrical parses of 

the observed form (e.g. [(tɛˈlɛ)fɔn] and [tɛ(ˈlɛfɔn)]) and selecting whichever parse is optimal 

according to the current ranking. The candidate corresponding to that fully-structured form is 

then compared to the learner’s own production, which is the optimal candidate among all 

possible stress assignments for /tɛlɛfɔn/. If there is a mismatch, the constraint ranking is 

updated as usual based on the constraint violations of both candidates. 

Building on Tesar & Smolensky’s proposal, the parsing approach was later extended to 

the stochastic setting, where it has been used to explore learning biases and compare the 

learning consequences of weighted versus ranked constraints (Apoussidou 2007; Apoussidou 

& Boersma 2003; Boersma 2003; Boersma & Pater 2016; Breteler 2018; Jarosz 2013). 

Boersma (2003) extended the approach to OT-GLA, while Boersma & Pater (2016) extended 
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it to HG-GLA and presented simulations comparing the performance of RIP as applied to 

categorical OT, OT-GLA, and HG-GLA. They found that the statistical models and especially 

those with weighted constraints performed best, suggesting a potential learnability advantage 

of HG over OT. In subsequent work, Jarosz (2013) proposed two alternative parsing strategies 

that incorporated insights from statistical machine learning to enhance the learner’s utilization 

of their probabilistic knowledge during parsing. She showed these strategies substantially out-

performed RIP and leveled the performance of the OT and HG learning models, revealing that 

the OT disadvantage discovered by Boersma & Pater was due to properties specific to RIP 

rather than OT per se. In follow-up work, Jarosz (2015) drew further inspiration from EM and 

proposed a novel learning approach for probabilistic OT, whose performance on learning 

metrical structure slightly surpasses the best parsing strategies and extends to other kinds of 

hidden structure, like lexical representations and derivations, discussed next.  

3.3.2   Lexical Representations 

Much of the earliest work on learning underlying representations focused on lexical accent. 

Even when learning is restricted to learning underlying features of observed segments – that is, 

if insertion and deletion mappings are not considered – the space of possible underlying 

representations is exponentially large. To be computationally feasible, models must therefore 

find efficient ways to navigate the exponential space (Jarosz 2015; Merchant 2008; Tesar 2013) 

or restrict the feature values or forms considered by the learner to those observed on the surface 

(Hayes 2004; Pater et al. 2012; Tesar 2006). A variety of representational approaches have 

been developed for modeling lexical properties. Some assume the traditional underlying 

representation that the grammar uses as the input to the phonological mapping (Akers 2012; 

Dresher 2016; Jarosz 2015; Merchant 2008; Tesar 2013), while others rely on lexical (or UR) 

constraints that interact with grammatical constraints in parallel (Apoussidou 2007; Pater et al. 
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2012). With the latter approach, the models developed for learning of structural ambiguity (e.g. 

RIP) can also be applied to the learning of lexical representations5. 

The computational pressures are intensified when alternations involving insertion and 

deletion are considered (Alderete & Tesar 2002; Cotterell et al. 2015; Jarosz 2006, 2009; 

Merchant 2008; O’Hara 2017; Pater et al. 2012; Rasin & Katzir to appear). As discussed earlier, 

learning of deletion mappings opens the door to a potentially infinite space of abstract 

underlying representations. To model this aspect of phonological learning, assumptions about 

the range of lexical options available to the learner must be made explicit. Work on learning of 

such alternations thus necessarily makes claims about the abstractness or concreteness of 

lexical representations and the restrictions on possible types of alternations, reviving classic 

debates on abstractness in the phonological literature (Kisseberth & Kenstowicz 1977). 

Currently, these limits are not well-understood; however, modeling work is beginning to 

provide new arguments for both abstract (O’Hara 2017) and concrete lexical representations 

(Allen & Becker 2015). There is potential to make the trade-offs between more abstract lexical 

representations and the ability to (efficiently) learn attested kinds of alternations explicit by 

applying, extending, and testing the current range of learning models. 

