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Overview

 Introduction
- should grammars always refer to features?
- approach from perspective of machine learning

 Computational simulation: how does a learner 
abstract over domains of application?
- model, data, method
- results: grammars with features in some 
constraints only

 Discussion: implications of grammars referring to 
features as well as other units
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Introduction: background

 Features help generalize over domains of 
application of rules or constraints

 Phonology: features generalize over segment/
phoneme categories

E.g., /-z/ → [-s] / [p,t,k,f,θ,s,ʃ,ʧ]_ ⇒
       /-z/ → [-s] / [-voice]_
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Introduction: background

 Question:
Is it always advantageous (both for the analyst 
and the speaker) to state every rule or constraint 
in the grammar in terms of features?

 In other words: is it unreasonable for grammar 
to refer to sound event through levels of 
abstraction other than features?

(Not counting prosodic units, suprasegmentals)
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Introduction: background

 Phonology: canonical answer is “yes”
 Chomsky & Halle (1968):

- adapting categorical versions of phonetic 
features is most economical hypothesis of 
representation

- establishes preference for phonetically natural 
rules
(see Chomsky & Halle 1968, Postal 1968, Kenstowicz & Kisseberth 1979 for more)

 Models with richer representations lead to longer 
grammars, therefore are disfavored
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Introduction: empirical issue

 Phonological patterns may apply to groups of 
segments, or to single segments.

 English (Jensen 1993, Mielke 2007):
- sibilants [s,z,ʃ,ʒ,ʧ,ʤ] may not precede [s,z] 
word-finally: *[bʌs-s, bʌz-z, pæʧ-s, peɪʤ-z]
p      t        k     Red: disallowed before [s,z] word-finally
b      d       g      

f   θ  s  ʃ   ʧ        
v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j 
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Introduction: empirical issue

 Phonological patterns may apply to groups of 
segments, or to single segments.

 English (Jensen 1993, Mielke 2007):
- only [s] may start a three-consonant word-
initial cluster: [strit], *[ftrit, ntrit, ʧtrit]
p      t        k     Red: disallowed before [s,z] word-finally
b      d       g      Purple: allowed as C1 in word-initial CCC
f   θ  s  ʃ   ʧ        
v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j 
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Introduction: empirical issue

 Phonological patterns may apply to groups of 
segments, or to single segments.

- P-base cross-linguistic database of phonological 
classes (Mielke 2007):
- 13 patterns encoded as applying to one 
segment

- 11 additional cases (apply to all segments but 
one) found by manual search of languages 
starting with A alone
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Introduction: empirical issue

 One-segment classes may be represented as 
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- e.g., [s] is equivalent to [+ant,-voice,+strid]

p      t        k     Red: [+anterior]
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Introduction: empirical issue

 One-segment classes may be represented as 
intersections of a number of features
- e.g., [s] is equivalent to [+ant,-voice,+strid]

p      t        k     Red: [+anterior]
b      d        g     Blue: [-voice]
f   θ  s  ʃ   ʧ        
v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j 
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Introduction: empirical issue

 One-segment classes may be represented as 
intersections of a number of features
- e.g., [s] is equivalent to [+ant,-voice,+strid]

p      t        k     Red: [+anterior]
b      d        g     Blue: [-voice]
f   θ  s  ʃ   ʧ        Green: [+strident]

v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j 
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Introduction: always features?

 Featural representation of one-segment class will 
always be longer and more complex

 Is it desirable (for analyst/speaker) to represent 
one-segment classes in this way?
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Introduction: always features?

 Featural representation of one-segment class will 
always be longer and more complex

 Is it desirable (for analyst/speaker) to represent 
one-segment classes in this way?

- If features are a priori specified as building 
blocks of grammars: yes

- Is this still the case when this a priori 
assumption is taken away?
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Introduction: machine learning

 I will approach this question in terms of machine 
learning

 Given a choice between representing a pattern in 
terms of segments and in terms of features:

- How will data containing both one-segment and 
multi-segment patterns be learned?

- Learning algorithm not explicitly instructed
to aim for a certain level of abstraction
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Introduction: machine learning

 Possible outcomes:

1.The grammars have constraints referring only 
to segments

2.The grammars have constraints referring only 
to features

3.The grammars have constraints referring to 
both features and segments
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Introduction: assumptions

 Essential assumptions for this simulation:

1.Atomic segment units are available to the 
language user:
- active in on-line processing of speech 

(Jesse et al. 2007, Nielsen 2011)

- active in phonological processes, e.g., 
consonant OCP
(Coetzee & Pater 2008 and references therein)
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Introduction: assumptions

 Essential assumptions for this simulation:

2. Phonological features are learned:
- assuming universal features, the same 
feature is realized differently across 
languages 
(Cho & Ladefoged 1999)

