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APPENDIX

A. Deriving Equation (7)

Based on (8), we calculate the derivative of D (p1∥p0) (t)
with respect to each diw:
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Note that this derivative is negative, indicating that as diw in-
creases, the divergence decreases. In other words, as Alice gets
farther away from a given Willie, the divergence decreases,
making it more challenging to determine if she is transmitting.
Also note that the magnitude of the derivative is inversely
proportional to the distance to the given Willie. This suggests
that the impact on covertness of being farther (or closer) from
a Willie is more significant than being closer (or farther) to
a more distant Willie, as expected. Therefore, we are actually
seeking the gradient with respect to x, and as such we must
perform another step of the multivariate chain rule, as follows:
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Now, if we decompose ∆x into derivatives along two direc-
tions, we can rewrite equation (7) as follows:

D (p1∥p0) (t+ 1) ≈
D (p1∥p0) (t) + ∂D(p1∥p0)(t)

∂x ∆x+ ∂D(p1∥p0)(t)
∂y ∆y

(45)

where ∆x and ∆y are two Gaussian distributions that re-
flect the degree of motion in two orthogonal directions
when updating the position of Alice i under the assumption
of a two-dimensional Brownian motion model described in
Section III. We redefine the covertness interruption event
{D (p1∥p0) (t+ 1) > ϵ} as follows:

D (p1∥p0) (t) + ∂D(p1∥p0)(t)
∂x ∆x+ ∂D(p1∥p0)(t)

∂y ∆y > ϵ (46)

B. Deriving Equation (13)

The integral region Dr is defined as the intersection of
circles CR̄m

and CR̄j
, which can be expressed as:

Dr = (CR̄m
∩ CR̄j

) (47)

where CR̄m
is the circle representing the random movement

range with Alice as the center, given by CR̄m
= {(x, y) : (x−

xi)
2 + (y − yi)

2 ≤ R̄2
m}, where (xi, yi) is Alice’s position at

time t. CR̄j
is the circle representing the communication range

with Bob as the center: CR̄j
= {(x, y) : (x−xj)

2+(y−yj)
2 ≤

R̄2
j}, where (xj , yj) is Bob’s position at time t. In order to

represent the integration region Dr more intuitively, we can
transform it into polar coordinates with Bob as the origin.
Alice i’s angle and radius in polar coordinates is be expressed
as (ri, θi). The polar form of CR̄m

and CR̄j
can be organized

as:

CR̄m
= {(r, θ) :

√
r2 + r2i − 2rri cos(θ − θi) ≤ R̄m} (48)

CR̄j
= {(r, θ) : r ≤ R̄j} (49)

In this case, the lower limit of the polar angle of integration
should be set as follows:
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The upper limit of the polar angle of integration should be set
to:
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Since CR̄j
is defined as r ≤ R̄j in polar coordinates with Bob

as the origin, it is easy to see that the upper limit of the radial
distance of the integral should be R̄j . The lower limit of the
radial distance of the integral should be defined as:
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The polar form of the double integral formula (12) should be
represented as:
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C. Deriving Equation (14)

The power threshold Pw can be obtained by solving the
below equation:
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where, diw represents the Euclidean distance between Alice
i and Willie w at time t. η2w represents the noise power at
Willie’s position. ϵ is the threshold for the relative entropy
described in Section III. B. B represents the number of
channels. To obtain the close-form expression of Pw, we can
perform the following Taylor series expansion of the ln(·) term
in (54):
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The above (55) can be further simplified as:
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Therefore, the close-form expression for the maximum power
Pw of Alice i at time t not detected by Willie should be:

Pw = ϱi ·
√

4ϵ

B
· dχ/2iw η2w (57)

where ϱi is a correction factor employed to compensate for
the numerical discrepancy in calculating Pw arising from the
truncation of higher-order terms in the process of simplifying
(55).

D. Deriving Equation (15)

The integration region Ds(Pi) can be defined as the relative
complement of the intersection of sets CR̄m

and CR̄j
with the

intersection of set CR̄w
, expressed as:
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)
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Here, CR̄m
represents the circle of the random movement

range centered at Alice and can be expressed as CR̄m
=

{(x, y) : (x − xi)
2 + (y − yi)

2 ≤ R̄2
m}, where (xi, yi) is the

position of Alice at time t. CR̄j
represents the circle of the

communication range centered at Bob: CR̄j
= {(x, y) : (x −

xj)
2+(y−yj)

2 ≤ R̄2
j}, where (xj , yj) is the position of Bob at

time t. CR̄w
represents the circle of the surveillance range cen-

tered at Willie: CR̄w
= {(x, y) : (x−xw)