3.3.3   Derivations & Intermediate Representations 

Learning of serial derivations is probably the least well understood learning problem in 

phonology, and most of the progress on this task has occurred in the last several years, building 

on machine learning techniques and solutions developed for other hidden structure problems.  

Prior to OT, there was limited work on learning of rules and rule ordering, and even 

learning of individual rules (let alone a system of ordered rules) given pairs of underlying and 

surface forms continues to be a challenging problem. Johnson (1984) proposed a procedure for 

                                                
5 See Jarosz (2015) for discussion of why RIP cannot be applied to learning of traditional URs. 
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learning of underlying representations and ordered rules from paradigmatic information, but 

this procedure made strong simplifying assumptions about types of rules and interactions 

allowed – for example, insertion and deletion were not considered. Gildea & Jurafsky (1996) 

showed that learning a single simple rule from naturalistic data, English flapping, presents 

numerous challenges. Learning is unsuccessful even though the algorithm makes strong 

restrictions on possible mappings (they must be subsequential, see Mohri (1997)) and is 

guaranteed to learn the target mapping in the limit (Oncina et al. 1993). Gildea & Jurafsky 

showed that the problem arises due to lack of sufficient restrictions on generalization. As 

discussed earlier, naturalistic data does not provide every combination of features or segments 

that instantiate a rule or pattern. Without biases favoring more natural6 phonological rules, the 

algorithm fails to generalize appropriately to unseen data. More recent work on subregular 

formalizations of phonology have investigated even tighter restrictions on permissible 

mappings (Chandlee et al. 2014; Chandlee & Heinz 2018). However, these learning procedures 

still assume the learner observes input-output pairs and all combinations of segments that 

instantiate the pattern. 

There are also recent frequency-sensitive approaches. Rasin, Berger, & Katzir (2015) 

pursue an approach using principles of minimum description length (Solomonoff 1964) to learn 

both underlying representations and ordered rules. Staubs & Pater (2016) and Jarosz (2016b) 

propose novel approaches for learning serial derivations in Harmonic Serialism (HS; McCarthy 

2000; Prince & Smolensky 2004), while Nazarov & Pater (2017) model learning of derivations 

in a MaxEnt version of the Stratal OT framework (Bermúdez-Otero 1999; Kiparsky 2000). 

These approaches have the potential to address long-standing conjectures about the naturalness 

                                                
6  Gildea & Jurafsky proposed three biases that improved learning outcomes: faithfulness, 

community, and context. 
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of process interactions (Kiparsky 1968, 1971). Indeed, initial simulation results are starting to 

provide evidence that learnability may be able to capture Kiparsky’s hypothesized biases under 

certain conditions (Jarosz 2016b; Nazarov & Pater 2017). Both the HS (Jarosz 2016b) and 

Stratal MaxEnt (Nazarov & Pater 2017) models predict easier learning of certain transparent 

process interactions over opaque interactions (Kiparsky 1971), and under certain conditions, 

the HS model (Jarosz 2016b) also predicts easier learning of feeding and counterbleeding 

interactions over bleeding and counterfeeding interactions (Kiparsky 1968). 

3.3.4   Constraints 

In 2008, Hayes & Wilson introduced a MaxEnt model and an associated software package for 

learning of phonological constraints from natural language data that has had a transformative 

impact on the field. Prior to this work, most constraint-based learning models made the 

traditional OT assumption that constraints are innate and therefore provided to the learner at 

the outset. Hayes and Wilson demonstrated, however, that many phonological generalizations 

can be successfully induced from naturalistic data by constructing constraints that account for 

under-attested patterns. Crucially, they also showed that successful learning required reference 

to abstract phonological representations: features, natural classes, and autosegmental tiers. This 

work inspired a substantial body of follow-up work, discussed in the next section, investigating 

computationally and experimentally what biases are required to account for human learning 

and generalization. 

