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Capillary interactions among spherical particles at curved liquid interfaces
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We study the effect of interfacial curvature on the binding energy and forces exerted on small spherical

particles that adsorb on an interface between two immiscible liquids. When the interface has

anisotropic curvature, the constant-contact-angle condition at the particle-fluid boundary requires a

deformation of the interface. Focusing on the case of an initially cylindrical interface, we predict the

shape after a spherical particle binds. We then calculate the energy of adsorption and find that it

depends on the shape of the interface very far from the binding site. Turning to the problem of two

adsorbed spherical particles, we predict a capillary interaction that arises purely from the deformations

caused by the contact-angle condition. An analogy is made between these curvature-induced capillary

forces and electrostatic forces between quadrupoles in two dimensions. We conclude with a conjectured

general form for the interaction of a single spherical particle with the Gaussian curvature of the

underlying fluid interface, which we compare to previous work.
I. Introduction

Particles adsorbed on interfaces between immiscible fluids play

an important role in a variety of technological applications and

raise a number of fundamentally interesting questions. Solid,

microscopic particles are used to stabilize droplets in Pickering

emulsions in foods, cosmetics, and oil recovery.1–7 In materials

science, monolayers of nanoparticles or micron-sized particles

are studied as a means to form functional membranes or

capsules.8–17 In these cases, the adsorption of particles on the

liquid interface is driven by a reduction of the total interfacial

energy, provided that the particle does not strongly favor one

liquid over the other.

In the continuum approximation where the particle is much

larger than the molecular scale, the molecular interactions

among the particles and the two liquids are described in terms

of three interfacial tensions: g (liquid–liquid), g1 (particle and

liquid I), and g2 (particle and liquid II). Assuming that the

particle is spherical and uniform (i.e., does not pin the contact

line), its binding energy to a planar interface can be written as

a simple function of the particle radius a and g, g1, and g2.
18,19

This model also predicts that the angle of contact (qc) between

the sphere and the interface remains constant and its value is

given by the Young–Dupr�e equation, cos qc ¼ (g1 � g2)/g.

Thus, in the absence of gravity the interface remains planar

and the particle simply inserts itself partially into the interface.

Such spheres would not be subject to forces in the direction

tangential to the interface. On the other hand, when the
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spheres are electrostatically charged or subject to gravity, the

interface is deformed near the particle and tangential forces

arise.20–32 In many relevant cases, these forces act over

distances much larger than the particle size because constraints

on the interfacial shape often imply that deformations extend

over long range. Hence, geometric constraints and interfacial

deformations play an important role in the mechanics of

adsorbed particles. As an example of the importance of

geometry, when non-spherical particles adsorb at a planar

interface, the constant-qc condition requires that the interface

be deformed.33–36 This deformation gives rise to tangential

torques and forces on the particles even when gravity is irrel-

evant (e.g., when the particles and fluids are density-matched).

In a similar fashion, spherical particles in which the contact

line is pinned (so that qc is not uniform) are also subject to

tangential capillary forces.34,37,38

In many relevant cases, however, fluid interfaces are not planar

and the geometry of the interface must be considered more

carefully. Anisotropy of the interfacial shape can be induced by

gravity, applied electric fields, or by contact forces among

droplets in an emulsion. Even in the absence of external forces,

anisotropy of the interface shape can arise from contact with a

solid surface. Examples include droplets adhered to fibers or

stretched between two interfaces. These cases are relevant in

printing or deposition on surfaces, nucleation of liquids on

MEMS devices, or manipulation of fabricated micro- or nano-

devices on liquid interfaces.39,40 In any of these cases, the

constant-qc condition can deform the interface and the binding

energy of a spherical particle may be substantially different from

the planar-interface case. Moreover, non-uniformity in the

interface shape may lead to strong capillary forces in the

tangential direction.
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Fig. 1 Illustration of a spherical particle at a flat interface, showing the

definition of the contact angle qc. Mechanical equilibrium requires a

constant qc around the entire contact ring. Because of the axial symmetry,

this condition is satisfied on a planar or spherical interface simply by

setting the appropriate immersion depth.
In this article, we address the problem of adsorption of one or

more spherical particles on a fluid interface that is initially curved

in an anisotropic shape. Specifically, we study the effect of the

interfacial curvature on the binding energy and on the associated

capillary force exerted on the particles.

The focus of our study, which allows the derivation of analytic

expressions for the energy and the force, is the simplest case of an

anisotropic uniform interface: an infinitely long cylinder that is

deformed due to the adsorption of one or two small spherical

particles. We find that the energy of adsorption is finite but

depends on the induced long-range deformation of the interface

far away from the adsorbed particle. This implies that although

the assumption of a nearly flat interface gives a reasonable

approximation of the interface deformation near the particle, it is

not sufficient to compute the binding energy. In contrast, we find

that the interaction between two adsorbed particles does not

necessarily depend on the long-range interfacial deformation.

Our calculation suggest that the capillary force exerted on a small

spherical particle is given by a formula that depends only on the

local interfacial geometry:

F(r) ¼ �(p/6)ga4sin4 qcVG0(r), (1)

where r is the particle position, a is the particle radius and G0(r) is

the Gaussian curvature of the unperturbed interface. The inter-

action between the two adsorbed particles is described by eqn (1)

as long as they are separated by a distance that is much larger than

a but much smaller than the radius of curvature of the interface.

Our paper adds new elements to a previous calculation by

W€urger, who studied a spherical particle on a catenoid: an

interface that has zero mean curvature H and negative Gaussian

curvature (i.e., a saddle-like shape).41 Comparison of our results

with W€urger’s study enables us to conclude with a general

discussion of the roles of G and H on the interactions between

adsorbed particles, and to conjecture that the force equation

(eqn (1)) should apply generally for a spherical particle on any

fluid interface of constant mean curvature H.

This article is organized as follows: In Section II we review the

basic theory of particle adsorption at a liquid interface and

introduce a general formalism that allows us to calculate inter-

face-mediated binding energies and forces on small adsorbed

spherical particles through an appropriate linear differential

(local) operator. The coefficients of this operator depend on the

Gaussian curvature and mean curvature of the undisturbed

interface. In Section III we specialize to the deformation of a

fluid cylinder due to an adsorbed spherical particle and discuss a

useful analogy to quadrupolar electrostatic fields. We then use

the deformation to find the curvature correction to the binding

energy, showing its nonlocal nature. In Section IV, we employ the

deformation of the cylindrical interface to derive a general

formula for the tangential force exerted on a particle adsorbed on

a curved interface. Since the azimuthal and translational

invariance of the cylinder exclude any net force on one adsorbed

spherical particle, we first break this undesirable symmetry by

placing another small particle on the cylinder, and then compute

the forces between the two particles. In Section V we compare

our results to previous studies, comment on the relevance of this

theoretical study for specific physical systems, and draw some

general conclusions.
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II. General formalism: small particle adsorbed onto
on a curved interface