- therefore, phonetic information cannot be 
sufficient for mapping perception/articulation 
to features
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Introduction: assumptions

 Essential assumptions for this simulation:

2. Phonological features are learned:
- contextual information must be used
- grammar contains contextual information

- use contextual information from grammar 
(rather than contextual information outside of 
grammar)
(see Mielke (2004) on learning features from phonological patterns)
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Introduction: assumptions

 Consequences of these assumptions:

1.Segment-to-feature mapping must be learned 
simultaneously with grammar

2.Constraints/rules referring to features 
gradually become available during grammar 
learning process
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Introduction: assumptions

 Non-essential working assumptions:

- Features are induced only from contextual 
information: no phonetic content
(Substance-free phonology: Morén 2006, 2007 (and many others))

- All phonological constraints are induced instead 
of innate 
(see Hayes & Wilson 2008 on constraint induction)
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Introduction: summary

 Question: Is it always advantageous (both for 
the analyst and the speaker) to state every 
constraint in the grammar in terms of features?

 Crucial empirical phenomenon: one-segment 
patterns

 Learning one-segment and multi-segment 
patterns:
all-feature grammars as outcome?

 Preview: segment/feature grammars obtained
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Simulation: overview

 Machine learning simulation based on paradigm 
established by Hayes & Wilson (2008):

- phonotactic constraint-based grammar is built 
up from positive data

- violable constraints selected and weighted to 
optimally predict the attested data
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Simulation: overview

 Departure from Hayes & Wilson’s learner:

- features are not built into the model, but 
induced at intermediate stages of grammar 
learning

 Questions:

- will features be learned at all?
- will all constraints in grammars learned by this 
procedure always use features?
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Simulation: model

 Maximum Entropy model 
(Della Pietra et al. 1997, Hayes & Wilson 2008)

- probability distribution over possible 
representations based on weighted violable 
constraints (à la OT/Harmonic Grammar)

- constraints weighted to make this distribution 
maximally similar to what is observed

(see Appendix for more)
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Simulation: model

 Regularization:

- Optimization of constraint weights constrained 
by L2 prior (Hastie et al. 2009):
- keeps sum of constraint weights as small as 
possible

- encourages more general constraints:
one general constraint with larger weight 
yields smaller sum of weights
than several specific constraints with smaller 
weights
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Simulation: model

 Information gain:

- Value which estimates how much a constraint 
will improve the current grammar
(bring it closer to predicting the observed data)

- Information gain of a constraint correlates with 
how accurately it captures a (sub)pattern in the 
data

(see Appendix for more)
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Simulation: model

 Constraints:

- phonotactic constraints against two- and three-
element sequences of
word-boundaries, segments or features

- examples: *#m, *km, *u[labial]u
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Simulation: model

 Constraints:

- selected probabilistically based on information 
gain:
- start with random seed constraint

(subject to information gain threshold)

   e.g. *#pi
- seed constraint repeatedly manipulated until 
this does not lead to increase in information 
gain
   e.g. *#pi → *#mi → *#m
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Simulation: model

 Features found by clustering information gain of 
closely related constraints

- Intuition:
a feature denotes a class of segments that 
participates in the same phonological pattern
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Simulation: model

 Features found by clustering information gain of 
closely related constraints

- Implementation:
a feature denotes a class of segments which 
yields high-valued constraints when inserted in 
the same context
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Simulation: model

 Features found by clustering information gain of 
closely related constraints

- Cluster analysis (Mixture of Gaussians, Everitt 2011) 
divides same-context constraints into high and 
low information gain value clusters
(whenever appropriate)
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Simulation: model

 Features found by clustering information gain of 
closely related constraints

- Focus segments extracted from cluster of high 
information-value constraints

- Feature label assigned to these segments
(phonetics not taken into account - labels are arbitrary)   [nasal]



Aleksei Nazarov, University of Massachusetts at Amherst 41

Simulation: data

 Nature of data to consider:
- both one-segment and multi-segment patterns 
must be present

- single segment in one-segment pattern must be 
representable as intersection of segment classes 
appealed to in multi-segment patterns

p   t    k ✔      p   t    k ✘
b   d   g          b   d   g    
m  n   ŋ          m  n   ŋ  
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Simulation: data

 Example: English (Jensen 1993, Mielke 2007)

p      t        k     Red: disallowed before [s,z] word-finally 
b      d       g     
f   θ  s  ʃ   ʧ       
v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j  
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Simulation: data

 Example: English (Jensen 1993, Mielke 2007)

p      t        k     Red: disallowed before [s,z] word-finally 
b      d       g      Blue: allowed as C3 in word-final CCC
f   θ  s  ʃ   ʧ       
v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j  
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Simulation: data

 Example: English (Jensen 1993, Mielke 2007)

p      t        k     Red: disallowed before [s,z] word-finally 
b      d       g      Blue: allowed as C3 in word-final CCC
f   θ  s  ʃ   ʧ        Purple: allowed as C1 in word-initial CCC

v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j  
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Simulation: data

