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tart with ordinary Euclidean space. Be a realist about points, and about S distances between points. I ask: how are the points interwoven to form 
the fabric of space? Are there direct ties only between “neighboring points,” 
so that points at a distance are connected only indirectly through series of such 
direct ties? Or are there also direct ties between distant points, so that the fabric 
is reinforced, as it were, by irreducibly global spatial relations? To fix ideas, 
roughly, try the following thought experiment. Take a scissors and cut along 
some plane in space, severing the points just to one side of the plane from the 
points just to the other. Does space thereby fall into two disconnected pieces, 
so that points on one side now stand at no spatial distance from points on the 
other? Or does space, being reinforced, retain its shape? 

If space is maximally reinforced by direct ties of distance, then a distance 
relation, such as being rwentyfeetfrorn, is intrinsic to the points that stand in 
it. Whether or not the relation holds depends solely upon the intrinsic nature of 
the two points, and of the composite of the points. On the other hand, if space 
is not maximally reinforced by direct ties of distance, then a distance relation 
will not in general be intrinsic to the points that stand in it, and its holding 
may depend in part upon features of the surrounding space. What features? To 
fix ideas, roughly, try the following thought experiment. Start with two points, 
say, twenty feet apart, and remove some of the space directly between the two 
points. (I do not mean just the matter or energy occupying the space; I mean 
the space itself.) I ask: now how far apart are the points? Are they still twenty 
feet apart, on the grounds that distance, being intrinsic, is indifferent to changes 
in the intervening space? Or are they now less than twenty feet apart, on the 
grounds that there is now less space between them? Or are they now more 
than twenty feet apart, on the grounds that the shortest (continuous) path from 
one to the other is now more than twenty feet long? We have three competing 
answers, each, I think, with some intuitive appeal. Which is correct? And how 
can we tell? 

27 I 
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The situation is familiar. We start with some notion from ordinary 
language or thought-in this case, the notion of distance (but compare the 
notions of person, cause, law, matter). We notice that there are different criteria 
associated with the notion, depending upon the context of application or of 
thought. But given the presuppositions under which the ordinary notion has 
evolved-in this case, presuppositions about the Euclidean nature of space- 
the different criteria fit together as well as you please. Then, driven perhaps by 
science, by mathematics, or by analytic philosophy, we consider extraordinary 
physical or logical possibilities that violate the presuppositions-for example, 
space with a “hole”-and the different criteria are seen to come apart. We are 
left with a plurality of competing conceptions, typically none of which captures 
all that was thought to be essential to the original ordinary notion. The question 
then arises: which conception should we accept? 

It would be wrong in general to expect a univocal answer. Competing 
conceptions may be evaluated along at least three different dimensions. One can 
ask: which conception best corresponds to the ordinary notion with which we 
began? One can ask: which conception is mathematically, or philosophically, 
more fruitful, say, by leading to more interesting and powerful generalizations. 
Or one can ask which conception has application at the actual world according 
to our best physical, or perhaps philosophical, theories? 

In this paper, I evaluate various conceptions of distance. There are clear 
losers, but no clear winner, no conception that dominates the score on all 
dimensions of evaluation. I recommend pluralism: different conceptions can 
peacefully coexist as long as each holds sway over a distinct region of logical 
space. But when one asks which conception holds sway at the actual world, one 
conception stands out. It is the conception of distance embodied in differential 
geometry, the conception that underlies modern treatments of physical space 
(and spacetime) based upon Einstein’s general relativity. On this conception, 
all facts about distance are analyzed in terms of “local” facts about distances 
between “neighboring points.” Putting quantum mysteries to one side, I would 
say that this “local” conception gives the best account of distance at the actual 
world.’ But there is a problem: the “local” conception, notwithstanding its 
mathematical and physical credentials, appears metaphysically suspicious. In 
the final section, I try to give the “local” conception a sound metaphysi- 
cal footing. 

A word of caution. My question whether distance relations are intrinsic to 
pairs of points should not be confused with the oft-discussed question whether 
“space has an intrinsic metric.’’ Reichenbach, Griinbaum, and many others 
held that facts about the congruence of intervals of space are imposed from the 
outside, as it were, by our conventions for interpreting the behavior of material 
rods or rays. Without these conventions, they held, there are no facts about 
congruence; with different conventions, there are different such facts. I simply 
reject this here. The question here is not whether to be a metrical realist or 
conventionalist, but rather, assuming realism, what sort of realist to be.2 
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I 

I need some preliminary notions and assumptions. I will speak of possible 
worlds. In this paper, I restrict attention to worlds at which space exists, at 
which space is composed entirely of points, and at which there are determinate 
facts about the distance, say in feet, between pairs of points. For these worlds, 
both intraworld and transworld comparisons of distanceare meaningful. For the 
most part, I also restrict attention to Newtonian worlds, worlds at which there 
are determinate facts about the “identity over time” of points of space, and at 
which distances between points do not change over time. Newtonian worlds 
need not have Euclidean space. I assume that a variety of spatial structures 
will be exhibited at Newtonian worlds: curved and flat, finite and infinite, 
with and without boundaries, continuous and discrete.3 Although I speak for 
simplicity primarily of spatial distance in Newtonian worlds, what I say applies 
more generally, mutatis mutandis, to temporal duration, and to intervals of 
spacetime in relativistic worlds. In section VI, the focus will switch from space 
to spacetime. 

It is a matter of indifference whether one speaks of a distance function 
assigning non-negative reals to pairs of points, or of a multitude of distance 
relations, one for each non-negative real; I will speak of distance relations. I 
assume that the distance relations satisfy, at each Newtonian world, the usual 
constraints. Write ‘Dr(p,q)’ for ‘p is T feet from 9.’ Let ‘T ’ ,  ‘s’, and ‘t’ 
range over non-negative reals.4 Then, for any world, for any points p, q, and 
r at the world: 

(DO) Dr(p, q), for exactly one T .  

(D1) D,(p, q), iff Dr(q,  p). for all T .  

(D2) Do(P, q). iff P = 9. 
(D3) If Dr(p, q), and D,(q, r) and Dt(p, r), then I! 5 T + s, for all 

I will freely apply mereology to points of space. Whenever there are some 
points, there is a uniquefusion of those points. In particular, any pair of points, 
p and q, has a unique fusion, p + q. Whenever X is a proper part of Y ,  there 
is a unique difference, Y - X ,  which is the fusion of the parts of Y that do not 
overlap X. Space at a Newtonian world is the fusion of all the points of space 
existing at the world. I stay neutral as to whether a Newtonian world contains, 
in addition to the parts of space, entities that occupy those parts. If not, then 
the properties and relations ordinarily attributed to the “occupants” of parts of 
space must be attributed directly to the parts of space themselves. I assume 
that the spaces of distinct worlds do not overlap, that no point inhabits more 
than one world. Modal assertions that are de re points or regions of space must 
therefore be interpreted with respect to an appropriate counterpart r e l a t i ~ n . ~  

I assume that there are certain primitive or fundamental properties and 
relations, the holding or failing to hold of which suffices to determine, at any 
world, all the qualitative facts at that world. In particular, there are primitive or 

T ,  s, and t .  
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fundamental spatial properties and relations which suffice to determine, at any 
world, all the facts about distance. Whether or not the distance relations are 
themselves among the primitives is a question soon to be addressed. 1 will call 
the primitive or fundamental properties and relations p e ~ e c t l y  natural proper- 
ties and relations.6 I assume that the part-whole relation is perfectly natural. 