In this section, we review the classical problem of a solid

spherical particle of radius a that is brought to contact with an

infinite and planar interface between two immiscible liquids

(Fig. 1). To set the ground for addressing interface curvature

effects, we then briefly review basic concepts of differential

geometry of surfaces and recall Laplace’s law that connects the

pressure andmean curvature of an interface. Following this short

exposition, we introduce a linear operator whose coefficients

depend on the Gaussian and mean curvature of the undisturbed

interface. This operator allows us to describe interfacial defor-

mations that preserve a uniform (constant) pressure at the

interface. We then discuss the deformation of a generic fluid

interface by an adsorbed particle.
A. Adsorption on a planar interface

To address the problem of a spherical particle at a planar liquid

interface, we follow the arguments of Koretsky and Kruglya-

kov19 and Pieranski.18 The particle will adsorb onto the fluid

interface if the total interfacial energy (associated with I–II,

particle-I, particle-II contacts) is lowered by forming a finite

contact area between the fluid phases. We assume that the

particle is initially in phase I and becomes partially immersed in

II. The change in total interfacial energy is composed of three

terms, which describe the reduction of I–II and particle-I contact

areas and the energy of forming a particle-II contact. Minimizing

with respect to the distance between the sphere and the interface,

one finds that the ‘‘binding energy’’ DE is negative (favorable for

binding) if |cos qc| < 1 where qc is the Young–Dupr�e contact

angle:

cos qc ¼ (g1 � g2)/g. (2)

In this case,18

DE ¼ �pa2g(1 + cos qc)
2. (3)

In this planar-interface example, the spherical particle simply

punches a hole in the interface and adjusts its height so as to

satisfy the contact-angle condition; there is no deformation of the

interface.
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The problem we tackle in this paper is this: how is the above

scenario modified when the fluid interface is curved? Specifically,

we ask how the binding energy and the associated tangential

force are affected by the interface curvature. In order to address

this question, we introduce first a few basic concepts of differ-

ential geometry that are used to describe curved surfaces.
B. Differential geometry and surface perturbations: basic

concepts

The local geometry at any point x on a surface S is characterized

by two principle curvatures k1(x), k2(x). The mean curvature H

and Gaussian curvature G are, respectively:

HðxÞ ¼ 1

2
½k1ðxÞ þ k2ðxÞ� and GðxÞ ¼ k1ðxÞk2ðxÞ: (4)

Laplace’s law states that the pressure difference Dp at any

point x of a fluid interface is Dp(x) ¼ 2gH(x).42,43 In equilibrium

and in the absence of gravity or other external fields, the pressure

must be uniform, and therefore fluid interfaces must be surfaces

of constant mean curvature (CMC).

Let us consider now the effect of a small particle that is

adsorbed on a fluid interface. Prior to adsorption the interface

has an ‘‘unperturbed’’ shape S 0 of a CMC surface characterized

by a mean curvature H0. After adsorption and equilibration, the

interface assumes a perturbed shape S 1 which, owing to Lap-

lace’s law, must also be a CMC surface, albeit with mean

curvature H1. (Note that H1 ¼ H0 if the pressure difference

between the two fluids is held constant.) Noticing the natural

dimensionless variable aH0, we establish our analysis on

perturbation theory, assuming that

dHh
H1 �H0

H0

/0 as aH0/0: (5)

We describe the perturbation of the interface as:

x / x + z(x)n̂(x), (6)

where n̂(x) is the unit normal to the surface S 0 at x. For a small

adsorbed particle, namely aH0 � 1, we expect that z(x) � aH0

since it must vanish in the absence of an adsorbed particle (a /

0), and also for a planar interface (H0/ 0). The discussion in the

next section will clarify the actual dependence of z(x) on the

relevant length scales in this problem.

We seek z(x), from which we obtain an expression for the

binding energy DE similar to eqn (3). This calculation is facili-

tated by recalling a linear differential operator that describes the

perturbation (to O(aH0)) of the mean curvature dH(x) due to a

normal deflection z(x):

dHðxÞ ¼ L zðxÞ;

Lh� �
2H0

2 � G0ðxÞ
� þ VS BðxÞ$VS � 1

2
VS

2;

BðxÞh 1

8
ln
�
H0

2 � G0ðxÞ
�
; (7)

where VS is the gradient operator projected on the (unperturbed)

surface.44 The perturbations that we are addressing here preserve

the CMC nature of the interface and hence: dH(x) ¼ L z(x) ¼
8584 | Soft Matter, 2012, 8, 8582–8594
const (¼ 0 if the pressure difference between the two fluids is held

fixed). In Appendix A we show how L is derived for the special

case of a cylinder.

Before proceeding, it is useful to consider two elementary

examples:

(a) The first example has been addressed already in the above

subsection: a particle adsorbed on an (infinite) planar surface,

where both S 0 and S 1 are planar, hence H0 ¼ dH ¼ 0 (and also

G0 ¼ 0 and VSB ¼ 0 everywhere). The small parameter aH0 ¼ 0,

hence the deformation vanishes (z ¼ 0), and the only difference

between S 0 and S 1 is the circular hole of radius asin qc in S 1 due

to the immersed particle.

(b) Another example is a particle adsorbed on a spherical drop

of radius R[ a. Here, S 0 is a sphere withH0 ¼ 1/R and G0 ¼ 1/

R2. The perturbed surface S 1 is a punctured sphere whose radius

is computed by invoking conservation of liquid volume: R[1 +

O(a3/R3)], hence dH � �O(a3/R4) and z(x) � O(a3/R2).45,46
C. Deformation of a generic fluid interface by an adsorbed

particle

In both examples above the deflection z(x) is uniform. This trivial

type of deflection is enabled because the axial symmetry of

S 0 (around the vertical axis in Fig. 1) is preserved by the

adsorbed particle. This suggests that nontrivial interfacial

curvature effects may appear in interfaces that do not possess

such axisymmetry. In such (generic) cases the perturbation z(x) is

not constant, and it is useful to discuss its general nature. The

following discussion suggests that the deformation of a generic

CMC interface due to an adsorbed particle has the form:

z(x) ¼ a2H0 f(xH0; aH0), (8)

where f is a dimensionless function of the dimensionless variable ~x

¼ xH0, whose magnitude (e.g.max f(x)) is expected to beO(1) (in

the limit aH0 / 0) for a generic CMC surface, and whose func-

tional form exhibits a strong dependence on aH0. Referring to the

example in theprevious section,wenote that f� aH0 for a spherical

surface. The discussion below does not exclude the possibility of

the more general form, z � a(aH0)
b f(xH0; aH0), where b > 0.

However, the examples addressed in this article and the expecta-

tion of an analytic expansion about aH0 ¼ 0 suggest that b ¼ 1.