To formalize under-attestation and learn restrictive phonotactic grammars, Hayes and 

Wilson found an efficient solution to a difficult computational problem. To calculate weight 

updates in MaxEnt models, the learner must compare the number of observed violations of 

each constraint in the learning data to the expected number of violations of that constraint given 

the current grammar and weights. The observed violations are straightforward to calculate: this 

involves summing the violations of each constraint in the observed data. However, the expected 
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violations require estimating the number of violations that result from applying the current 

constraints to a base of all possible phonological forms, an infinite set in principle. Concretely, 

to calculate weight updates and learn constraints for unattested patterns, the learner must have 

access to losing candidates, that is, unattested patterns. It is only by noticing that a constraint 

like *#ŋ correctly rules out unattested forms that would otherwise be predicted that the learner 

can induce this constraint and weight it highly. Hayes and Wilson use finite-state methods to 

estimate the expected violations efficiently.  

Comparing expected and observed distributions also provides a way to quantify the 

robustness of a phonological generalization to determine whether a pattern supports a general 

constraint or represents an accidental gap (Wilson & Gallagher to appear). As discussed earlier, 

accidental gaps are characteristic of natural language input and must be distinguished from 

robust restrictions. It is only through sensitivity to quantitative patterns that learners can make 

such crucial distinctions given gappy and noisy learning data. 

4.   MODELING HUMAN LEARNING, GENERALIZATION, AND TYPOLOGY 

This article has argued that sensitivity to quantitative patterns in natural language data is 

essential for modeling variation and exceptionality and for tackling learning challenges posed 

by hidden structure. This final section reviews some of the most significant discoveries about 

human learning and generalization that such models have revealed. Natural language has 

statistical information, and learners are sensitive to this information – it is only by modeling 

learners’ sensitivity to this information that we can draw firm conclusions about what learners 

can and cannot infer from data. Frequency-sensitive models have shown that learners can 

successfully extract more from their language input than many imagined was possible. At the 

same time, the integration of modeling and behavioral work has provided concrete evidence of 

biases and restrictions on human learning and generalization that could help explain much 

about typology, language change and language development. 
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4.1   Modeling First Language Acquisition 

The learning models discussed above have been applied to a range of behavioral tasks, each of 

which provides unique insights into the learning biases that shape first language acquisition. 

 One way to study learning biases is to compare the predictions of models exposed to 

natural language data representative of learners’ first language input to adults’ behavior on 

linguistic tasks in their native language. To approximate learners’ language input, models are 

typically provided with large datasets of phonetically or phonemically transcribed words or 

paradigms in the target language. By comparing predictions of models making different 

theoretical or representational assumptions, it is possible to make inferences about the likely 

contents of the human language acquisition device. Wug tests (Berko 1958) are used to study 

speakers’ productive knowledge of morpho-phonological alternations in their language and can 

be compared to models that generate predictions about alternations. Another way to probe 

speakers’ knowledge is by comparing acceptability judgments on phonotactic patterns or 

alternations to models’ numerical predictions about the relative goodness of various patterns. 

In both cases, models are tasked with predicting speakers’ end-state knowledge of their native 

language phonologies, which makes it possible to directly investigate biases that affect the 

outcomes of first language acquisition. 

 This approach has produced a sizable literature leading to discoveries about a wide 

range of learning biases needed to successfully model phonological acquisition. Initial work 

using quantitative models demonstrated the success of stochastic grammars capable of 

extracting abstract generalizations from the lexicon (Albright & Hayes 2003; Boersma & 

Hayes 2001; Coleman & Pierrehumbert 1997). For example, Albright and Hayes (2003) 

showed that abstract rules better capture learning of morpho-phonological alternations than 

analogical models that directly compute overall similarity with the lexicon. A subsequent series 

of studies demonstrated that sensitivity to abstract phonological representations like features, 
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natural classes, syllables, and tiers, is needed to capture behavioral results (Albright 2009; 

Coetzee & Pater 2008; Daland et al. 2011; Hayes 2011; Hayes & Wilson 2008). For example, 

Daland et al. (2011) showed that several models can predict English speakers’ acceptability 

ratings on nonce words with initial consonant clusters varying in their sonority profiles. 

Crucially, only models with the capacity to represent aspects of syllable structure and featural 

similarity could successfully predict speakers’ gradient preferences for higher sonority rises 

(Clements 1990; Selkirk 1982). 