I will need to speak of worlds or parts of worlds being (intrinsic) 
duplicates of one another. I define ‘duplicate’ in terms of perfectly natural 
properties and relations:7 for all X and Y, X and Y are duplicates iff there 
is a one-one correspondence between the parts of X and the parts of Y that 
preserves all perfectly natural properties and relations. (Remember: everything 
is a part of itself.) I call any such correspondence establishing that X and Y 
are duplicates an (X,Y)-counterpart relation; to each part 2 of X ,  it assigns a 
unique part W of Y to be its (X,Y)-counterpart. (I drop the prefix when context 
allows.) Note that, for any (X,Y)-counterpart relation, (X,Y)-counterparts are 
duplicates of one another. However, duplicate parts of X and Y will not 
be (X,Y)-counterparts, for any (X,Y)-counterpart relation, unless they are 
similarly related to the other parts of X and Y. Note also that, since there will 
in general be more than one (X,Y)-counterpart relation, a part 2 of X and a 
part W of Y may be (X,Y)-counterparts relative to some (X,Y)-counterpart 
relations, but not others. Nonetheless, in presenting examples I will leave the 
relation unspecified, and say simply that 2 and W are (X,Y)-counterparts. 
That will not lead to trouble because what I say will hold true for an arbitrarily 
chosen (X,Y)-counterpart relation, assuming, of course, that a single such 
relation is held fixed throughout the example. 

I turn now to the notion of an intrinsic property or relation. Intuitively, a 
property is intrinsic just in case whether it holds of an object depends only 
upon the way the object is in itself. Let us take the way an object is in 
itself-its intrinsic nature-to be given by the disposition of perfectly natural 
properties and relations among the object and its parts. Then we have, in terms 
of duplicates: A property P is an intrinsic nature iff P is had by all and only 
the duplicates of X ,  for some X. And, since an intrinsic property of an object 
is one that depends only upon the object’s intrinsic nature, we have: A property 
P is intrinsic iff, for all X and Y, if X and Y are duplicates, then X has P 
iff Y has P. Note that, o n  this notion of intrinsic, an object’s haecceiry-the 
property of being that object-is not one of the object’s intrinsic properties, 
since it is not shared by the object’s duplicates. 

The notion of intrinsic can be extended to relations in a natural way. Let 
us say that a (dyadic) relation is intrinsic just in case whether or not it holds 
of a pair (XI ,  X2) depends only upon the intrinsic natures of X I ,  X2, and 
the fusion XI + X2. Then, we have in terms of duplicates: A (dyadic) relation 
R is intrinsic iff, for all X, XI, X2, Y, Y1, Yz, if X and Y are duplicates, 
X = XI + X2, Y = YI + Y2, XI a counterpart of YI, and X2 a counterpart 
of Yz, then R holds of (XI,  X2) iff R holds of (YI, Y2).8 (Similarly for 
relations of three or more places.) If a property or relation is not intrinsic, 
it is extrinsic. Note that it follows immediately from the definitions that the 
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perfectly natural properties and relations are themselves intrinsic. No surprise: 
the assumption was built into the definitions from the start.9 

Finally, I will need two modest assumptions about the plenitude of 
possible worlds. One, a principle of recombination for points, I will introduce 
when I need it in section VII. The other is this: for any part of the space of a 
Newtonian world, there is a Newtonian world whose entire space is a duplicate 
of that part. Actually, I only apply this assumption to rather ordinary parts of a 
three-dimensional Euclidean space. To illustrate: start with an ordinary world 
satisfying the laws of Newtonian mechanics. The principle posits a world just 
like it except for a “hole” in space. At this world, conservation laws fail in 
the vicinity of the “hole”. Objects entering the “hole” simply vanish; objects 
emerging from the “hole” appear out of nowhere. Bizarre, indeed. But logically 
impossible? Contemplate that as you drift towards the black hole at the center 
of the Milky Way! 

I1 

I now present a multiple-choice exam. I invite the reader to try it. The 
questions involve precisely formulated variations on the thought experiments 
from the introduction. The original formulations were unsatisfactory. They 
were naturally understood to involve de re counterfactuals-e.g., if some of 
the space between two points were removed, those points would be closer 
together. The interpretation of such counterfactuals is not fixed once and 
for all: different contexts may favor different comparative similarity relations 
on worlds, and different counterpart relations on points.10 I had a particular 
interpretation in mind; only when so interpreted do responses to the thought 
experiments have the intended metaphysical consequences. Therefore, to rule 
out unintended interpretations, I bypass the counterfactual formulations of 
the thought experiments and speak directly in terms of possibilia. (Once the 
intended interpretation is well established, I will allow myself to slip back into 
the counterfactual mode.) 

DISTANCE EXAM 

Purr I: Removing Space. Consider a world with a three-dimensional Euclidean 
space, E. Let p and q be points of E twenty feet apart. Let Xi (for i from 
1 to 5 )  be a part of E that includes p and q. Consider a world whose entire 
space Y,  is a duplicate of Xi. Let p’ and q’ in Y,  be counterparts of p and q 
in Xi, respectively. 

(1) X I  is E - A, where A is an open” infinite slab bounded by two parallel 
planes, ten feet wide, centered on and perpendicular to the line segment 
connecting p and q. (See figure 1.) How far apart are p’ and q’ in YI? 
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(a) Twenty feet apart. 

(b) They stand in no 
distance relation. 

(c) Ten feet apart. 
mQ 1: CROSS-SECTION OCYi 

(2) Xz is E - B, where B is an open sphere, ten feet in diameter, centered 
on the point midway between p and q. (See figure 2.) How far apart are 
p’ and q’ in yZ? 

(a) Twenty feet apart. I’ S& 

(b) 1 0 6  + 57r/3 feet apart. 
(Greater than twenty feet!) 

flO 2: CROSSSECTION OF Vz 

(c) Ten feet apart. 

(3) X3 is E - C, where C is an open right circular cone with height and 
radius each ten feet, with vertex on the point midway between p and q, 
and with axis perpendicular to the line segment connecting p and q. (See 
figure 3.) How far apart are p’ and q’ in Y3? 

(a) Twenty feet apart. 

(b) Twenty feet apart. 

(c) 1 0 4  feet apart. 
1: C R O S S E m O N  OC Ys (Less than twenty feet!) 

(4) X4 is the surface of a sphere with diameter twenty feet and with p and q 
at opposite poles. How far apart are p’ and q‘ in Y4? 

(a) Twenty feet apart. 

(b) 1 0 ~  feet apart. 
(Half the sphere’s 
circumference.) 

(c) Zero feet apart. 

(5) X5 is an infinite wavy plane whose hills and valleys are an alternating 
series of infinite half cylinders of diameter ten feet, with p and q on adjacent 
summits. (See figure 4.) How far apart are p’ and q’ in Ys? ‘ 
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(a) Twenty feet apart. 

(b) 1 0 ~  feet apart. 
(A quarter of the cylinder’s 
circumference, quadrupled.) 

I: CROSS-SECllON OF Vs (c) Zero feet apart. 

Part II: Adding Space. Consider a world with a two-dimensional space, Xi (i = 
6 or 7). Let p and q be points of Xi twenty feet apart. Consider a second 
world with a three-dimensional Euclidean space, E ,  and a part Yi of E that 
is a duplicate of Xi. Let p’ and q’ in Y, be counterparts of p and q in Xi 
respectively. 

(6)  Xs is the surface of a sphere with circumference eighty feet. How far apart 
are p and q’ in Ys? 

(a) Twenty feet apart. 

(b) 4 0 m  feet apart. 
(Length of chord subtending 
a quarter of a great circle.) 

(7)  X7 is a Euclidean plane. How far apart are p’ and q’ in Y7? 

(a) Twenty feet apart. 

(b) Could be any distance d ,  0 < d < 20 feet, 
depending upon the nature of E and 
the choice of Y 7 .  