Our derivation of eqn (8) begins by noticing that the system

(particle + interface) consists of two distinct scales a and H0
�1,

with a�H0
�1. Noticing the linear nature of the operator L and

recalling the general theory of linear response to localized

perturbations (Green’s function), one may naively assume that

the amplitude of z(x) depends only on a (the typical ‘‘scale of

perturbation’’), whereas the spatial variation of the perturbation

z(x) is determined only by H0
�1 (the typical ‘‘scale of operator

L ’’). Nevertheless, although the perturbation induced by an

adsorbed particle is localized (since a � H0
�1), it is not a point

impulse. This is in contrast to basic applications of Green’s

theory. We will argue below that this fact leads to the deforma-

tion type expressed mathematically in eqn (8): a perturbation

whose amplitude �a2H0, that is characterized by a variation on

the ‘‘local’’ scale a and on the ‘‘global’’ scale H0
�1.

In order to prove this, let us introduce first a dimensionless set

of variables that reflect the existence of two separate scales in our
This journal is ª The Royal Society of Chemistry 2012



Fig. 2 A section of an infinitely long cylinder of radius R with a particle

of radius a immersed on its surface. Owing to the broken symmetry

around the x-axis, the interface is deformed.
problem. A natural scale for the shape perturbation in the

normal direction is the particle radius a, and a characteristic scale

for variations in the tangential direction is H0
�1. Let us consider

now two distinct scale transformations:

(i) Firstly, assume a rescaling of space (x ˛ R3): x0 ¼ kx. In

particular, this will transform the spherical particle of radius a to

one with radius a0 ¼ ka. Similarly, the surface S 0 will transform

to S 0
0 such that: H0

0 ¼ H0/k; G0
0(x0) ¼ G0(x)/k

2. It follows that

z0(x0, a0) ¼ kz(x,a). Notice that this affine transformation

satisfies: aH0 ¼ a0H0
0. This suggests that the perturbation can be

written as: z(x)/a ¼ ~z(xH0; aH0), where ~z is a dimensionless

function that depends on the dimensionless variable xH0 and the

dimensionless parameter aH0. The nature of the function ~z is

further elucidated by considering the following transformation.

(ii) Consider now a rescaling of the surface S 0 (x ˛ S 0): x
0(x),

such that H0
0 ¼ H0/k; G0

0(x’) ¼ G0(x)/k
2 but a0 ¼ a. Notice that

for this non-affine transformation a0H0
0 s aH0. As k/N (and

aH0 / 0), the surface becomes flatter and flatter, and we expect

that the problem reduces to example (a) in the previous section: a

(finite) particle adsorbed on a planar interface, where z/a ¼ 0.

This suggests that ~z � aH0 and leads to eqn (8), which implies

that for generic surfaces, z(x)/a is expected to reach a vanishing

amplitude in the limit aH0 / 0.

In technical language, eqn (8) stems from the fact that,

although the linear operator L of eqn (7) is regular, the small

adsorbed particle implies a singular perturbation (hence the

explicit dependence of f(x) on aH0 in this asymptotic limit). In

contrast to a point force (which underlies Green’s function), an

adsorbed particle implies a boundary condition (BC) along a

boundary whose size is finite (�a).

To summarize this section, we formulated and discussed the

problem of a solid spherical particle that is adsorbed to a general

curved interface and hypothesized that the deformation must

scale as in eqn (8). We use this formalism in the following section

to analyze the deformation of a cylindrical interface by an

adsorbed particle.
III. A particle adsorbed on a cylindrical fluid
interface

The simplest interface on which the adsorption of a spherical

particle breaks axial symmetry, and hence causes a nonuniform

perturbation, is an infinitely long cylinder (Fig. 2). This section is

dedicated to adsorption of a single particle on a cylinder. We

start by showing that eqn (7) for the perturbation reduces to the

Helmholtz equation and derive the boundary conditions that are

imposed by the adsorbed particle. Then we solve the Helmholtz

equation with approaches commonly used in electrostatic prob-

lems, and use this solution to find the binding energy of a particle

on a cylinder. The breaking of axisymmetry and the consequent

nonuniform perturbation of the cylinder are illustrated in Fig. 4

and 6. In Section IV, we consider adsorption of two particles on a

cylinder to address the curvature-induced particle–particle

interactions.
A. Helmholtz equation and boundary conditions

We use a cylindrical coordinate system, in which the z-axis

extends along the cylinder’s length, q is along the circumferential
This journal is ª The Royal Society of Chemistry 2012
direction, and r is the radial distance from the z-axis to the

interface (see Fig. 2). When introducing dimensionless coordi-

nates, we choose for convenience to rescale tangential (interfa-

cial) lengths by R ¼ H0
�1/2, such that:

~z ¼ z/R; ~r ¼ r/R; ~z ¼ z/a; d h a/R. (9)

Our rescaling of the interface deformation z is motivated by

eqn (8). With these dimensionless variables, the unperturbed

surface is S 0: ¼ {~x ¼ (~r ¼ 1,q,~z)}, and the perturbed surface is

S 1: ¼ {~x ¼ (1 + ~z(q,z),q,~z)}. Since the cylinder is of infinite

volume, we expect that the mean curvature is unperturbed by the

adsorption of a particle, hence dH ¼ 0. Finally, for the (unper-

turbed) cylinder G0 ¼ 0,VS B ¼ 0,H0 ¼ 1/(2R), and eqn (7) and

(8) become:

0 ¼ f + (v~z
2f + vq

2f), (10)

where the deformation ~z is:

~z ¼ z/a ¼ df(q,~z), (11)

according to eqn (8). This is the well-known Helmholtz equation

(see Appendix A). The first term of eqn (10) corresponds to

change of the mean curvature arising from a uniform expansion

or dilation of the cylinder (constant f).

1. Boundary shape. Eqn (10) shows that our problem can be

naturally mapped from the cylindrical surface to a flat strip,

parameterized with q,~z. The strip has infinite length (�N < ~z <

N) and finite width (�p # q # p). This is illustrated in Fig. 3.

The adsorbed particle ‘‘punctures’’ a region around the center of

this strip (~z ¼ q ¼ 0), whose form will be found here. In order to

do so, it is useful to recall again the non-affine transformation (8)

that allows us to consider the limit d / 0 where the cylinder

becomes asymptotically flat. The example of the flat interface

(Fig. 1 and example (a) of Section II) suggests that the center of

the adsorbed particle is located at:

rc ¼ R[1 � dcos qc + o(d)], (12)
Soft Matter, 2012, 8, 8582–8594 | 8585



Fig. 3 Boundary conditions for the Helmholtz eqn (10). The first

quadrant of the (~z,q) coordinate system is represented as a flat plane. The

center of the particle is positioned at the origin. The contact line is

approximately a circle with radius asin qc. As described in the text, the

boundary condition at contact is obtained from the contact-angle

constraint. The boundary conditions at ~z ¼ 0, q ¼ 0 and q ¼ p are

determined by the mirror symmetries.
where o(d) refers to terms that vanish faster than d as d/ 0. The

particle-interface contact line can thus be associated with the

intersection of a cylinder (of radius R) with a particle of radius a

whose center is at distance rc from the cylinder axis. Moving back

to our dimensionless variables, simple algebra shows that, to

leading order in d, the contact line is a circle:

~z2 + q2 ¼ d2sin2 qc + O(d3). (13)

Hence, the domain of eqn (10) is the infinite strip without a

circle of radius dsin qc around the center (~z ¼ q ¼ 0).