2+(y−yw)
2 ≤ R̄2

w},
where (xw, yw) is the position of Willie at time t. To simplify
the integration calculation, we will consider Bob as the origin
of the polar coordinate system. Then, Alice’s and Willie’s
polar coordinates with respect to Bob should be (ri, θi) and
(rw, θw), respectively. The polar coordinate expressions for
CR̄m

, CR̄j
, and CR̄w

should be:

CR̄m
= {(r, θ) :

√
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= {(r, θ) : r ≤ R̄j} (60)

CR̄w
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√
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The integral expression for the conditional probability of
secure communication can be further derived as:
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The solutions for r1(θ) and r2(θ) can be derived using the
following equations:

r1(θ) =

min
{
r |
√
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} (65)
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In other conditions where the argument of the arccos function
exceeds its domain of [-1, 1], the condition for secure commu-
nication is always not met, and therefore, we have ps(Pi) ≈ 0.

E. Deriving Equation (20)

Inspired by the fact that each Alice’s power is directly
related to the Euclidean distance between itself and Bob, we
can establish a formula to describe the relationship between
Euclidean distance and power based on previous historical
records. We use a second-order polynomial regression model
to establish this formula:
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When given a set of historical data
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i′j′ is the distance at time κ, and P

(κ)
i′j′ is the correspond-

ing power output, we can minimize the difference between
predicted power obtained from formula and actual power
by adjusting a set of coefficients a0, a1, a2. Adjusting the
coefficients from historical records can be achieved by solving
the least squares error minimization problem:
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The coefficient vector a = [a0, a1, a2]
T can be estimated using

the least squares method:

a =
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and the vector y contains all historical power values:
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After obtaining the relationship formula (67), we can convert
the PDF of d

(t)
i′j′ to the PDF of P

(t)
i′j′ . In (19), we directly

obtained the expected distance E [di′j(t)] between Alice i
′

and
the target Bob j (subject to interference) by a double integral
involving the movement step l, the direction θ, and geometric
relationships, without providing a specific PDF expression
directly related to the distance. Here, we reconstruct the PDF
of d(t)i′j′ using a Dirac delta function δ(·),
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which ensures that the probability distribution of the Euclidean
distance d contributes to the integral value only when d is

equal to
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′
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′
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F. Deriving Equation (40)

To establish the indexability of an arm and obtain a closed-
form expression for the Whittle index, we consider the fol-
lowing cases:
1) When τr = 1, assuming periodic data packet transmissions
by Alice, the transition probability p(s′|s, y) = 1, regardless
of the action y. Alice will transition to s′ = (Qmax, τmax,Θ),
initializing the amount of data and maximum time required for
a new transmission in the next time slot. If Qr = 0, we obtain:{

V 0(0, 1, 0) = ν + βV (Qmax, τmax, 0), for y = 0,

V 1(0, 1, 0) = βV (Qmax, τmax, 0), for y = 1.
(75)

Consequently, the Whittle index as in (39) is given by
ν(0, 1, 0) = 0. If Qr > 0, Θ = 1, we find :

V 0(Qr, 1, 1) = ν + ρ′2 + βV (Qmax, τmax, 0),

for y = 0,

V 1(Qr, 1, 1) = ωr − (1− ω)ρ′1 + βV ((Qmax, τmax, 0),

for y = 1.
(76)

Hence, the Whittle index is ν(Qr, 1, 1) = ωr−(1−ω)ρ′1−ρ′2.
Furthermore, when Qr > 0, Θ = 0, we have:

V 0(Qr, 1, 0) = ν + ρ2 + βV (Qmax, τmax, 0),

for y = 0,

V 1(Qr, 1, 0) = ωr − (1− ω)ρ1 + βV (Qmax, τmax, 0),

for y = 1.
(77)

Thus, the Whittle index becomes ν(Qr, 1, 0) = ωr − (1 −
ω)ρ1 − ρ2.
2) When τr > 1 and Qr = 0, irrespective of the action y,
the transition probability is p(s′|s, y) = 1 leading to the state
s′ = (0, τr − 1, 0), we obtain:{

V 0 (0, τr, 0) = ν + βV (0, τr − 1, 0) , for y = 0,

V 1 (0, τr, 0) = βV (0, τr − 1, 0) , for y = 1.
(78)

Consequently, the Whittle index is ν (0, τr, 0) = 0. If Qr > 0,
Θ = 1, and y = 0, the transition probability is p(s′|s, y) = 1
and the next state is s′ = (Qr, τr − 1, 1). The expected reward
in this state is:

V 0(Qr, τr, 1) = ν + ρ′2 + βV (Qr, τr − 1, 1) (79)

On the other hand, for y = 1, the user transitions to state
s′ = (Qr −Qi, τr − 1, 0) with probability ω, and to state s′ =
(Qr, τr − 1, 1) with probability 1− ω. Therefore, we have:

V 1(Qr, τr, 1) =

ωr − (1− ω)ρ′1 + βωV (Qr −Qi, τr − 1, 0) + β(1− ω)V (Qr, τr − 1, 1)
(80)

Similarly, when Qr > 0, Θ = 0, and y = 0, the transition
probability is p(s′|s, y) = 1, leading to the state s′ =
(Qr, τr − 1, 0). The expected reward in this state is:

V 0(Qr, τr, 0) = ν + ρ2 + βV (Qr, τr − 1, 0) (81)

Furthermore, for y = 1, the user transitions to state s′ =
(Qr −Qi, τr − 1, 0) with probability ω, and to state s′ =
(Qr, τr − 1, 1) with probability 1− ω. Hence, we obtain:

V 1(Qr, τr, 0) =

ωr − (1− ω)ρ1 + βωV (Qr −Qi, τr − 1, 0) + β(1− ω)V (Qr, τr − 1, 1)

(82)
Subsequently, we will analyze the indexability when τr > 1.
We establish the following formulas:
1) For τr > 1, Qr > 0 and Θ = 1,

h(Qr, τr, 1) = V 0(Qr, τr, 1)− V 1(Qr, τr, 1)

= ν − ωr + (1− ω)c
′

1 + c
′

2 + βωf2(τr − 1)
(83)
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2) For τr > 1, Qr > 0 and Θ = 0,

g(Qr, τr, 0) = V 0(Qr, τr, 0)− V 1(Qr, τr, 0)

= (ν + c2 − ωr + (1− ω)c1) + βf1(τr − 1) + βωf2(τr − 1)
(84)

where we define the following:

f1(τr − 1) = V (Qr, τr − 1, 0)− V (Qr, τr − 1, 1) (85)

f2(τr − 1) = V (Qr, τr − 1, 1)− V (Qr −Qi, τr − 1, 0) (86)

Taking the derivative of h(Qr, τr, 1) and g(Qr, τr, 0) with
respect to ν, we obtain:

∂h(Qr, τr, 1)

∂ν
= 1 + βω

∂f2(τr − 1)

∂ν
(87)

∂g(Qr, τr, 0)

∂ν
= 1 + β

∂f1(τr − 1)

∂ν
+ βω

∂f2(τr − 1)

∂ν
(88)

We need to prove min{∂f1(τr−1)
∂ν } ≥ 0 for the condition

min{∂f1(τr−1)
∂ν }+ ω ∗min{∂f2(τr−1)

∂ν } ≥ − 1
β .

f1(τr) =

(1− ω)(c
′

1 − c1); if ν < 0

ωr − (1− ω)c1 − c
′

2 − ν − βωf2(τr − 1);

if 0 ≤ ν < ν(Qr, τr, 0)

c2 − c
′

2 + βf1(τr − 1);

if ν ≥ ν(Qr, τr, 0)

(89)

Thus, the partial derivative of f1(τr − 1) is

∂f1(τr − 1)

∂ν
=

0; if ν < 0

−1− βω ∂f2(τr−2)
∂ν ; if 0 ≤ ν < ν(Q, τr, 0)

β ∂f1(τr−2)
∂ν ; if ν ≥ ν(Q, τr, 0)

(90)

We know that 1 − β + (1 − β)βω ∂f2(τr−1)
∂ν = 0, thus

∂g(Q,τr,0)
∂ν = 1+β ∂f1(τr−1)

∂ν +βω ∂f2(τr−1)
∂ν ≥ 0 and therefore

∂g(Q,τr,0)
∂ν ≥ 0.

For 0 < β < 1; 0 < ω < 1, − 1
βω < −1, we have the following

for ∂f2(τr−1)
∂ν :

f2(τr) =

(1− ω)(c1 − c
′

1); if ν < 0

ωr − (1− ω)c
′

1 − c2 − ν + β(1− ω)f2(τr − 1);

if 0 ≤ ν < ν(Qr, τr, 1)

c
′

2 − c2 + βf2(τr − 1);

if ν ≥ ν(Qr, τr, 1)
(91)

Thus, the partial derivative of f2(τr − 1) is

∂f2(τ − 1)

∂ν
=

0; if ν < 0

−1 + β(1− ω)∂f2(τ−2)
∂ν ; if 0 ≤ ν < ν(Q, τ, 1)

β ∂f2(τ−2)
∂ν ; if ν ≥ ν(Q, τ, 1)

(92)
From this, −1 + β(1 − ω)∂f2(τr−2)

∂ν > −1 and thus,
∂h(Qr,τr,0)

∂ν ≥ 0. Hence, we can conclude the indexability in
the state (Qr, τr,Θ) where Qr > 0 and τr > 1.