I11 

Now for the answers. Unfortunately, no one answer key will do. Different 
conceptions of distance answer the questions differently. Consider first the con- 
ception according to which distance relations are intrinsic to the pairs of points 
that stand in them. Call this the intrinsic conception of distance. (Presumably- 
though nothing rests on it-distance relations are not only intrinsic on this 
conception, but perfectly natural; for what other intrinsic features of the two 
points or their fusion could suffice to determine the distance between them?) 
On the intrinsic conception of distance, if points p and q are twenty feet apart, 
and p’, q’, and p’+q’ are duplicates of p, q, and p + q, respectively, then p 
and q’ are twenty feet apart. Now, for all seven questions, p’, q’ and p’ + q’ are 
counterparts of p, q, and p + q. respectively; and counterparts are duplicates; 
so, on the intrinsic conception, the answer seven times over is: (a) twenty 
feet. “Additions to” and “removals from” the space surrounding two points are 
nowise relevant to the distance between them.’* 
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Central to the intrinsic conception is the notion of congruence, generalized 
to apply to parts of space perhaps from different worlds: X is congruent to Y 
iff there is a one-one correspondence between the points of X and the points 
of Y that preserves all distance relations. On the intrinsic conception, duplicate 
parts of space are congruent. I assume the intrinsic conception accepts a partial 
converse as well: congruent parts of space are spatial duplicates, that is, they 
agree with respect to all their intrinsic spatial properties.13 Thus, on the intrinsic 
conception, congruence serves to delimit the border between the intrinsic and 
the extrinsic. 

The mathematical embodiment of the intrinsic conception is the abstract 
structure of a metric space. A metric space consists of a non-empty universe 
of points together with a family of distance relations (or a single distance 
function-it matters not) satisfying the axioms for distance listed above. The 
distance relations are taken as primitive, and other features of space--e.g., 
topological features-are defined in terms of the distance relations. The notion 
of a metric space is mathematically simple, yet extremely general: it encom- 
passes spaces that are curved, flat, continuous, discrete, and all manner of 
hybrids there0f.1~ Since the distance axioms all quantify only universally over 
points, any part of a metric space, and so any duplicate of that part, is itself a 
metric space. That ensures that one may speak without impropriety of distances 
between points in the spaces Yl through Y7. 

Now consider a second conception of distance: the distance between two 
points of a space is given by the length of the (or a) shortest continuous path 
through space from one of the points to the other. (More exactly: the greatest 
lower bound of the lengths of continuous paths from one to the other, since in 
general there need be no least length; but I henceforth ignore this complication.) 
Call this the Gaussian conception of distance. The paths through space are 
themselves parts of space, fusions of points.15 On the Gaussian conception, the 
assignment of lengths to paths is prior to the assignment of distances to pairs of 
points. The Gaussian characterization of distance may have an air of circularity 
about it; but the air is only apparent. One metrical notion-distance between 
points-is defined in terms of another metrical notion-length of paths. There 
is no attempt to analyze away all metrical notions. Later we shall ask how 
length of path can itself be analyzed; and then, of course, we shall have to be 
careful not to close the circle. 

On the Gaussian conception, I suppose, the length of a path through space 
is an intrinsic property of that path. However, the distance between two points 
turns out not to be an intrinsic relation of those points. If some of the space 
surrounding two points is “removed,” some or all of the paths connecting those 
points may no longer exist, and the length of the shortest remaining path-the 
new distance between the points-may be greater than it was, or not defined. 
If the space surrounding two points is embedded in a larger space, new paths 
connecting the points may come into existence, and the length of the shortest 
connecting path-the new distance between the points-may be less than i t  
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was. In short: the distance between two points does not depend solely upon the 
intrinsic nature of the fusion of the two points. 

To illustrate, turn to the exam. The Gaussian conception answers (b) seven 
times over. In question (l) ,  none of the paths connecting p and q in E have 
counterparts in Y1. Thus no path in YI connects p’ with q’, and the distance 
between them is undefined (equivalently, 00, given our convention). Yl is 
composed of two “island universes” with p’ and q’ inhabiting different islands.16 
In question (2), the straight-line path from p to q in E has no counterpart in 
Yz. The shortest path from p’ to q‘ in Y2 is one that follows a tangent from p’ 
to the edge of the hole, hugs the hole for a sixth of a turn, and then follows a 
tangent back to 9’. (See figure 2.) Hence, the answer: l O a +  5 ~ / 3  feet apart. 
In question (3), the straight-line path from p to q in E has a counterpart in Y3, 
so the distance between p’ and q’ in Y3 is the same as the distance between p 
and q in E: twenty feet. In question (4), the shortest path connecting p’ and 
q’ in is half a great circle. In question (3, the shortest path connecting p’ 
and q’ in YS slides down a quarter circle hill, around a half circle valley, and 
then up another quarter circle hill. (See figure 4.) In either case, the shortest 
path between p‘ and q’ is a counterpart, not of the straight-line shortest path 
between p and q in E ,  but of a longer, more circuitous path between p and q 
whose length is given by the answer (b). I consider questions (6 )  and (7) below. 

Central to the Gaussian conception is the notion of an isometry between 
parts of space: X and Y are isometric iff there is a one-one correspondence 
between the points of X and the points of Y that (when extended to fusions 
of points) preserves lengths of paths. (More exactly, the image of a path with 
endpoints p and q is a path of the same length with endpoints the image 
of p and the image of q.) Since Gaussian distance is defined in terms of 
lengths of paths, isometries preserve Gaussian distance as well. Duplicate parts 
of space are isometric, since the length of a path is intrinsic. With that the 
intrinsic conception can agree. But the Gaussian conception accepts, whereas 
the intrinsic conception must deny, the partial converse: isometric parts of space 
are spatial duplicates, and thus agree with respect to all their intrinsic spatial 
properties. On the Gaussian conception, isometries delimit the border between 
the intrinsic and the extrinsic: spatial properties are intrinsic just in case they 
are preserved by isometries, just in case they are isometric invariants. 

To illustrate the difference between congruence and isometry, consider 
a “flat” plane F and a “wavy” plane W (such as X5), each embedded in a 
three-dimensional Euclidean space E.  F and W are not congruent, since no 
one-one correspondence between F and W can preserve the distances among 
four points of W not co-planar in E. Therefore, on the intrinsic conception, F 
and W are not spatial duplicates. However, F and W are isometric. Intuitively, 
this is because something flat, such as a piece of paper, can be made to wave 
without stretching or tearing, and thus without changing the lengths of any 
paths confined to its surface. Thus, on the Gaussian conception, F and W are 
spatial duplicates, and agree with respect to all their intrinsic spatial properties. 
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Let us now see how the Gaussian conception answers questions (6) and 
(7). For question (6), the Gaussian reasons: x6 and Y6 are duplicates; therefore 
isometric. The only parts of E isometric to x6 are themselves Surfaces of 
spheres with circumference eighty feet.” Therefore Y6 is one such. Since the 
shortest path between two points on the surface of a sphere is part of a great 
circle, and p and q are twenty feet apart, p and q are connected by a quarter 
great circle in x6. By the isometry, p’ and q‘ are connected by a quarter great 
circle in Ye. The distance, then, between p’ and q‘ in Yer and so in E ,  is 
the length of a “wormhole” through the interior of the sphere; namely, the 
length of the chord that subtends the quarter great circle connecting p‘ and q’. 
This length, which is less than twenty feet, is given by answer (b): 4 0 m  
feet apart.’* For question (7). the Gaussian reasons: X7 and Y7 are duplicates; 
therefore isometric. Since E contains both flat planes and wavy planes that are 
isometric to X7, Y7 may be either wavy or flat. If Y7 is a wavy plane, then p‘ 
and q’ are closer together in Y7 (and E) than p and q are in X7: p’ and q’ 
are connected by a (straight-line) “wormhole” in E. How close together? The 
distance between p’ and q’ is just the length of the (straight-line) “wormhole,” 
which may have any value in feet greater than zero and less than twenty, 
depending upon the “wavelength” of Y7. Thus, the Gaussian answers (b) to 
question (7). 

The Gaussian conception of distance finds mathematical expression in the 
development of differential geometry. Here is how the conception is typically 
motivated.19 Start with a two-dimensional surface X embedded in a three- 
dimensional Euclidean space E. Ask: what geometrical features of the surface 
X could be ascertained by two-dimensional geometers whose measurements 
were entirely confined to X? These features comprise X ’ s  “intrinsic geometry.” 
The length of a path confined to X can be ascertained to any specified degree 
of accuracy by placing sufficiently small measuring rods end to end along the 
path; so lengths of paths are intrinsic. to X. Moreover, features that depend 
only upon lengths of paths-the isometric invariants+ould all be ascertained 
by the geometers, and so are intrinsic to X; this includes, most famously, the 
Gaussian curvature at a point. But the true Euclidean distances between points 
of X are not intrinsic to X: they cannot be ascertained without “leaving the 
surface.” The geometers do, however, have an intrinsic substitute for distance 
between points: distance-within-X, that is, the length of a shortest path in X 
between the points. Indeed, if the geometers (wrongly) take X to be all of space, 
they will (wrongly!) take distance-within-X to be the true distance.20 The next 
step is to do away with the embedding space E, to consider a surface Y 
intrinsically just like X, but not embedded in any larger space. For this surface 
Y, the intrinsic geometry is all there is to geometry, and distance-within-Y 
is all there is to distance. The final step generalizes the Gaussian conception 
to apply to surfaces not embeddable within Euclidean space, and to spaces of 
dimension greater than two. In particular, since Euclidean distances are identical 
with distances-within-E, the Gaussian conception applies to E as well. 
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I will attempt to evaluate the motivation that underlies the Gaussian 
conception in section V. First I want to consider a third conception of distance. 
It is not, in my view, a serious contender. But I dare not ignore it: the most 
popular answer by far to question (1) is neither (a) nor (b), but (c). Call it 
the naive conception. The leading idea is this: the distance between two points 
should be a measure of the amount of space between the points; but, unlike 
the Gaussian conception, the amount of space between two points need not be 
identified with the length of any continuous path. Indeed, although the naive 
conception agrees with the Gaussian conception that distance relations are not 
intrinsic, the dependence of distance on the surrounding space is reversed. 
On the naive conception, if space is “removed” from between two points, the 
points will then be closer together; if space is “added” between two points, 
the points will then be farther apart. How might the amount of space between 
two points be measured so as to capture these naive intuitions? 

Version 1. Many who answer (c) to question (1) have in mind closing 
up the gap left by the missing slab, and “stitching” the two remaining parts 
of Yl back together. The amount of space between p’ and q’ in Yl is then 
the length of the straight-line path in the stitched-up space. But that won’t do. 
For one thing, on topological grounds the stitching cannot be seamless. One 
cannot avoid the seam by identifying boundary points on opposite sides of 
the gap; for that would violate the supposition that X1 and Yl are duplicates 
(assuming the topological property being connected is intrinsic, and so must be 
shared by duplicates). But a seam composed of distinct, co-present boundary 
points would violate the distance axiom (D2) requiring that distinct points be 
some positive distance apart. How bad is that? Perhaps violations of (D2), if 
restricted to boundary points, could be tolerated on the grounds that boundary 
points may in effect be contiguous, and thus no distance apart.2’ In any case, 
the stitching idea does not generalize. Depending upon the shape of the part of 
space removed, the stitching might be done in any number of ways, the choice 
among which is arbitrary; indeed, this is so for Y2 through Ys. Thus, version 
1 cannot in general provide determinate answers to questions about distance. 
We need another idea. 

There are, however, ways to make the naive conception more precise; I 
will consider the two most promising. For each, I assume that the length of a 
path is an intrinsic property of that path; and I will speak of “disconnected 
paths,” whose lengths (when defined) are the sum of the lengths of their 
connected parts. Version 2. Determine the distance between p’ and q’ in Y,  
(i from 1 to 5 )  as follows: start with the straight-line path in E connecting p 
and q; take the part of this path, perhaps disconnected, that overlaps Xi; then 
take as answer the length of this perhaps disconnected path (equivalently, of its 
counterpart in Y,). When applied to questions (1) and (2), the result is answer 
(c): ten feet apart. But consider question (3). On version 2, the answer would 
be twenty feet, in agreement with the intrinsic and Gaussian conceptions. But 
someone who holds the naive conception could say that p’ and q’ are closer 
together in Y3 than p and q are in E.  They could take the amount of space 
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between p’ and q‘ to be the amount of space between p‘ and the cone-shaped 
hole plus the amount of space between the cone-shaped hole and 9’. (See figure 
3.) This illustrates version 3. Determine the distance between p‘ and q’ in Y, 
as follows: start with all the (continuous) paths in E connecting p and q; for 
each such path, take the perhaps disconnected part of the path that overlaps 
Xi; then take as answer the least of the lengths of these perhaps disconnected 
paths (or, equivalently, of their counterparts in yZ). (More generally, take the 
greatest lower bound of the lengths.) When applied to question (3), version 3 
gives the answer (c): 1 0 4  feet apart. 

In the cases considered, either version 2 or 3 may appear to give plausible 
answers. But trouble looms for both. First, note that on either version distinct 
boundary points of a space may be zero feet apart in violation of axiom (D2). 
For example, two points on opposite “shores” in Yl,  or two points on the edge 
of the “hole” in Y2. Perhaps, as noted above, that is tolerable. But now look 
more closely at how version 2 applies to Y2. Since boundary points r’ and s’ 
in Y2 are zero feet apart (see figure 2), we have D5(p‘, r’), Do(r‘, s‘), and 
D5+(p’, s’) in violation of the triangle inequality (D3). Not so tolerable. No 
family of relations that violates the triangle inequality deserves to be called a 
family of distance relations. 

That leaves version 3. Version 3 satisfies the triangle inequality, in much 
the same way as the Gaussian conception, by defining distance as the length of 
a shortest “path” (under an expanded notion of path). Since the shortest “path” 
in Y2 from p’ to s’ goes by way of r’, D5(p’, s’) on version 3. But when 
applied to Y4 and Y5, version 3, and version 2 to boot, fail to give plausible 
answers. Let’s focus upon Y4, the duplicate of the surface of a sphere. On both 
versions 2 and 3, not only p’ and q’, but any two points of Y4 are assigned the 
distance: zero feet apart. That violates axiom (D2) in a big way. It obliterates 
all distinctions of distance, treating Y4 in effect as a “space” with but a single 
point. Moreover, Y4 is a space without boundaries; no path in Y4 abruptly 
comes to an end. Even were one to tolerate violations of (D2) for boundary 
points, I see no comparable grounds for leniency here. I conclude that neither 
version 2 nor version 3 gives acceptable answers to questions about distance 
between points of Y4. 

Could some fourth version of the naive conception answer any differently? 
The distance between p’ and q’ in Y4 must be less than or equal to twenty feet, 
on the naive conception, because space was “removed” from E ;  yet the distance 
must be a measure of the amount of space between p’ and 9‘. How could any 
such distance, other than zero, be singled out over any other? I reject the naive 
conception. 

IV 

That leaves two contenders: the intrinsic and the Gaussian conception. In this 
section, I question the Gaussian demarcation between intrinsic and extrinsic 
spatial properties. First, I ask the Gaussian whether the shape of a thing 
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is intrinsic to that thing. Suppose it is. Consider a wavy plane and a flat 
plane embedded in a three-dimensional Euclidean space. They are isometric; 
therefore they are spatial duplicates, says the Gaussian; therefore, since shapes 
are intrinsic, they have the same shape. That is plainly wrong: one is curved 
and the other is flat! So the Gaussian must deny that shapes are intrinsic. That 
looks bad. We ordinarily take the shape properties to be the very paradigm of 
intrinsic properties, of properties that depend only upon the way something is 
in itself. And we ordinarily would say that two things cannot be duplicates 
of one another unless they have the same shape. It appears that the Gaussian 
conception clashes with our ordinary ways of thinking about shape, and so, 
derivatively, about distance. The intrinsic conception, on the other hand, can 
uphold the intuition that shapes are intrinsic, since the wavy plane and the flat 
plane are not congruent with one another. 