2. Boundary conditions. The boundary conditions (BC) for

our problem are shown in Fig. 3. Let us explain them, one by one:

� The crucial BC, which reflects the breaking of axisymmetry

and the consequent nonuniformity of the perturbation, is along

the circle of contact, eqn (13). Fixing the angle between the

perturbed surface S 1 and the particle to the contact angle qc, eqn

(2) yields the Robin BC (Appendix B):

f � ~zv~z f � qvq f ¼ � q2

2d2
on ~z2 þ q2 ¼ d2 sin2

qc: (14)

We note that the contact angle qc appears implicitly in the

values of (~z,q) that define the contact ring.

� ‘‘Periodicity’’ in the q-direction and mirror symmetry

(q / �q) imply that the problem can be restricted to one half of

the strip (say, 0 # q # p) with the Neumann BCs:

vqf ¼ 0 on q ¼ 0, (15)

vqf ¼ 0 on q ¼ p. (16)

Furthermore, our system is also invariant to reflections about

the q-axis (~z / �~z). Therefore, the problem can be restricted to

one quadrant (say, upper right) with the additional Neumann

BC:

v~zf ¼ 0 on ~z ¼ 0. (17)

� The BCs at ~z/�N are associated with a small (o(d)) shift of

the elevation of the center of the particle from the asymptotic
8586 | Soft Matter, 2012, 8, 8582–8594
level of the cylinder. This shift is undetermined at this stage; later

in this section we will see that it is determined from energy

minimization.
B. The electrostatic analogy

The similarity of eqn (10) to the Laplace equation and the BCs

((15) and (17)) suggest an analogy between the electrostatic

potential in two dimensions from a quadrupolar charge distri-

bution and the deformation of a cylindrical interface by a

spherical adsorbed particle. W€urger has pointed out this analogy

in the problem of a spherical particle on a catenoid-shaped

interface.40 In order to see this analogy, let us consider eqn (10),

ignore the term f, assume that both coordinates �N < q,~z < N

(i.e. ignoring the BC (16)), and notice that the BCs ((15) and (17))

describe the electrostatic potential of a quadrupole. The simi-

larity between the equation underlying deformation of CMC

surfaces and electrostatic potential has already been noted in the

literature.30,35,38,47–50 Therefore, it may not be surprising that the

interface deformation induced by a small adsorbed particle is

similar to the electrostatic potential induced by a localized charge

distribution. Furthermore, symmetry arguments motivate the

relevance of the electrostatic quadrupole to our problem. Similar

to quadrupolar charge distribution that breaks radial (axial)

symmetry but retains reflection symmetry with respect to two

orthogonal axes, the deformation of a cylindrical interface due to

an adsorbed spherical particle is invariant under q / �q, and

~z / �~z (see Section III A 2).

This analogy allows us to derive an asymptotically exact

solution to the interface deformation (in the limit d / 0). The

effect of the BCs ((15)–(17)) is accounted for by the images

technique: placing a series of quadrupoles along the q axis to

satisfy all BCs simultaneously. Notably, while the images

method is frequently used in electrostatics, it is not limited to

solving Laplace’s equation, but rather any linear homogenous

partial differential equation, in particular our Helmholtz equa-

tion. Ignoring first BCs (16), the solution to the Helmholtz

equation is:

f0 ¼ � p

48
d2sin4

qc
�
J2
�
~r
�þ Y2

�
~r
��
cos 2f; (18)

where ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~z2 þ q2

p
, f ¼ arc tan (q/~z), and J2, Y2 are the Bessel

functions (of order 2) of the first and second kind, respectively.

The function Y2(~r) is dominant in the vicinity of the adsorbed

particle (i.e. ~r / d), but J2(~r) is necessary to assure decay of the

deformation as ~r / N. Adding the series of images we obtain

the deformation that also satisfies BC (16):

f ¼ � p

48
d2sin4

qc
XN
n¼�N

�
J2
�
~rn
�þ Y2

�
~rn
��
cos 2fn; (19)

where ~rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~z2 þ ðqþ 2npÞ2

q
, fn ¼ arc tan[(q + 2np)/~z]. By this

procedure, we guarantee that the infinite sum in eqn (19) satisfies

the following properties: (i) it converges for all q,~z. (ii) It satisfies

the BC (14) at the contact line in the asymptotic limit d / 0.

These properties were verified numerically by comparing eqn (19)

to direct numerical solution of eqn (10) with BCs (14)–(17),

obtained by the MATLAB Partial Differential Equation (PDE)

Toolbox (MathWorks Inc.). Next we discuss some key features

of the deformed shape that is expressed in eqn (19).
This journal is ª The Royal Society of Chemistry 2012



Fig. 5 Illustration of the origin of the quadrupolar deformation near the

contact line as viewed from the side (left column) and along the cylinder

axis (right column). (a) When the sphere is placed so that its center lies on

the surface of the cylinder, qc ¼ 90� along ẑ but is acute along q̂. (b) If the
sphere is raised slightly, qc can be 90� along q̂ but now qc is obtuse along ẑ.

(c) The solution is a compromise, in which the sphere is raised and there is

an inward (�) deformation along q̂ and a (+) deformation along ẑ. These

deformations change the curvatures in opposite ways so that H is unaf-

fected. (The illustration exaggerates the deformation.)
C. The deformed cylinder

We start by discussing the local deformation, near the contact

line, and then proceed to the impact of the adsorbed particle on

the global shape, away from the contact line.

1. Local deformation. In the vicinity of the particle, ~r � O(d).

In this regime, both the ‘‘Helmholtz term’’ (f in eqn (10)) and BC

(16) have negligible effect. Hence, the short-range deformation is

essentially identical (to leading order in d) to a quadrupolar

electrostatic potential (Fig. 4), and originates from a Taylor

expansion of the leading contribution to the deformation, Y2(~r):

fnear ¼ d2sin4
qc

12

cos 2f

~r2
þO

�
d2
�
; (20)

where the last term refers to corrections that nowhere exceed

O(d2) (in contrast to the first term which becomes O(1) at the

contact line). One may notice that f reaches its maximum value at

two points on the contact line (~r ¼ d,f ¼ 0,p) (Fig. 4). Eqn (20)

shows that this value is indeed O(1), as was anticipated in the

general discussion in Section II C (see eqn (8)).

To understand intuitively how the deformation of Fig. 4 arises

from the qc condition, we illustrate the contact angles along the ẑ

and q̂ directions for a neutrally wetting sphere (qc ¼ 90�).
Fig. 5(a) shows the intersection of the sphere and the cylinder

along the axial and circumferential directions if the center of the

sphere were placed at the interface with no deformation. In this

case, the contact angle is 90� in the side view (along ẑ) but is acute

(<90�) in the end view (q̂ direction). If the sphere is lifted slightly

(Fig. 5(b)), then the contact angle can be 90� in the end view but

is obtuse in the side view. Hence the equilibrium solution

(Fig. 5(c)) is to lift the sphere slightly and impose an inward (�)

deformation along q̂ and an outward (+) deformation along ẑ.