 Example: English (Jensen 1993, Mielke 2007)

p      t        k     Red: disallowed before [s,z] word-finally 
b      d       g      Blue: allowed as C3 in word-final CCC
f   θ  s  ʃ   ʧ        Purple: allowed as C1 in word-initial C

v  ð   z  ʒ  ʤ
m     n       ŋ
w     ɹ l   j  

 Other examples like this found in, e.g., Yoruba 
(Pulleyblank 1988)
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Simulation: data

 The actual data used for the simulations was a 
toy language which shared the crucial properties 
of these examples:

p   t    k    Red: no nasals word-initially

b   d   g    
m  n   ŋ   
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Simulation: data

 The actual data used for the simulations was a 
toy language which shared the crucial properties 
of these examples:

p   t    k    Red: no nasals word-initially

b   d   g    Blue: no labials between high vowels [i,u]

m  n   ŋ   
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Simulation: data

 The actual data used for the simulations was a 
toy language which shared the crucial properties 
of these examples:

p   t    k    Red: no nasals word-initially

b   d   g    Blue: no labials between high vowels [i,u]

m  n   ŋ    Purple: no [m] word-finally
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Simulation: data

 The actual data used for the simulations was a 
toy language which shared the crucial properties 
of these examples:

p   t    k    Red: no nasals word-initially

b   d   g    Blue: no labials between high vowels [i,u]

m  n   ŋ    Purple: no [m] word-finally

 All possible CVCVC forms obeying these 
restrictions present in input to the learner
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Simulation: procedure

 Initial state: no constraints, features unavailable
 All potential representations (given in segments) 

equally probable
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Simulation: procedure

 Initial state: no constraints, features unavailable
 All potential representations (given in segments) 

equally probable

 All CVCVC sequences over toy language 
inventory are potential representations

 Observed forms have no initial nasals, no labials 
between high Vs, no final [m]

possible:  ... padam padan ... nitun ditun dibun
observed: ...           padan ...         ditun
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Simulation: method

 Step 1: Find a group of constraints which forms a 
local peak in gain value

e.g., {*#m,*#n,*#ŋ}

These have higher information gain than, 
e.g., *#p, *am, *n:

*#p, *am, *n ban (more) observed forms in 
the data and bring the empty grammar less 
close to predicting the observed data 
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Simulation: method

 Step 2: Find all possible contexts that can be 
made from these constraints.

The constraints {*#m,*#n,*#ŋ} can be 
factored into the following contexts

     *#_
     *_m
     *_n
     *_ŋ



Aleksei Nazarov, University of Massachusetts at Amherst 54

Simulation: method

 Step 3: for every context, find if there is a 
cluster of segments which yields a high 
information gain value when inserted in that 
context; assign feature labels to those clusters

[m, n, ŋ] ⇒ [nasal]
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Simulation: method

 Step 4: add the selected constraints to the 
grammar, and optimize their weights

Grammar:

*#m: 0            *#m: 6
*#n: 0             *#n: 6
*#ŋ: 0             *#ŋ: 6
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Simulation: method

 Steps 1-4 repeated until final goal is reached
(observed data have at least 95% total likelihood)
 

 Features induced at step 3 available for use in 
constraints at next occurrence of step 1

- Once *#m, *#n, *#ŋ are in the grammar, and 
the feature label [nasal] = [m, n, ŋ] is induced,

- the constraint *#[nasal] becomes available
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Simulation: method

 E.g., *#[nasal] has high information gain value
(not in current grammar, tightly fits data pattern)

 If selected and weighted, *#[nasal] takes away 
all the weight of *#m, *#n, *#ŋ

 zero weight equivalent to absence from grammar

                           *#[nasal]: 8
      *#m: 6          *#m: 0
      *#n:  6          *#n:  0
      *#ŋ:  6          *#ŋ:  0
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Simulation: method

 Reset to 0 because of regularization prior:
- higher weight on one constraint is better than 
lower weights on three constraints combined

 This effect occurs when the candidates punished 
by a new constraint are a strict superset of those 
punished by individual existing constraints:

- *#[nasal] versus *#m, *#n, *#ŋ
- *[hi][labial][hi] versus *ibi, *ibu, *umi ...
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Simulation: method

 Reset to 0 does not happen when feature-based 
constraint and segment-based constraint are 
homonymous:
- *[labial,nasal]# = *m#
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Simulation: method

 Reset to 0 does not happen when feature-based 
constraint and segment-based constraint are 
homonymous:
- *[labial,nasal]# = *m#

 Homonymous feature-based constraint has lower 
information gain (repeats existing constraint)
    *[lab,nas]# less likely to be selected

 Even when it is selected, no reset to 0
    *m# retains some weight next to *[lab,nas]#
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Simulation: results

 31 out of 32 runs yielded grammars referring to 
both segments and features

 Most frequent grammar:
*#[nasal], *[high][labial][high], *m#

 One all-feature grammar:
*#[nasal], *[hi][labial][hi], *[labial,nasal]#

 All other grammars were variations of the most 
frequently observed grammar (see Appendix)
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Simulation: results

 The learner strongly prefers a segmental 
representation for the one-segment pattern, and 
a featural representation for the multi-segment 
patterns.