I suppose a Gaussian might respond as follows. Ordinary intuition, rightly 
understood, does not conflict with the Gaussian conception. Our intuitions about 
shape apply only to the objects of our experience, not to mathematical abstrac- 
tions therefrom; and the objects of our experience are three-dimensional and 
Euclidean. Now, for ordinary three-dimensional parts of a three-dimensional 
Euclidean space-spheres, cubes, even paper-thin sheets-the parts are iso- 
metric only if they have the same shape. That allows the Gaussian to hold 
that shapes are “intrinsic” in a restricted sense: for ordinary three-dimensional 
parts of a three-dimensional Euclidean space, duplicate parts always agree in 
shape. And ordinary intuition demands no more. Just as the domain of ordinary 
intuition is restricted to objects of experience, so should the sense in which 
ordinary intuition takes shapes to be intrinsic similarly be restricted. 

This response lacks conviction. The two-dimensional surfaces of three- 
dimensional things, no matter how “abstract” or “ideal,” seem to be objects of 
our intuition no less than the three-dimensional things themselves; and intuition 
pronounces the shapes of the former intrinsic no less than the latter. Nor 
does it much help to note that many two-dimensional surfaces, such as that 
of a sphere or a cube, are rigid, and so are isometric only if they have the 
same shape; for rigidity plays no role in the relevant intuition. The Gaussian 
should concede the clash with ordinary intuition. It no more condemns the 
Gaussian conception than, say, the acceptance of continuous paths through 
space that are nowhere “smooth”-once thought monstrous by intuition- 
condemns the standard mathematical analysis of continuity. Ordinary intuitions 
about matters susceptible to mathematical precision have often been found in 
need of revision. That is a small price to pay for the power and generality 
conferred by mathematics, or for the explanatory and predictive success of 
scientific theories mathematically based. Adherence to ordinary intuition is to 
some extent necessary to keep our bearings; but when mathematics gives us 
clear vision above and beyond, we should not hesitate to change our course. 
Agreement with ordinary intuition, by itself, favors the intrinsic conception 
but little. 
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V 

In this section, the Gaussian takes the offensive. Suppose the geometers of a 
world have access to every part of their space. They have measured the length 
of every path, the area of every surface, the volume of every region. Then, 
says the Gaussian, they have the wherewithal to know all there is to know 
about the structure of their space; there are no spatial facts that are in principle 
inaccessible to geometric measurement. The intrinsic conception, we have seen, 
must disagree. Consider again a world with a two-dimensional space isometric 
to the Euclidean plane. On the intrinsic conception, the space may be “wavy” or 
“flat,” depending upon facts purportedly about “distance”; but these “distance” 
facts are inaccessible to geometric measurement, even assuming the geometers 
have access to every part of their space. 

Now the Gaussian objects: these facts are mysterious. If the two-dimen- 
sional space were embedded in some inaccessible higher-dimensional space, the 
“distance” facts could be understood in terms of inaccessible facts about the 
nature of the embedding. But by assumption there is no such embedding space. 
Rather, the inaccessible “distance” facts reflect the possibilities of embedding, 
what would have been the case, had the space been embedded in some higher- 
dimensional space. But to explain such facts in terms of the possibilities of 
embedding is to reverse the true order of things. What reason could there be, 
then, for taking these facts which are inaccessible to geometric measurement 
to be facts about distance, to be spatial facts? By maintaining that these 
inaccessible facts are facts about distance, the intrinsic conception posits a 
phantom embedding space, the ghost of a departed embedding. 

Note that this argument does not rest upon a positivist premise. The 
Gaussian need not deny that there could be perfectly natural relations between 
points of space-ven relations satisfying the distance axioms-knowledge of 
which is inaccessible to geometers who have access to all parts of space. The 
Gaussian need only deny that such relations could be the distance relations. 

Before attempting to evaluate the argument, I want to examine the as- 
sumption that lies at its heart. It is a supervenience thesis. When stripped of 
colorful talk of tiny geometers, it comes to this: if the spaces of two worlds are 
isometric, then the spaces are congruent as well. In short: distances supervene 
upon lengths of paths22 This assumption needs to be qualified in at least two 
ways. The alleged supervenience is contingent, not logical. 

First, consider worlds with discrete space. In a discrete space, there are no 
continuous paths between points, so no lengths of continuous paths. Therefore, 
any two discrete spaces with the same number of points agree vacuously on 
all lengths of continuous paths. But the spaces need not agree on all distances 
between points, say, by having each point be an island universe all to itself. 
That is one possibility, I suppose. But I also suppose the points of a discrete 
space may stand in various distance relations, as long as the relations satisfy 
the axioms for distance. Indeed, I suppose there could be physical evidence that 
actual space (or spacetime) is discrete, and thus that the actual distance relations 
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are not Gaussian. Since the Gaussian analysis of distance cannot account for 
the variety of possible discrete-more generally, disconnected-spaces, the 
Gaussian assumption must be qualified: distances supervene upon lengths of 
paths, for worlds with continuous space. 

Gaussian supervenience also fails, I think, at some worlds with continuous 
space. Consider worlds with “action at a distance”: worlds at which forces act 
directly from one point to another without being propagated along a continuous 
path connecting the points. At such worlds, distance relations need not be 
Gaussian. For example, consider again Yz, the space with a “hole.” Suppose that 
away from the “hole,” Newtonian laws of motion and of universal gravitation 
have been well confirmed: the force of gravity produces an acceleration that 
varies inversely with the square of the distance. Then, a measurement of 
the acceleration of objects located at p’ and q’ could give evidence against 
the Gaussian conception. Moreover, the “action at a distance” need not be 
instantaneous. Suppose that away from the “hole” it is well confirmed that all 
causal signals travel no greater than the speed of light. Then, a measurement 
of the time it takes signals to travel from p’ to q’ could give evidence against 
the Gaussian conception. The most the Gaussian is entitled to claim is this: 
there could be no evidence against the Gaussian conception at worlds where 
it has been established that all action is local, that is, propagated locally along 
continuous paths. For only in such worlds must evidence for distance relations 
be, ipsofacto, evidence for lengths of paths. 

The Gaussian supervenience thesis thus applies at most to local-action 
worlds, to worlds with continuous space and no action at a distance. The 
Gaussian argument against the intrinsic conception must similarly be limited 
in scope. (The argument erred, in particular, by focusing too narrowly upon 
what would be accessible to geometers, rather than what would be accessi- 
ble to physicists more generally.) It follows that the intrinsic conception of 
distance cannot be jettisoned from logical space. The Gaussian must accede 
to pluralism: at some worlds, distance relations are intrinsic, and presumably 
perfectly natural; at other worlds, distance relations are extrinsic, and subject 
to the Gaussian analysis. Under pluralism, worlds with Euclidean space may 
have either intrinsic or extrinsic distance relations. That points up a flaw in my 
distance exam. The embedding space E was underspecified. Interpreted one 
way, the answer is (a) throughout; interpreted the other way the answer is (b). 
I shall have to give a lot of ‘A’s. 

Pluralism is the best the Gaussian can hope for. Unfortunately, the Gaus- 
sian is not yet in a position to demand his share of logical space. Limiting the 
scope of the Gaussian argument undermines its force altogether. Any world 
at which Gaussian supervenience fails-be it a world with discrete space or 
with action at a distance-is a world with a phantom embedding space, no 
less than a world whose space is a “wavy plane.” The argument began as a 
general indictment of worlds with a phantom embedding space. What remains 
is a specific indictment-based none too clearly on considerations of physical 
evidence-of local-action worlds with a phantom embedding space. But the 
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intrinsic conception is not committed to such worlds. If one takes a local-action 
world with intrinsic distance relations, and one “removes,” say, a sphere from 
its middle, one gets a world with a phantom embedding space all right, but 
the world is no longer a local-action world. I conclude that the Gaussian is 
left without any argument against the intrinsic conception. For the sake of 
uniformity, why not take the intrinsic conception to apply to all worlds with 
distance relations? 

VI 

Here’s why. Our best physical theory of space and time, Einstein’s general 
relativity, is based upon differential geometry, and is Gaussian through and 
through. I suppose general relativity is logically possible, that is, true at some 
possible worlds. At these worlds, distance relations are Gaussian, not intrinsic. 
Moreover, to whatever extent we believe that general relativity is true at the 
actual world, to that extent we should believe that actual distance relations are 
Gaussian. 

Before turning to the treatment of distance in general relativity, we need 
to further develop the Gaussian conception. Thus far, length of path has been 
left unanalyzed. If length of path is taken as primitive, then the Gaussian and 
the intrinsic conception are both global conceptions of distance: both apply 
primitive metrical notions to pluralities of points, in one case to paths, in the 
other to pairs. I now want to develop a local version of the Gaussian conception 
according to which the only primitive metrical notions are local properties of 
points. (I postpone an exact definition of ‘local property’ until the next section.) 
Let us again assume that the points of space have a manifold structure in terms 
of which paths can be characterized as continuous and smooth. Now, assign to 
each point of space a metric tensor g, or ds2, which supplies information about 
distances within an “infinitesimal neighborhood” of the point; call the tensor g at 
a point p the local metric at p.23 Given two points p and q (no matter how “close 
together”), the distance between them is not determined by the local metric at 
p and the local metric at q. But given a path from p to q, the length of that path 
is determined by the local metric at each point along the path: it is the result of 
integrating ds along the path from p to q.24 (In effect, the local metric at a point 
provides a set of “infinitesimal measuring rods,” one for each direction, to be 
used for determining lengths of infinitesimal portions of paths passing through 
the point; integration then corresponds to measuring the length of a path by 
laying (continuum-many !) appropriately directed measuring rods end to end.) 
On the local Gaussian conception, the properties of having such-and-such local 
metric are taken as primitive. These properties then suffice to determine the 
length of any path through space, and so the Gaussian distance between any 
two points. There are no primitive global metrical properties or relations. 

Now, I claim that general relativity is a local Gaussian theory. (Of course, 
here the local metric has Lorentz signature, since it provides information about 
infinitesimal intervals in spacetime, rather than infinitesimal distances in space; 
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the spacetime interval between two points is given by a longest, rather than a 
shortest, path.) A key insight behind general relativity is that all physics takes 
place by local action.25 When applied to gravitation, this leads to Einstein’s field 
equation, the fundamental law of gravitation in general relativity. Einstein’s 
equation-G = 8rT-tells how the local mass-energy density, given by the 
stress-energy tensor T, relates to the local curvature of spacetime, given by the 
Einstein curvature tensor G. (G is analyzable in terms of the metric tensor g.) 
More generally: when the fundamental laws of physics are formulated within 
general relativity, the metrical notions that occur in the laws are all local 
metrical properties, including the metric tensor g. (This contrasts sharply with 
Newtonian physics: according to the fundamental law of gravitation, the force 
of gravity varies inversely as the square of the distance.) Now, I suppose 
that all and only the perfectly natural properties and relations instantiated at 
a law-governed world occur in the fundamental laws of that world. It follows 
that the properties of having such-and-such local metric are perfectly natural 
properties instantiated at general relativistic worlds, and that general relativity, 
as formulated by Einstein, is a local Gaussian theory. 

I do not deny that one could give an empirically equivalent reformulation 
of general relativity in terms of global metrical relations; under specifiable 
conditions, global and local metrical relations are interdefinable with aid of 
the calculus. But that would not show global metrical relations to be perfectly 
natural, any more than, say, a reformulation of the laws of color (if there were 
such laws) in terms of grue and bleen would show grue and bleen to be perfectly 
natural. In general relativity, the local metric at a point is a dynamic object, a 
prime mover: it tells objects at that point how to move. It has the same claim to 
perfect naturalness as the other prime movers, such as the electromagnetic field 
at a point. It would be arbitrary and absurd to hold that some prime movers 
are perfectly natural, but not others. 

It is well known that Einstein’s general relativity eliminates primitive 
action at a distance. I have been arguing what is perhaps less well known, that 
general relativity eliminates primitive “distance at a distance.” The reduction 
of global relations to local properties in general relativity applies to metrical 
relations as well. This has implications for the formulation of philosophically 
interesting supervenience theses. David Lewis has defended the viability of 
Humean supervenience, according to which all facts, other than facts about 
spatiotemporal distance, supervene upon local matters of particular fact. At 
worlds of Humean supervenience: “We have geometry: a system of external 
relations of spatiotemporal distance between points. . . . And at the points we 
have local qualities: perfectly natural intrinsic properties which need nothing 
bigger than a point at which to be instantiated. . . . All else supervenes on 
that.”?6 But have we not just seen that, at least at local Gaussian worlds, even 
the relations of distance between points supervene on local matters of fact? Do 
we have, then, a sweeping elimination of all primitive global notions at local 
Gaussian worlds, a grand supervenience of the global on the local? 



288 PHILLIP BRICKER 

That would be too much to ask. On the local Gaussian conception, global 
distance relations supervene not on local metric alone, but on local metric 
plus manifold structure. Without manifold structure, no integration. Without 
integration, no analysis of global distance relations in terms of local metric. 
Manifold structure is in part topological structure, and topological structure, it is 
easy to see, is irreducibly global. Consider a two-dimensional Euclidean plane 
and (the surface of) an infinite cylinder. They are locally indistinguishable: 
each consists of continuum-many points that are locally Euclidean. But the 
plane and the cylinder differ topologically. For example, the plane, but not the 
cylinder, is simply connected: all closed paths can be continuously contracted 
to a point. Just as there are irreducibly global topological features of space, so 
also of spacetime at relativistic worlds. 

Thus, general relativity suggests no grand supervenience of everything 
on local matters of particular fact; it suggests something more modest. Call 
it Einsteinian supervenience. At worlds of Einsteinian supervenience: we have 
a manifold of spacetime points (with topological and differential structure), 
and a distribution of perfectly natural local properties (including local metrical 
properties) over those points; all else supervenes on that. Of course, Einsteinian 
supervenience, like its Humean cousin, is philosophically controversial. I here 
claim only that it is the right supervenience thesis to consider at general 
relativistic worlds. Under pluralism, Einsteinian and Humean supervenience are 
not in conflict. Each holds contingently, and governs its own region of logical 
space. These regions differ with respect to the instantiation of perfectly natural 
spatiotemporal relations of distance. Given the success of general relativity, I 
suspect we are nearer to, if not within, the region of Einsteinian supervenience. 

VII 

I have argued that modern physics of spacetime is based upon a local Gaussian 
conception of (spatiotemporal) distance. In this final section, I ask whether 
the local Gaussian conception is metaphysically suspect. I claim that the local 
metric at a point, as standardly conceived, is not an intrinsic property of the 
point.27 Thus, the local Gaussian appears to be committed to perfectly natu- 
ral, extrinsic properties. That would introduce necessary connections between 
distinct co-inhabitants of local Gaussian worlds, namely, between points and 
their surrounding space; it would violate a modal “principle of recombination” 
that I, for one, would be loath to give up. I take this as a challenge not to 
the physicist-I am not so bold-but to the metaphysician: provide a coherent 
metaphysical foundation for modern space-time theories. 

First, we need a precise characterization of local properties. The char- 
acterization requires topological structure. Say that a part of space, N ,  is a 
neighborhood of a point p iff some part of N includes p and is open in the 
topology of the space. (For example, in a three-dimensional Euclidean space, 
N is a neighborhood of p iff N includes some open ball around p, that is, 
all the points less than some positive distance T from p.) A property of points 
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P is local iff, for any points p and q, for any neighborhood N of p and any 
neighborhood M of q, if N is a duplicate of M and p is a (N, M)-counterpart 
of q, then P holds of p iff P holds of q. Note that if a property of points 
is intrinsic, then it is local; for counterparts, being duplicates, share all their 
intrinsic properties. But in general local properties need not be intrinsic. Call 
a property of points that is local but not intrinsic neighborhood-dependent.28 

The most familiar examples of neighborhood-dependent properties come 
from elementary calculus: derivatives of functions. Consider the position of 
some point-sized object as a function of time; suppose at time t it is located 
at point p. The instantaneous velocity of the object at t is the derivative of the 
position function evaluated at t. This derivative at t depends upon the object’s 
position not only at t, but also at “neighboring” times. Or, turning this around, 
the derivative at t depends upon when the object is located not only at p, but 
also at “neighboring” points. The object’s instantaneous velocity at t is thus 
a neighborhood-dependent property of both the time t and the point p. (In 
spacetime, of the “event” (p, t).) In two or more dimensions, position is given 
by a vector, and so instantaneous velocity is a vector as well, having both a 
magnitude (speed) and a direction (if non-zero). Both an object’s speed and 
its direction of motion are neighborhood-dependent properties of points and 
of times. 

Now, I claim that the local metric at a point p, as characterized in differ- 
ential geometry, is a neighborhood-dependent property of p. That is because 
the local metric at p is an inner product on the tangent space at p: it takes a pair 
of tangent vectors as input, and gives a real number as output. (If the inputs are 
one and the same, the output is the squared length of the tangent vector.) The 
tangent vectors at p are defined as the derivatives of “smoothly” parametrized 
paths through p. (A parametrized path is a function from an interval of real 
numbers to the points of the path. If one thinks of the parameter as “time,” then 
a “smoothly” parametrized path through p is a trip through p with no jolts or 
stops, and the tangent vectors at p are all the possible “velocities,” or “states 
of motion,” when passing through p.) These tangent vectors, being derivatives, 
give information not just about p, but about the space immediately surrounding 
p. For example, the dimensionality of the tangent space is the dimensionality, 
not of p which is zero, but of the immediately surrounding space. In short: the 
tangent vectors provide neighborhood-dependent information about p. Since the 
local metric at p is an operator on tangent vectors, it inherits neighborhood- 
dependence from its operands.29 

Thus, the local metric at a point, as standardly conceived in differential 
geometry, is neighborhood-dependent; and that is trouble for the local Gaussian 
conception. For, on the local Gaussian conception, the local metric is also 
perfectly natural. Apply the definitions from section I. If perfectly natural, 
then shared by duplicates; if shared by duplicates, then intrinsic. SO both 
neighborhood-dependent and intrinsic. Contradiction. 

Perhaps we should revise our definitions, not our conception of distance. 
It was simply built into the definitions that all perfectly natural properties 
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are intrinsic. What was built in can be built out. For a cost. We need to 
introduce a primitive distinction between the perfectly natural properties that 
are intrinsic and those that are not. (So we no longer can analyze ‘intrinsic’ just 
in terms of perfectly natural properties and relations.) Now the definition of 
‘duplicate’ bifurcates: X and Y are intrinsic duplicates iff there is a one-one 
correspondence between the parts of X and the parts of Y that preserves 
all intrinsic perfectly natural properties and relations; X and Y are local 
duplicates iff there is a one-one correspondence that preserves all perfectly 
natural properties and relations.30 A local property is now defined simply as a 
property that can never differ between local duplicates. That perfectly natural 
properties are local is now built into the definitions. 

Now we face a dilemma. I suppose we will want the revised theory 
to incorporate the Humean denial of necessary connections between distinct 
existences, in particular, between a point p and its surrounding space: any 
other point q could have taken p‘s place. Of course, at no world is q itself 
in the place of p. We need to formulate the principle in terms of duplicates: 
for any points p and q, perhaps from spaces of different worlds, there is a 
world whose space is a duplicate of the space of p except that it contains a 
duplicate of q where the duplicate of p would be.3’ But, on the revised theory, 
we must decide: do we mean local duplicate or intrinsic duplicate? Does the 
principle require that there be a local duplicate of q where the duplicate of 
p would be? It had better not. For example, suppose that p is surrounded by 
positively curved space, q by negatively curved space. Then, a world whose 
space is a duplicate of the space of p but with a local duplicate of q in p’s 
place must be both positively curved and negatively curved in the immediate 
neighborhood of q. No world is like that. So the principle requires only that 
there be an intrinsic duplicate of q where the duplicate of p would be. More 
generally, the Humean denial of necessary connections is formulated in terms 
of intrinsic duplicates, not local duplicates. On the revised theory, however, 
that will be too weak to capture the spirit of the Humean denial. It rules out 
necessary connections between the intrinsic natures of distinct things. But, on 
the revised theory, there may be more to a thing than is given by its intrinsic 
nature. Thus, formulating the Humean denial in terms of intrinsic duplicates 
fails to rule out necessary connections between the distinct things themselves, 
in particular, between a point and its surrounding space.32 

I suggest we drop the revised theory and pursue a different tack. Although 
the local metric, as standardly conceived, is an extrinsic property of points, and 
therefore not perfectly natural, perhaps the extrinsic local metric is “grounded” 
on an intrinsic, perfectly natural property of points. To illustrate the sort of 
grounding I have in mind, consider mass density. If one assumes that each 
neighborhood of a point has some determinate (finite) mass and volume, then 
the mass density at a point may be characterized as the limit of the ratio of 
mass to volume, as volume shrinks to zero. So characterized, mass density is an 
extrinsic property of points. But it is customary in physics, when considering 
a continuous matter field, to instead take mass density to be a primitive scalar 
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field: a function that assigns to each point a real number representing (given 
appropriate units) the intrinsic mass density at the point. Given intrinsic mass 
density, and an assumption about its smooth distribution, mass can be defined 
by integration. Extrinsic mass density then supervenes upon intrinsic mass 
density. And, thanks to a fundamental theorem of integral calculus, the values 
of extrinsic and intrinsic mass density coincide. Note that the smoothness 
of the intrinsic mass density field is a contingent feature of worlds with 
continuous matter. Given a principle of recombination for points, there will be 
worlds whose intrinsic mass densities (perhaps no longer properly so-called) 
are jumbled up in such a way that no (finite) masses (and no extrinsic mass 
densities) exist at the world.33 

The suggestion, then, is to say something analogous about the local 
metric: the extrinsic local metric supervenes on an intrinsic local metric (plus 
manifold structure). It is the intrinsic local metric properties that are perfectly 
natural. That is on the right track, I think; but there is a problem. Whereas the 
mass density at a point is a simple scalar quantity, the local metric at a point is 
a tensor quantity. How can a tensor be intrinsic to a point? Points are spatially 
simple. Tensors, being operators on vectors spaces, are spatially complex. It is 
repugnant to the nature of a point to suppose that a local metric, which is a 
tensor, could be intrinsic to a point. If we hope to ground the extrinsic local 
metric on an intrinsic local metric, the latter had better be intrinsic not to a 
point, but to something spatially complex.34 