2. Global deformation. While the contribution to the sum in

eqn (19) from the ‘‘original’’ particle (n ¼ 0) vanishes as ~r / N,

the total contribution from all other terms in the sum adds up to

a net elevation. Returning to the variables ~z,q, we found:

lim
~z/�N

f
�
~z; q

�
z� d2

4
sin4

qccos q: (21)
Fig. 4 Deformation of interface in the near vicinity of the particle. Red

represents outward deformation; blue represents inward deformation.

The orientation of the quadrupole is fixed along the direction of cylinder

axis, which is horizontal in this plot.
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This deformation corresponds to a translation of the cylinder

by an amount (1/4)d2sin4 qc away from the center of the adsorbed

particle. Again, we anticipated such a higher-order correction

from the general considerations in Section II C (see eqn (12)).

Notice that if one attempts to directly solve eqn (10) under the

BCs ((14), (15) and (17)), the BCs at ~z / �N are not known in

advance (see discussion in Section III A 2), but rather results by

minimizing the energy of all deformations that satisfy f(~z,q) f

cos q as ~z / �N.

In addition to the global translation of O(d2), we found also a

global, higher-order, O(d4) tilt and undulation of the cylinder,

namely, |~z|cos q and cos
�
j~zj � p

4

�
(Fig. 6). The corresponding

coefficients are given in Appendix C. (Recall that the tilt is

dz/dz.)

One should notice that the translation (O(d2)), tilt (O(d4)), and

undulations (O(d4)) are all zero modes of the cylinder. Namely,

these are global deformation modes that do not change the

surface area of the cylinder. This is apparent for the translation

and tilt modes. The undulation mode is essentially the zero-mode

in the Plateau-Rayleigh spectrum of the cylinder.43 These

undulations extend along ẑ and are required to satisfy the

boundary conditions along the finite (q̂) direction.

3. Near-Euclidean approximation. The above discussion

suggests that one may express the deformation f(x), eqn (19) as a

sum of two contributions:
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Fig. 6 Cylinder perturbed upon adsorption of solid particle, with

deformation exaggerated. The actual perturbation is reduced by a factor

of pd4sin4 qc/48. The particle is not drawn.
f(x) ¼ fnear(x) + ffar(x), (22)

where fnear is given in eqn (20). Let us clarify the distinction

between the two functions fnear and ffar.

� The amplitude rfnear(x)r reaches its maximal value at the

contact line (rxr � a). This maximal value remains finite (�d0) as

d / 0. The function fnear(x) decays from its maximal value as

(rxr/a)�2, and hence vanishes as rxr / N.

� The amplitude rffar(x)r is characterized everywhere by a

small value (�d2) that vanishes as d/0, but does not decay

spatially (i.e. as rxr / N). Its variation occurs over a charac-

teristic scale H0
�1.

Since in the vicinity of the particle rfnearr [ rffarr and in

addition rffarr / 0 everywhere as d / 0, it is tempting to make

the approximation f(x) z fnear(x). We call this the ‘‘near-

Euclidean approximation,’’ since we pointed above that fnear
solves the Laplace equation (rather than the Helmholtz equa-

tion) if we ignore the BC (16); this approximation would describe

the deformation induced by a particle with undulating contact

line adsorbed on a planar interface. We will see below that this

assumption cannot be made when computing the binding energy,

but can nevertheless be used to compute the curvature-induced

capillary force exerted on the particle.
Fig. 7 Parameterizations of the contact line. Phase I is outside the

cylinder and phase II is inside. r is the radial coordinate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ R2q2

p
. l is

the inclination angle measured from the zenith. To the lowest order, rc ¼
asin qc, l ¼ qc, corresponding to the case of flat interface.
D. Binding energy

Having calculated the interfacial deformation in the previous

section, we are now in a position to evaluate the binding energy

DE of an adsorbed particle on a cylindrical interface. Following

the discussion of Section II A, we write the energy as a sum

DE ¼ DEcont + DEI–II. (23)

Here we defineDEcont as the energy associated directly with the

contact areas AI, AII of the particle with phases I, II, respectively,

and the area of the hole Ah punched by the adsorbed particle in

the fluid interface:

DEcont ¼ �gAh + g1(AI � 4pa2) + g2AII, (24)

The second contribution to DE is the energy of deforming the

I–II interface:

DEI–II ¼ gDA, (25)

where DA is the excess area of the I–II interface induced by the

deformation z(x) outside the contact line. Note that DA � Ah is
8588 | Soft Matter, 2012, 8, 8582–8594
the total change in the (infinite) area of the fluid cylindrical

interface after the particle has adsorbed. We find DE by first

evaluating DEcont and then DEI–II.

The contributionDEcont, eqn (24), is evaluated by noticing that

the contact line can be parametrizes as lc(f) where lc is the

inclination angle measured from the zenith (Fig. 7). Recalling

our calculation of the contact line, Section III A 1 (see eqn (12)

and (13)), we find that

lcðfÞ ¼ qc þ 3� 2cos 2f

6
dsin qc þ ð3� 2cos 2fÞ2

72
d2sin qccos qc

þO
�
d3
�
:

(26)

An analogous parameterization of the contact line is rc(f):

~rc
2 ¼ d2sin2

qc þ 3� 2cos 2f

3
d3sin2

qccos qc

þ ð3� 2cos 2fÞ2
36

d4
�
2� 3sin2

qc
�
sin2

qc þO
�
d5
�
; (27)

where ~r ¼ r/R. Notice that the expressions (26) and (27) repre-

sent the contact line of the perturbed cylinder and are computed

using the perturbation f, eqn (20). Our perturbative scheme

(which guarantees that f is correct to O(d2) at the contact line),

guarantees that eqn (26) and (27) are correct to orders

O(d2),O(d4), respectively. Using these parameterizations, the

areas AI, AII, Ah can be expressed as:

AI

a2
¼

ð2p

0

df

ðlcðfÞ

0

sin l dl; AII ¼ 4pa2 � AI (28)

and

Ah

a2
¼ 1

d2

8<
:
1

2

ð2p

0

df~rc
2 þ 1

8

ð2p

0

df~rc
4sin2

f

9=
;þO

�
d4
�
; (29)

where the last expression is derived in Appendix D. Using eqn

(24), (26)–(29) we compute the energy component (see

Appendix D):

DEcont ¼ DEflat þ 3

16
pgR2d4sin4

qc; (30)
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where DEflat ¼ �pa2g(1 + cos qc)
2 is the binding energy of the

particle on a flat interface (eqn (3)).

Next we consider the energy DEI–II. We use the general

formula for the area of a surface x(u, v):

A ¼ !!|vux 	 vvx|dudv, (31)

where u,v are any set of orthogonal coordinates.52 Expressing the

perturbed cylinder through eqn (6), (8), (19), (20) and (22), we

separate the above integral into a ‘‘near-Euclidean’’ part and a

‘‘far-field’’ part. These parts express the contributions to the

excess area DA from the deformation in the vicinity of the

adsorbed particle, and far away from it. The first integral is

evaluated by using the coordinates (u,v) ¼ (r0,f0) (see eqn (18)).