 By extrapolation, languages with at least one 
one-segment pattern are expected not to 
represent that one-segment pattern (entirely) in 
terms of features.



Aleksei Nazarov, University of Massachusetts at Amherst 63

Discussion

 Machine learning simulation shows:
- when a priori assumption of all-feature 
grammars is lifted:

- despite bias in favor of generalization,
- one-segment patterns not represented in terms 
of features
 

 This is because features are more efficient only 
for multi-segment patterns
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Discussion

 These results show that:
- features can be learned in a bottom-up fashion 
from phonological patterns

- grammars that represent one-segment patterns 
without features emerge despite bias towards 
generalization (from regularization)
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Discussion

 These results show that:
- features can be learned in a bottom-up fashion 
from phonological patterns (see also Archangeli et al. 2012)

- grammars that represent one-segment patterns 
without features emerge despite bias towards 
generalization (from regularization)

(Procedure relies only on structural factors: 
these methods may also be applied to other 
domains of language, e.g., syntax)
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Discussion: implications

 Implication for (phonological) analysis:

- when a (phonological) pattern is analyzed, it is 
not trivial that it is stated in terms of features

- rather, question of appropriate level of 
abstraction asked for every pattern



Aleksei Nazarov, University of Massachusetts at Amherst 67

Discussion: implications

 Implication for (phonological) analysis:

- when a (phonological) pattern is analyzed, it is 
not trivial that it is stated in terms of features

- rather, question of appropriate level of 
abstraction asked for every pattern
 

 Why would level of abstraction matter?
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Discussion: implications

 There are psycholinguistic techniques to probe 
into levels of abstraction:
- Bach testing (Halle 1978)

- Priming (Jesse et al. 2007)

- Talker adaptation (McQueen et al. 2006, Nielsen 2011)

 Ergo: level of abstraction in hypothesized rules/
constraints matters empirically

 Important direction for future research
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Discussion: implications

 Another consequence of grammars with both 
featural and lower-order descriptions:

- same sound event may be described at different 
levels of abstraction
   e.g., [m] or [labial,nasal]

- this means: multiple autonomous levels of 
representation for sounds
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Discussion: implications

 This property is reminiscent of models such as
- Turbidity (Goldrick 2001)

- Abstract Declarative Phonology (Bye 2006)

- Colored Containment (Van Oostendorp 2004, 2008)

- Bidirectional Phonology (Boersma 2007)

 Grammars with multiple levels of abstraction 
need little extension to have the extra power of 
such models (Nazarov 2012, 2013)

 Another direction for further investigation
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Conclusion

 Are features always better for representing 
phonological patterns?

 Investigation through machine learning of 
features:
- no: one-segment patterns favor representation 
by segment units

 Grammars which refer both to features and 
lower-order units (segments) are worthy of 
consideration by speakers and analysts
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Thank you!
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Appendix: Maximum Entropy model

 Observed distribution p

 Predicted distribution q: based on harmony 
scores H for every candidate

Ω stands for the set of possible representations
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Appendix: Maximum Entropy model

 Objective of the model: manipulate weights to 
minimize K-L divergence of observed distribution 
from predicted distribution

Obj = min [ DKL (p || q) +  Σ    [ (w - µ)2 / 2σ ] ]
           W                         w ∈ W

                              regularization term;
                                                   µ = 0 and σ = 10,000
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Appendix: Information gain

 Let C* be a proposed new constraint, and w* its 
weight

 Let q’ be the distribution predicted by the current 
grammar augmented with C* with weight w*

 Information gain: maximum descent in K-L 
divergence of observed from predicted when C* 
is added to the grammar 
(L2 regularization with µ = 0 and σ = 10,000 added to this maximization also)

G(w*,C*) = max [ DKL(p || q) – DKL(p || q’ ) ]
                      w*
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Appendix: Results

 Word-initial pattern:
- 26 grammars: represented by *#[nasal]
- 3 grammars: *#[nasal], *#[nasal]V
- 3 grammars:
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Appendix: Results

 Word-medial pattern:
- Combination of one or more of the following 
constraints:

- E.g.: *{iu}{pb}{iu}, *{iu}m{iu}
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Appendix: Results

 Word-final pattern:
- 28 grammars: only *m#
- 1 grammar: only *[nasal,labial]#
- 3 grammars:


