Some Useful Formulas

Basic Data

$1 \mathrm{~km}=10^{3} \mathrm{~m} \quad 1 \mathrm{~mm}$	$=10^{-3} \mathrm{~m} \quad 1 \mathrm{~nm}=10^{-9} \mathrm{~m} \quad 1 \mathrm{AU}=1.5 \times 10^{11} \mathrm{~m}$
Earth's radius	$=6.4 \times 10^{3} \mathrm{~km} \quad$ Moon's radius $=1.7 \times 10^{3} \mathrm{~km} \quad$ Sun's radius $=7.0 \times 10^{15} \mathrm{~m} \quad 1 \mathrm{pc}=3.26 \mathrm{ly}$
Em $\quad 10^{5} \mathrm{~km}$	

Geometry

- circumference of circle $=2 \pi r$
- area of circle $=\pi r^{2}$
- surface area of sphere $=4 \pi r^{2}$
- volume of sphere $=\frac{4}{3} \pi r^{3}$

Distance Relationships

- distance-velocity-time: $d=V \times t$
- linear size—angular size: $L=d \times A / 57.3^{\circ}$
- distance from parallax: d (in parsecs) $=1 / p($ in arcsec $)$
- Hubble law: $V=H_{0} \times d$

Gravity

- Kepler's $3{ }^{\text {rd }}$ Law—orbits around Sun with semi-major axis a (in AU) and period P (in years): $P^{2}=a^{3}$
- gravitational force between masses M and m :
$F_{G}=G \frac{M \times m}{d^{2}}$
- Newton's modified form of Kepler's $3{ }^{\text {rd }}$ Law for the total mass of two orbiting bodies: $M=\frac{4 \pi^{2}}{G} \times \frac{d^{3}}{P^{2}}$
- mass of object producing orbital speed V at distance d :

$$
M=\frac{d \times V^{2}}{G}
$$

- escape velocity from a mass M at radius R :

$$
V_{e s c}=\sqrt{\frac{2 G M}{R}}
$$

Light

- speed of light: $c \approx 300,000 \mathrm{~km} / \mathrm{sec}$
- frequency (v) - wavelength (λ) relation: $\lambda \times v=c$
- energy of a photon: $E=h \times v=\frac{h \times c}{\lambda}$
- Stefan-Boltzmann Law-luminosity L of thermal source at temperature $T: L=\sigma T^{4} \times($ surface area $)$
- Wien's Law-temperature of thermal source from wavelength of maximum emission: $T=\frac{2.9 \times 10^{6} \mathrm{~nm} \cdot \mathrm{~K}}{\lambda_{\text {max }}}$
\bullet brightness $B-$ luminosity L relation: $B=\frac{L}{4 \pi d^{2}}$
- Doppler Effect: radial velocity $=V_{R}=c \times \frac{\Delta \lambda}{\lambda}$

Other Physical Relationships

- density $=\frac{\text { mass }}{\text { volume }}$
- Newton's $2^{\text {nd }}$ Law—acceleration a produced by force F on mass $m: a=F / m$
- kinetic energy $=1 / 2 m V^{2}$
- conservation of angular momentum:
$($ mass $) \times($ circular velocity $) \times($ radius $)=$ constant
- Lorentz factor for special relativistic contraction at speed $V: \gamma=\frac{1}{\sqrt{1-V^{2} / c^{2}}}$
- light variability size limit: $\quad($ size $)<c \times \Delta t$