The second integral is computed by using the parameterization

(u,v) ¼ (z,q). To leading order in d we find:

DEI–II ¼ �0.5333gR2d4sin4 qc. (32)

Combining eqn (23), (30) and (32), we find that for the case of

a cylindrical interface the curvature-induced part of the binding

energy is a correction of O((aH0)
2) to the binding energy to a flat

interface, whose magnitude depends both on the long-range

deformation as well as on the deformation in the vicinity of the

contact line. Assuming this structure is characteristic of a generic

CMC surface, we may conclude that with the knowledge of local

surface geometry only, one cannot determine the long-range

deformation and its contribution to the binding energy. Hence a

general formula for the curvature-induced contribution to the

binding energy in terms of the local surface geometry might not

be possible. We illustrate this point in Fig. 8, which shows two

hypothetical interfaces that have the same shape (thus H and G)

locally but differ globally. If two such CMC interfaces exist, then

the binding energy of a sphere at the point indicated in the figure

would be different in the two cases.
E. Symmetry arguments

While the binding energy was obtained from explicit calculation,

we will show here that the absence of O(d3) terms reflects the

symmetries of the system. Consider then the two

transformations:

I. The labels of the two fluids are switched (I 4 II) and the

interface is turned ‘‘inside out’’ by reversing the sign of H0 (i.e.,
Fig. 8 Illustration of two hypothetical interfaces that have the same

shape within a small region (dashed boxes) but different shapes globally.

The binding energy of the sphere should in general differ in the two cases.
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H0 / �H0). Clearly, this transformation does not change the

physical system and hence the interfacial geometry and the

energy must remain invariant. Since the permutation (I 4 II)

yields qc / p � qc, and the sign change H0 / �H0 implies d

/ �d, this invariance implies that any energetic contribution

that depends on d2k+1 must be proportional to a function of qc
that changes sign when qc / p � qc (e.g. cos(qc)

2n+1). Here n, k

are any integers.

II. If the two fluids are physically switched so that phase I now

comprises the interior of the cylinder, then a sphere will reside at

the interface with a contact angle (measured from the interior of

the cylinder) given by p � qc. In contrast to the above trans-

formation, this one corresponds to qc / p � qc but leaves H0

(and hence d) intact, hence it leads to a physically different

system. Nevertheless the deformation z of the I–II interface is the

same. This fact can be seen by noting that the BCs involve only

sin qc (which remains unaffected by qc / p � qc). We also note

that the equation for the normal vector to the fluid interface, n̂i is

unaffected by this change (Appendices A and B). This suggests

that terms which depend on qc as �cos(qc)
2n+1 cannot appear in

the energy.

As a consequence of the transformations I, II, DEI–II cannot

have a term proportional to d3. By the first symmetry, such a

termmust be proportional to an odd function of cos qc; but this is

not allowed by the second symmetry. Hence, the leading order

term in DEI–II must be even in d, as was shown in (32).

IV. Capillary force on one or two particles

A. Interaction between two different spheres on the cylinder

We saw in the above section that the binding energy of a particle

on a curved surface cannot be obtained from a formula that

depends only on the local surface geometry. However, if we now

consider two small adsorbed particles, labeled ‘‘1’’,‘‘2’’, respec-

tively, that are separated by a distance d such that d�H0
�1, then

the long-range deformation can be approximated by the sum f (1)far

+ f (2)far , which does not give rise to any interaction between the

particles. However, the particles do interact through the BCs (14)

at their contact lines: particle 1 induces a deformation of the

surface in the vicinity of particle 2, which modifies its contact line

geometry and vice versa. If the particles are sufficiently far from

each other, such that d [ a, b (where a, b are the radii of

particles 1,2, respectively), then the surface deformation can be

computed perturbatively:

f(x) ¼ f (1)
near(x � x1) + f (2)

near(x � x2)+finter(x; x1, x2)

+ [ f (1)
far(x � x1) + f (2)

far(x � x2)],

where x1,2 are the locations of particles 1,2, and |finter|�|f (1,2)near |

everywhere. Following the derivations in Section III, one can

compute directly finter and find the associated curvature-induced

interaction energy Uinter between the particles. Nevertheless, we

find it easier to compute the interaction by direct calculation of

the capillary force.

To calculate the capillary force between the particles, we place

particle 1 (with radius a) at (0, 0) and particle 2 (with radius b) at

d(cos u, sin u). At any point on the contact line of particle 1, the

direction of the capillary force is parallel to the interface and

perpendicular to the contact line (Fig. 9); we define the unit
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Fig. 9 Illustration of the forces on a particle. The capillary force is along

the direction t̂, which is perpendicular to both the normal to the interface

n̂i and the tangent of the contact line t̂c, while t̂c is perpendicular to both

n̂i and the normal to the particle surface n̂p. The pressure is greater inside

the cylinder by an amount Dp, the Laplace pressure.
Fig. 10 Superposition of two quadrupole fields. Red represents outward

deformation; blue represents inward deformation. The orientations of the

quadrupoles are fixed by the direction of the cylinder axis, which is

horizontal in this plot.

vector along this direction as t̂. By integrating around the contact

line of the first particle, we obtain the capillary force exerted on

particle 1:

FðcÞ ¼
ð2p

0

dfg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2

qc þ ðvfxÞ2
q

t̂ðfÞ; (33)

where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sin2 qc þ ðvfxÞ2

q
df is the element of length along the

contact line. Generally t̂(f) is a unit vector in three dimensions, but

the component along x̂ (Fig. 9) does not contribute to the particle–

particle interaction. In the rf-plane, it can be shown that50,51

t̂ ¼ r̂ cos j� vfx

asin qc
f̂sin j (34)

where j ¼ arc tan vrx is the angle of the interface at the contact

line measured from the unperturbed interface along r̂.

Another contribution to the interaction force is the Laplace

pressure g/R across the interface (Fig. 9). One can show that the

lateral component of this force in the (r, f)-plane is

FðpÞ ¼ � g

R

ð2p

0

dfxðasin qc;fÞasin qcr̂; (35)

where x(asin qc, f) is the height of the contact line. In the

direction along x̂, the Laplace pressure is balanced by the

capillary force on the particle.

The total lateral force on particle 1, F ¼ F (c) + F (p), is then

obtained as

Fðd;uÞ ¼ pga4b4sin8
qc

3R2d5

�
ẑcos 5uþ ŷsin 5u

�þO

	
ga10

R4d5



;

(36)

where the correction originates from the expansion of the inter-

facial deformation to higher orders in a/R and b/R.

The potential energy associated with F is

Uðd;uÞ ¼ �pga4b4sin8
qccos 4u

12R2d4
: (37)

This is the interaction energy between particle 1 and particle 2.

