	Essential Questions	Topics	Terminology	Skills	Assessment
Fall	*What is Solar	*Sun/Earth Relationships	*Peak sun hours	*Properly configure a	*Student generated
Sept/	Radiation?	*The science of the	*Solar declination	DC PV system to	newsletter.
Spring	*What factors influence	photovoltaic effect.	*Solstice/equinoxes	successfully charge a	*Project reports
April	the availability and	*PV technologies.	*Sun path	battery or bank of	*Student generated
	intensity of solar	*Environmental cost/benefit	*Solar Window	batteries; use the stored	informational
	radiation at Earth's	*Cells, modules, arrays	*PV Effect	energy to power a DC	displays
	surface?	*Array Orientation	*Semiconductors	appliance.	*Student
	*What is the	*Effect of Shading,	*Doping	*Calculate zenith angle	presentations of
	photovoltaic effect?	temperature	*p-n junction	and perform air mass	learning.
	*What are the major	*PV performance standard test	*Array tilt angle	calculations.	*Quiz/Exam
	PV technologies?	conditions.	*Array asimuth angle	*Calculate array area (A	*public presentation
	*What are the	*PV Site Selection	*Sun tracking	= peak power/efficiency)	at Pioneer Valley
	environmental risks and	*PV System Components	*Short circuit current	*Generate a current	Science and
	benefits of PV?	*System configurations	*Open circuit voltage	voltage (I-V) Curve	Sustainability Expo.
	*How are cells,	*Battery storage	*Maximum power point	*Investigate the effect of	
	modules, and arrays		*Renewable Resource	temperature on PV	
	related, and how is their		Data Center (RReDC of	performance.	
	performance		NREL)	*Investigate the effect of	
	quantified?		*Solar pathfinder	irradiance on PV current	
	*What factors influence		*DC vs AC	and voltage.	
	PV system		*Charge controllers	*Investigate the effect of	
	performance?		*Inverters	temperature on PV	
	*What role do other PV		*Grid tied/Net metering	performance.	
	system components		*Deep cycle lead acid	*Explore parallel and	
	play and how are PV		batteries.	series connections.	
	systems configured?			(cells, modules, as well	
	*How is PV energy			as battery banks.	
	stored (batteries)?				