Basic Data

$1 \text{ km} = 10^3$	m	$1 \text{ mm} = 10^{-3} \text{ m}$	1 nm	$= 10^{-9} \mathrm{m}$	1	$1 \text{ AU} = 1.5 \times 10^{11} \text{ m}$	$1 \text{ ly} = 9.5 \times 10^{15} \text{ m}$	1 pc = 3.26 ly
I	Earth's	radius = 6.4×10^3 km	m	Moon's	radi	$us = 1.7 \times 10^3 \text{ km}$	Sun's radius = $7.0 \times$	10 ⁵ km

Geometry

- circumference of circle = $2 \pi r$
- area of circle = πr^2
- surface area of sphere = $4\pi r^2$
- volume of sphere = $\frac{4}{3}\pi r^3$

Distance Relationships

- distance—velocity—time: $d = V \times t$
- linear size—angular size: $L = d \times A / 57.3^{\circ}$
- distance from parallax: $d(in \ parsecs) = 1 / p(in \ arcsec)$
- Hubble law: $V = H_0 \times d$

Gravity

- Kepler's 3^{rd} Law—orbits around Sun with semi-major axis *a* (in AU) and period *P* (in years): $P^2 = a^3$
- gravitational force between masses *M* and *m*:

$$F_G = G \frac{M \times m}{d^2}$$

- Newton's modified form of Kepler's 3rd Law for the total mass of two orbiting bodies: $M = \frac{4\pi^2}{G} \times \frac{d^3}{P^2}$
- mass of object producing orbital speed V at distance d: $M = \frac{d \times V^2}{G}$
- escape velocity from a mass *M* at radius *R*:

$$V_{esc} = \sqrt{\frac{2GM}{R}}$$

Light

- speed of light: $c \approx 300,000$ km/sec
- frequency (v) wavelength (λ) relation: $\lambda \times v = c$

• energy of a photon:
$$E = h \times v = \frac{h \times c}{\lambda}$$

- Stefan-Boltzmann Law—luminosity *L* of thermal source at temperature *T*: $L = \sigma T^4 \times (\text{surface area})$
- Wien's Law—temperature of thermal source from wavelength of maximum emission: $T = \frac{2.9 \times 10^6 \text{ nm} \cdot \text{K}}{\lambda}$
- brightness B luminosity L relation: $B = \frac{L}{4\pi d^2}$
- Doppler Effect: radial velocity = $V_R = c \times \frac{\Delta \lambda}{\lambda}$

Other Physical Relationships

• density =
$$\frac{\text{mass}}{\text{volume}}$$

- Newton's 2^{nd} Law—acceleration *a* produced by force *F* on mass *m*: a = F/m
- kinetic energy = $\frac{1}{2} m V^2$
- conservation of angular momentum: (mass) × (circular velocity) × (radius) = constant
- Lorentz factor for special relativistic contraction at speed

$$V: \quad \gamma = \frac{1}{\sqrt{1 - V^2 / c^2}}$$

• light variability size limit: (size) $< c \times \Delta t$