Aside from the difference in sign, this interaction resembles the

electrostatic interaction between two quadrupoles with fixed

orientation in two dimensions (Fig. 10).35,37
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B. Generalization to the force on one particle at a non-uniform

interface

Our result for the interaction between two different spheres at a

cylindrical interface allows us to explore the more general

problem of a single sphere at an interface with constant mean

curvature but non-uniform Gaussian curvature. If we place a

particle of arbitrary radius a on the cylindrical interface, the

Gaussian curvatureGa caused by this perturbation at a distance a

� d�R can be calculated from eqn (20). In polar coordinates, if

the particle a lies at (0,0), we find

Gaðd;uÞ ¼ � 1

2R2

	
asin qc

d


4

cos 4uþO

	
a8

R2d8



: (38)

If we now envision placing a second particle with radius b � a

at position (d, u), we can calculate the force acting on b, which

we will call Fb. We find the remarkable result thatGa accounts for

the d, u dependence of Fb. That is, we can write

Fb ¼ �pgb4sin4
qc

6
VGa þO

	
ga10

R4d5



: (39)

Correspondingly, the potential energy of particle b as a func-

tion of its position is

Ubðd;uÞzpgb4sin4
qc

6
Gaðd;uÞ; (40)

where Ga is the Gaussian curvature of the interface in the absence

of the particle b. This result describes in general the interaction

between any two spheres on a cylinder when a, b � R. We

conjecture that this result applies more generally to any spherical

particle adsorbed on a CMC interface that initially has Gaussian

curvature Ga.

In a previous study, W€urger considered the case of a spherical

particle on a catenoid-shaped interface (H ¼ 0,G < 0).41 He

predicted that a sphere should be attracted toward the waist of

the catenoid by a potential given by �p

6
ga4sin4 qck

2, where k is

one of the principal curvatures of the interface (the other one

being �k). Hence our result (eqn (40)), obtained with a
This journal is ª The Royal Society of Chemistry 2012



Table 1 Some dimensionless ratios characterizing the interfacial
geometry in the present study and in that of W€urger.41 H and G should be
thought of as the mean and Gaussian curvatures that exist before a test
particle is inserted onto the interface

Dimensionless
ratio This article W€urger

G/H2 (a/d)4 � 1 [ 1(/N)
VG/H3 Ra4/d5 [1(/N)
VG/|G|3/2 Rd/a2 [ 1 [1
cylindrical interface withHs 0, is consistent withW€urger’s. Our

result for the cylinder with one adsorbed sphere has the addi-

tional feature of regions with both positive and negativeG, which

clarifies that spheres are drawn toward large negative G rather

than positive G. In Table 1, we summarize the region of

parameter space studied by these two works using three dimen-

sionless ratios that characterize the interfacial shape: G/H2,

VG/H3, and G/|G|3/2. In both studies, the particle size is assumed

to be much smaller than any characteristic scale of the CMC

surface. W€urger studied the case where H ¼ 0 so that G

predominates. In our case, |G|�H2 but VG could be either small

or large compared with H3.

As a final example of curvature-induced capillary forces, we

consider the interaction between two spheres at an initially

planar interface, but now with a normal force fn acting on

particle 1. As in the preceding discussion, the interface itself is not

subjected to any external forces. In the presence of only particle

1, fn causes the interface to deform into a section of a catenoid

with principal curvatures k and �k. (In the small-deformation

limit, this shape resembles a revolution of the logarithm func-

tion.) Since particle 2 – with no normal force on it – sits on a

curved interface, there will be a deformation in its vicinity, which

can be described to leading order in ak as a quadrupole. We

therefore predict that particles 1 and 2 will attract one another

with force

F ¼ fn
2b4sin4

qc

6pgd5
: (41)

The same result can be obtained either by direct integration of

the capillary force at the contact line (eqn (33) and (35)) or from

the Gaussian curvature approach (eqn (39)).
V. Conclusions

In summary, we have shown that the adsorption of spherical

particles deforms a cylindrical interface if the constant-qc
condition applies (i.e., if there is no contact-line pinning). The

deformation has quadrupolar symmetry: the interface is raised

along the cylinder’s axis and depressed along the azimuthal

directions. We find that, because of the constraint of constant

mean curvature, the binding energy of a spherical particle

depends on the interfacial shape far away (at scales[H�1) and

it appears not to be possible to write the binding energy as a

function of the local G,H. In contrast, the deformation-induced

interaction between two adsorbed particles can be written in

terms of the local shape if the separation d � H�1. Specifically,

the force acting on a particle of radius b may be obtained from
This journal is ª The Royal Society of Chemistry 2012
the gradient of the potential energy U ¼ p

6
b4sin4 qcGa, where Ga

is the Gaussian curvature induced by the other particle. Gener-

alizing this result, we propose that this formula should describe

the potential energy of a spherical particle on any CMC inter-

face, in the limit where b�H�1. Hence, spheres should generally

be driven by a curvature-capillary force toward regions with

more negative Gaussian curvature. The near-Euclidean approx-

imation is misleading for calculations of the binding energy but

suffices to calculate the two-particle interaction if d � H�1. Our

results were compared to the previous theoretical study by

W€urger.41

The magnitude of curvature-induced capillary interactions can

be estimated for relevant examples using the results described

here. Because of the fact that that g is on the order of kBT per

molecular area, the interfacial tension can lead to significant

force or energy when integrated over a particle that is nanome-

ters to microns in size. (Here, kBT is Boltzmann’s constant

multiplied by room temperature.) If we consider two spherical

particles on a constant-mean-curvature interface, the potential

energy (eqn (37)) depends on particle radius as a2 if the geometric

proportions (R/a and separation d/a) remain constant. For the

case of a ¼ 10 mm on an initially cylindrical interface with R ¼
100a, d¼ 10a, and g¼ 50 mNm�1, the potential energy is on the

order of kBT. For sub-micron spheres, the interactions are weak

unless the curvature is greater or the particles are closer to one

another; for example, if a ¼ 10 mm, R ¼ 10a and d ¼ 3a we may

obtain a potential energy on the order of 100kBT and a force on

the order of a femtonewton. In these cases, the curvature-induced

capillary force may cause aggregation of particles in the absence

of other forces. For spheres with size approaching the mm scale,

buoyancy may give rise to capillary monopoles. Unless the mass

density of the spheres is carefully matched to that of the liquids,

these capillary monopoles may compete with the curvature-

induced capillary interactions.

The formalism described here opens a way to study curvature

effects on CMC interfaces with arbitrary shape. The linear

operator in eqn (7) can be used in analytical or numerical studies

as long as the deformation is small. An interesting case, not

described here, would be for two particles that are far apart on

the interface, i.e., when the separation d approaches the char-

acteristic scale of the curvature,H�1. On the other hand, the very

highly curved limit where H�1 � a requires a different approach

because the mean curvature becomes a nonlinear function of the

deformation and the starting Helmholtz equation (10) is already

incorrect. The limit where d � a is also challenging because the

contact-line boundary conditions are no longer satisfied to

leading order by linear superposition of the two single-particle

deformations.