Perhaps the most broadly investigated question in recent modeling work concerns the 

role of phonetic naturalness and substantive bias (Becker et al. 2011; Berent et al. 2007; 

Davidson 2006; Hayes & Londe 2006; Hayes et al. 2009; Hayes & White 2013; Jarosz & 

Rysling 2017; O’Hara 2018; Prickett 2018a,b). It has long been observed that phonetic 

naturalness plays a role in shaping typology, yet the exact nature of this pressure continues to 

be a matter of debate. Are effects of naturalness encoded as hard grammatical universals in UG 

(e.g. Prince & Smolensky 2004), soft analytic biases in the language acquisition device (Hayes 

1999; Moreton 2008; Wilson 2006), or do they affect language change indirectly via channel 

bias (Blevins 2004; Ohala 1993)? While more work is still needed, the emerging view that 

recent modeling work supports is that phonetic substance affects how easily or robustly patterns 

are learned, but it does not place categorical limits on learnability. For example, Jarosz & 

Rysling (2017) found that modeling Polish adults’ phonotactic judgments on initial clusters 

with varying sonority profiles supported a combined role of frequency-sensitivity and 

sensitivity to a soft substantive universal favoring larger sonority rises. While this may seem 

like an obvious conclusion to some, it is in conflict with a prevailing view in the field that there 

are categorical, substantive constraints on possible, and therefore learnable, languages. One 

promising way to formalize soft inductive biases is via priors in MaxEnt, which can be used to 

incorporate phonetic difficulty (as formalized in e.g. Steriade 2001), making it harder to learn 
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high weights for phonetically unmotivated constraints (White 2017; Wilson 2006). However, 

there is still much work to be done in formalizing exactly how substantive factors influence 

learning and understanding whether these kinds of pressures could give rise to universal 

generalizations observed cross-linguistically.  

To summarize, modeling of first language acquisition has provided evidence for the 

role of abstract phonological representations and soft substantive biases.7 

4.2   Modeling Artificial Language Learning 

Another approach that has been used to investigate learning biases is artificial language 

learning (ALL). In ALL, participants are presented with miniature languages in the lab and 

tested on their learning and generalization of those patterns. ALL differs from the first language 

acquisition process in numerous ways; however, it allows for precise control of the linguistic 

input that makes it possible to investigate the learning of patterns that cannot be easily found 

in natural languages. In the ALL context, evidence for substantive bias (Finley & Badecker 

2009; White 2017; Wilson 2006) has been rather weak and mixed (Moreton & Pater 2012a). 

Since evidence from first language acquisition has demonstrated sensitivity to phonetic 

naturalness, this discrepancy is likely due to the differences between first language acquisition 

and artificial language learning. One substantial difference is that first language learners must 

discover the phonetic categories of their first language and cope with perceptual and 

articulatory difficulties in acquiring them and the phonological system, whereas participants in 

ALL studies have already learned the categories and their relationships in their first language.  

                                                
7 Modeling of the first language acquisition process in children has also supported a role for 

representational and substantive learning pressures (Boersma & Levelt 2000; Hayes 2004; 

Jarosz 2006, 2010, 2017; Jarosz et al. 2017; Jesney & Tessier 2011; Prince & Tesar 2004). 
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Nonetheless, ALL studies have yielded consistent evidence of another important 

learning bias: complexity. In general, patterns that require fewer features to express are easier 

for participants to learn (for a recent review, see Moreton & Pater 2012b). Moreton and Pater 

show that it is important to keep the effect of complexity in mind when examining other 

pressures since complexity and naturalness are often correlated (see also Prickett 2018b).  

Formalizing simplicity and comparing its effects in linguistic and non-linguistic domains has 

also been investigated in recent modeling work (Moreton et al. 2015). 