An interesting remaining problem is how these curvature-

capillary forces apply in the presence of gravity or other

external forces. We showed that a neutrally buoyant particle is

attracted to another particle that is subject to a normal force fn
because fn induces a quadrupolar deformation around the

neutrally buoyant particle. However, when there is an external

force that acts on the interface itself, H is no longer constant

and the force on a particle might have additional terms

proportional to VH, etc. In the present work, we effectively

assumed that all characteristic lengths are much smaller than
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the capillary length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðDrgÞp

, where Dr is the difference in

mass densities of the two fluids and g is the acceleration due to

gravity. In the case of liquid–air interfaces, the capillary length

is typically on the order of millimeters, so that neglecting gravity

should be a good approximation when considering microscopic

particles. For large particles or for external forces stronger than

gravity, a generalization to the case of non-uniform H would be

interesting and quite useful in many applications.
Appendix A: CMC deformation of a cylinder

Here we provide a straightforward derivation of the operator

that describes the change in the mean curvature upon a small

deformation of a cylinder of radius R. We use the definition of

the mean curvature in terms of the normal to the surface:

2H ¼ Vn̂, (A1)

to obtain directly the CMC deformation of a cylindrical surface.

With eqn (5) and (6) we can obtain the equation for the pertur-

bation z ¼ adf where a is a length (e.g. the radius of the adsorbed

particle) and d ¼ a/R � 1. The normal is related to the gradient

of the surface equation

F(r,q,z) ¼ r � R � adf(q,z), (A2)

by the relation:

n̂ ¼ VF

jVFj : (A3)

We have

VF ¼
	
1;� ad

r
vq f ;�advz f



: (A4)

We define now the dimensionless variables as in the main text:

~r ¼ r/R and ~z ¼ z/R. The gradient can then be written as

VF ¼
	
1;� d2

~r
vq f ;�d2v~z f



: (A5)

Consequently

|VF| ¼ 1 + O(d4). (A6)

At the lowest order in d, we have that n̂ ¼ VF. The normal is

computed on the perturbed surface ~r ¼ 1 + d2f. Thus we have at

the lowest order

1

~r
¼ 1� d2f : (A7)

Finally

n̂ ¼ (1, �d2vqf, �d2v~zf) (A8)
B
�
~z; q

� ¼
�
4~z2ð16~z4 þ 1140~z2 þ 4275Þ � 720q2ð4~z2 þ 15Þ � 945

�
cos q� 60q

�
16~z4 þ 408~z2 � 16q2 þ 105

�
sin q

6144
ffiffiffi
2

p
p4

: (C5)
The mean curvature is computed using eqn (A1). We need to

compute the divergence of the normal vector.
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Vn̂ ¼ 1

r
vrðrnrÞ þ 1

r
vqn

q þ vzn
z ¼ 1

R~r
� d2

R~r
vq

2f � d2

R
v~z

2f

¼ 1

R
� d2

R
f � d2

R
vq

2f � d2

R
v~z

2f ; (A9)

where we used eqn (A7). Using eqn (5) together with eqn (A1)

and H0 ¼ 1/(2R), we obtain

2dH ¼ �d2(1 + vq
2 + v~z

2)f (A10)

As discussed in the main text, dH ¼ 0 and we thus obtain the

Helmholtz equation (10).

Appendix B: boundary condition at contact

The boundary condition we search for is given by

n̂p$n̂i ¼ cos qc, (B1)

where n̂p and n̂i are the normal of the particle surface and fluid

interface, respectively. To leading order in d,

n̂p ¼
	
cos qc þ df þ q2

2d
;
q

d
;
~z

d



; (B2)

n̂i ¼ (1, �d2vqf, �d2v~zf), (B3)

where we express the above vectors using cylindrical coordinates

(see Fig. 2). It then follows that:

f � qvq f � ~zv~z f ¼ � q2

2d2
: (B4)

Appendix C: summation of series

For given ~z and q, the sum to be approximated is:

S ¼ s0 þ
XN
n¼1

ðsn þ s�nÞ; (C1)

where

sn ¼ [J2(rn) + Y2(rn)]cos 2fn. (C2)

Numerical summation is done by computing a partial sum

directly and approximating the remainder.

In the limit of large n, Taylor expansion yields

sn þ s�n ¼ Að~z; qÞ
n3=2

þ Bð~z; qÞ
n7=2

þO

	
1

n9=2



; (C3)

where

A
�
~z; q

� ¼ 4qsin q� ð4~z2 þ 15Þcos q
4

ffiffiffi
2

p
p2

; (C4)
For sufficiently large n,
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sn þ s�nz
Aðq; ~zÞ
n3=2

; (C6)

which requires

n2 [

����BA
����: (C7)

Now the approximation is

Szs0 þ
XN
n¼1

sn þ s�n � A

n
3
2

0
@

1
Aþ Az

	
3

2



(C8)

with z(x) the Riemann zeta function.

The sum was computed at different points in the (~z,q) plane

and the data showed the leading modes of S correspond to a kink

followed with an undulation (Fig. 6):

S ¼ :6371
��~z��cos q� :4502cos

	��~z��� p

4



þ x

�
~z; q

�
: (C9)

The equation above was obtained by fitting data in the

quadrant of positive ~z and q. The symmetry condition was shown

by taking explicitly the absolute values of ~z and q. The remainder

x(~z,q) would contribute to the binding energy.

Appendix D: the area Ah

The area Ah of the hole is a part of the cylinder which is curved.

To compute this area, we use the cylindrical system of coordinate

used in the paper, see Fig. 2. The parametric equation of the

cylinder is thus
~x ¼ cos q; ~y ¼ sin q; ~z ¼ ~z, (D1)

with ~$ ¼ $/R, with 0# q < 2p and�N < ~z <N. We thus use this

parameterization for the hole
~r(q,~z) ¼ (cos q, sin q, ~z). (D2)

Using polar coordinates

~z ¼ ~rcos f, (D3)

q ¼ ~rsin f, (D4)

and eqn (13) which characterizes the region occupied by the

particle on the cylinder, we find (up to corrections of O(d2):

~r
�
~r;f

� ¼
	
1� 1

2
~r2sin2

f; ~rsin f; ~rcos f



: (D5)

Using the general formula for the surface area we find:

Ah

R2
¼

ð2p

0

df

ð~rc
0

d~r
��v~r~r	 vf~r

��; (D6)

from which follows that:

Ah

R2
¼

ð2p

0

df

ð~rc
0

d~r~r

	
1þ 1

2
~r2sin2

f



þO

�
d6
�
; (D7)
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Ah

R2
¼ 1

2

ð2p

0

df~rc
2 þ 1

8

ð2p

0

df~rc
4sin2

fþO
�
d6
�
: (D8)

Using now eqn (27) we compute the integrals in the above

equation and obtain eqn (29). Finally, a similar computation of

the integral for AI in eqn (26) shows that terms of O(d3) cancel

and we obtain the expression for the energy component DEcont,

eqn (30).
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