4.3   Modeling Diachrony & Typology 

There is also a growing body of work using quantitative models of phonological learning to 

investigate soft learning biases that could be responsible for cross-linguistic tendencies and 

universals8. A standard assumption in OT is that the universal set of constraints should define 

the space of possible languages via factorial typology. Under this view, systematic gaps in the 

typology must be categorically ruled out by universal grammar (UG). This perspective 

precludes the possibility of modeling cross-linguistic tendencies rather than strict universals 

and overlooks pressures besides UG that may be involved in shaping the observed typology, 

such as domain-general learning biases. As discussed earlier, models of phonological learning 

make predictions about the relative ease of learning of various patterns: some patterns are 

learned more quickly or require less data than others, and when there is hidden structure, 

                                                
8 Work on formal language characterizations of phonological patterns and processes provides 

a complementary perspective on typological restrictions (for an overview see Heinz 2018). So 

far there has been little work integrating formal language constraints on typology with the kind 

of quantitative modeling and abstract phonological representations I have argued are essential 

to modeling human learning in the face of noise and ambiguity (though see Lamont 2018; Yu 

2017). 
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current models predict that some patterns should not be learned at all, at least not under all 

conditions.  

Examining the correspondence between models’ learning difficulties and typology has 

revealed a number of possible ways that learning might shape typology. Learning biases 

favoring certain process interactions over others were already discussed in Section 3.3.3. 

Several recent studies have investigated how biases inherent to statistical learning may in part 

shape the typology of stress and tone systems (Breteler 2018; Stanton 2016; Staubs 2014). For 

example, Stanton (2016) shows that learning pressures provide a possible explanation for the 

absence of a stress pattern known as the midpoint pathology. The evidence necessary to 

distinguish this pattern from competing analyses of the same data occurs rarely in distributions 

representative of natural languages. Using the iterated learning paradigm (Kirby et al. 2004), 

Hughto (2018) shows by simulating generations of child-parent learning interactions, that 

MaxEnt learning models can, over time, introduce biases into the typology that favor 

phonological systems which minimize free variation and cumulativity. Using interactive 

learning, Pater (2012) shows that preferences for systemic simplicity – wherein a language 

expresses a general preference across multiple contexts, such as uniform headedness across 

multiple categories – naturally emerge in MaxEnt learning models. Thus, modeling studies are 

beginning to provide evidence that learners’ sensitivity to the distributional information in the 

language input may help explain cross-linguistic tendencies. These results have broad 

implications for linguistic theory since they show that biases inherent to statistical learning can 

systematically skew the typological predictions that follow from theoretical assumptions.  

5.   CONCLUSIONS 

This article has reviewed learnability results that have made it possible to apply computational 

learning models to variable, ambiguous, and incomplete language data, arguing that 

probabilistic modeling has played an indispensable role in recent progress on these challenges. 
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By modeling human learning of quantitative generalizations, the solutions to these challenges 

have in turn led to significant empirical discoveries about the role of phonological 

representations, substantive biases, and other inductive biases in shaping phonological learning 

and typology.  

These exciting discoveries notwithstanding, there is still much work to be done to 

continue to make more realistic assumptions about the learning task, to formalize the 

interaction of powerful statistical learning and soft inductive biases, and to understand the 

relationship between learning and other factors that shape typology. The advances on hidden 

structure learning and on the learning of quantitative generalizations have largely proceeded 

independently; yet, the key ingredients for integrating these approaches and modeling the 

learning of deeper phonological structure from natural language data are now available. This 

integration will no doubt lead to further empirical breakthroughs in our understanding of the 

representations and computations that underlie phonological knowledge and learning. 

 

SUMMARY POINTS 

1.   Recent developments in computational phonology have made it possible to model learning 

from ambiguous, inconsistent, and incomplete data characteristic of natural languages. 

2.   Learning of quantitative generalizations in the face of noise, variability, and exceptions is 

one area of substantial recent progress. 

3.   Another area of significant recent progress is learning in the face of hidden structure and 

ambiguity. 

4.   Models that are sensitive to quantitative properties of language data, like probabilistic 

models, have been indispensable to the progress in both areas by providing principled ways 

to formalize trade-offs between conflicting pressures and to navigate ambiguity. 
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5.   These models have made it possible to create formal links between explicit theories of 

learning and a rich and complex empirical base, including findings from psycholinguistics, 

typology, and diachrony. 

6.   These links have in turn have led to significant empirical discoveries about the 

representations and computations that underlie phonological knowledge and learning. 
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Table 1 - Example of  English variable t/d deletion based on Coetzee & Pater (2011) 

 Input Output *CT MAX-P-V MAX-FIN MAX HARMONY PROBABILITY 

   w1 = 4 w2 = 1 w3 = 2 w4 = 3   

i) /Ct/ [Ct] –1    (–1)*w1 = –4 ≅ 73.1% 

  [C_]   –1 –1 (–1)*w3+(–1)*w4 = –5 ≅ 26.9% 

ii) /CtC/ [CtC] –1    (–1)*w1 = –4 ≅ 26.9% 

  [C_C]    –1 (–1)*w4 = –3 ≅ 73.1% 

iii) /CtV/ [CtV] –1    (–1)*w1 = –4 = 50.0% 

  [C_V]  –1  –1  (–1)*w2+(–1)*w4 = –4 = 50.0% 

 

TERMS & DEFINITIONS 

1.   Hidden Structure 

Any abstract representation that underlies linguistic knowledge but which is not directly 

observable in the learning data, such as metrical footing, underlying representations, and 

exceptionality diacritics. 

2.   Ambiguity 

When the learning data are, either locally or globally, compatible with a range of distinct 

analyses that the learner must navigate and choose between. 

3.   Free Variation 

When a word or morpheme can be realized in multiple ways in the same environment. The 

choice of variants may be statistically conditioned by systematic phonological factors, but 

the variation is not entirely predictable. 

4.   Gradient Phonotactics 

Knowledge of legal and likely sound combinations that make up words in a language. 
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5.   Lexical Classes 

A partition of the lexicon into disjoint sets, each associated with a distinct constellation of 

phonological properties and/or processes. 

6.   Patterned Exceptionality 

When systematic phonological factors statistically condition phonological variation in the 

aggregate across the lexicon but individual words exhibit fixed behavior. 

7.   Online Learning Algorithm 

An algorithm that incrementally processes learning data, making updates on a word-by-

word basis. 

8.   Batch Learning Algorithm 

An algorithm that processes the learning data en masse, making updates after consulting 

the entire data set. 

9.   Error-Driven Learning 

A learning strategy that assumes updates to learners’ hypotheses occur when their current 

hypothesis fails to generate a match with the observed data. 

10.  Likelihood Maximization 

An objective function for fitting parameters of generative statistical models that prefers 

hypotheses that assign maximal probability to the observed data, favoring hypotheses that 

tightly fit the observed distributions. 

11.  Winner-Loser Pairs 

In constraint-based learning, a pair of candidates, one of which is the observed form 

(winner) and the other a competitor (loser), together with their constraint violations. Error-

driven learning can be used to identify informative losers for each winner. 
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12.  Subset Problem 

The challenge of learning a restrictive grammar that captures systematic prohibitions and 

regularities in the language without overgeneralizing on unseen data. 

13.  Bias-Variance Tradeoff 

The balance between tightly fitting observed data (low bias) and generalizing appropriately 

to unseen data (low variance).  

14.  Wug Test 

A task (Berko 1958) used to test productivity of morpho-phonological knowledge by asking 

speakers to produce (or rate) a morphological derivative of a nonce word. 

15.  Substantive Bias 

A type of inductive, or analytic, bias that favors the learning of patterns with perceptual or 

articulatory motivations. 

16.  Analytic Bias 

A cognitive predisposition, or inductive bias, that makes learners more receptive to some 

patterns than others (Moreton 2008). 

17.  Channel Bias 

Phonetically systematic errors in language transmission between speaker and hearer 

(Moreton 2008). 

18.  Cumulativity 

A type of constraint interaction possible in weighted grammars wherein violations on 

lower-weighted constraints combine to overpower the preferences of higher-weighted 

constraints. 

19.  Iterated Learning 

A type of agent-based model that simulates vertical transmission of language across 

generations by modeling ‘parent-child’ interactions where one agent (the ‘parent’) provides 
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input from a target language to the other agent (the ‘child’), who eventually becomes the 

parent in the next generation. 

20.  Interactive Learning 

A type of agent-based model that simulates interactions between speakers within a 

generation to understand how communicative pressures may cause to languages to drift 

over time. 

 

 