No sooner said than done. If we are willing to posit perfectly natural 
properties on theoretical grounds, we should be willing to posit appropriate 
entities to instantiate those properties: in this case, entities that are spatially 
complex. I propose that we reify talk of the “infinitesimal neighborhood” of 
a point. The tangent space at a point is now conceived as the infinitesimal 
neighborhood of the point “blown large,” as viewed through a “microscope” 
with infinite powers of magnification; it no longer depends for its existence 
upon the manifold structure. Tensor quantities are intrinsic not to points, but 
to the infinitesimal neighborhoods of points. At local Gaussian worlds, space 
(or spacetime) has a “non-standard” structure. There are “standard” points, and 
there are “non-standard” points that lie an infinitesimal distance from standard 
points. The points along a path in space are ordered like the non-standard 
continuum of Abraham Robinson’s non-standard analy~is.3~ 

Let us take stock. The local Gaussian conception of distance, if founded 
upon standard differential geometry, is committed to local metric properties that 
are both extrinsic and perfectly natural. I propose founding the local Gaussian 
conception instead upon non-standard differential geometry. That allows the 
perfectly natural local metric properties to be intrinsic, though not to points, 
but to their infinitesimal neighborhoods. The intrinsic local metric at a point 
now comprises a family of infinitesimal distance relations. So there turn out to 
be perfectly natural distance relations after all; but they are local, not global, 
because they hold only among points within an infinitesimal neighborhood 
of a standard point. (‘Local’ is defined with respect to the topology of the 
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standard points.) The local Gaussian is no longer committed to perfectly natural, 
extrinsic properties. Metaphysical womes about necessary connections have 
been resolved. 

When non-standard analysis gained mathematical and logical respectabil- 
ity some thirty-odd years ago, the question naturally arose whether the non- 
standard continuum is instantiated at any possible world, or even at the actual 
worid. Perhaps the mere consistency of non-standard analysis already gives 
reason to suppose that the non-standard continuum is possibly instantiated. The 
role that non-standard differential geometry can play in firming up the meta- 
physical foundations of physical theory gives reason all the more-including 
reason to suppose the non-standard continuum is actual. 

NOTES 

1. What if quantum mysteries are taken into account? Should I endorse some conception 
of space as foamy, or spongy, or stringy, or loopy? I haven’t a clue. 

2. For the conventionalist line, see Hans Reichenbach, The Philosophy of Space and Time 
(New York, 1957), or Adolf Griinbaum, Philosophical Problems of Space and Time, 2nd ed. 
(New York, 1963). chapter 16. For a realist response, see Graham Nerlich, “Is Curvature 
Intrinsic to Physical Space?” Philosophy of Science 46 (1979): 439-58. 

3. For a discussion of which spatial structures are possible, that is, instantiated at some 
possible world, see my “Plenitude of Possible Structures,” Journal of Philosophy 88 (Nov. 

4. For convenience, I include 00 among the non-negative reals, and read ‘Do?(p, q)’ as 
p stands in no distance relation to q. As usual, 00 is greater than any other non-negative 
real, and 00 added to any non-negative real is 00. This artifice allows the distance axioms 
to hold at worlds with “island universes,” spatially disconnected parts. 

5 .  Those who prefer genuine transworld identity may simply suppose that one of the 
appropriate counterpart relations is the relation of identity. No trouble arises because, for 
the counterpart relations introduced below, counterparts are always intrinsic duplicates. 

1991): 607-19. 

6. Following David Lewis. For discussion, see O n  the Plurali$of Worlds (Oxford, 1986). 
59-61. 

7. Again following David Lewis, On the Plurality of Worlds, 61-62. The definitions 
below of ‘intrinsic’, ‘internal’, and ‘external’ are also adapted from Lewis, although he does 
not apply the word ‘intrinsic’ to relations. Note that quantifiers here and below range over 
all possibilia. 

8. As Lewis notes (On the Plurality of Worlds, 68). on a theory of universals according 
to which universals are parts of the particulars that instantiate them, we must everywhere 
replace the fusion X + Y with an augmenred fusion, which includes among its parts not 
only X and Y ,  but the dyadic universals that hold between X and Y (or between parts of 
X and parts of Y). and the monadic universals that hold of the fusion X + Y (or of its 
parts). Mutaris mutandis for a theory of tropes. 

9. The intrinsic relations can be further divided into internal and external. A (dyadic) 
relation is internal just in case whether it holds of a pair ( X I ,  X z )  depends only upon the 
intrinsic nature of X1 and of Xz ,  not upon the intrinsic nature of X1 + X z .  In terms of 
duplicates: A (dyadic) relation R is internal iff, for all X I ,  Xz, Y1, Yz, if X I  and Yl are 
duplicates and Xz and YZ are duplicates, then R holds ( X I ,  X Z )  iff R holds of (Yl , Yz). 
R is external iff R is intrinsic but not internal. This distinction, however, will not be needed 
below. It is agreed on all sides that distance relations, if intrinsic, are external. 

10. On the interpretation of de re counterfactuals, see David Lewis, Counrerjiactuals 
(Cambridge, Mass., 1973). 3 6 4 3 .  
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11. That is, the points of A form an open set in the usual topology. A part of space is 
open iff it excludes all of its boundary points. 

12. The intrinsic conception of distance is endorsed by David Lewis in On the Plurality 
of Worlds, 62. Lewis does not consider alternative conceptions. 

13. What about a right- and a left-handed glove that are mirror images of one another, and 
thus congruent? That is no counterexample. The gloves differ in orientation, and orientation 
is not intrinsic, as consideration of a Mobius strip (or its three-dimensional analog) should 
make clear. 

14. Of course, a further generalization is needed to account for the interval relations of 
Minkowski spacetime, since the interval squared may be positive, negative, or zero. 

15. In what follows, unless otherwise noted, I assume that paths are continuous and 
“smooth”-that is, without corners or cusps. (Technically, I assume that paths can be given 
a parametrization that is differentiable with non-zero derivative at all points along the path.) 
In order that the notions of continuity and “smoothness” be applicable to parts of space, 
the Gaussian must assume that space is a manifold, that space has both topological and 
differential structure. 

16. I assume island universes are possible. An upholder of the Gaussian conception who 
denied this should refuse to answer question (1) on the grounds that there is no world whose 
entire space is a duplicate of XI. 

17. This is because the surface of a sphere (unlike a flat plane) is rigid in  E: any part 
of E that is isometric to the surface of a sphere in E is also congruent to it, and so itself 
the surface of a sphere of the same size. Intuitively, a surface in E is rigid if it cannot be 
deformed without stretching or tearing. 

18. Note that, on the intrinsic conception, p‘ and q’ are separated by more than a quarter 
great circle of YO, since p’ and q’ are twenty feet apart in  Y6, and Y6 is the surface of a 
sphere of circumference eighty feet. 

19. For an excellent introduction to differential geometry, including the standard moti- 
vational asides, see Barrett O’Neill, Elementary Differential Geometry (New York, 1966). 

20. Unfortunately for our purposes, distance-within-a-surface is often called “intrinsic 
distance,” since it is part of the surface’s intrinsic geometry. I will avoid that usage. 

21. This notion of a boundary point of space requires differential (but not metrical) 
structure: a boundary point is one such that some path to the point cannot be “smoothly” 
ex tended. 

22. Globally supervene, that is, since the assumption only applies to entire worlds. On 
the distinction between various notions of supervenience, see Paul Teller, “A Poor Man’s 
Guide to Supervenience and Determination,” Southern Journal of Philosophy 22 (1 984): 
137-62. 

23. More exactly, the metric tensor at a point is an inner product on the tangent space 
of the point; and the metric tensor field is differentiable, it varies “smoothly” from point to 
point. 

24. The information carried by ds2 is coordinate-independent, though of course calcula- 
tions of length of path will be done by representing ds2 and the path in question relative to 
some chosen coordinates. (Coordinate-free geometric objects are represented in boldface.) 
In the case of a three-dimensional Euclidean space, there will be 2, y, z-coordinates under 
which ds2 = dz2 + dy2 + dz2. In general, however, ds2 will be a more complicated 
quadratic function of dz ,  dy,  and dz, for any 2, y, z-coordinates. 

25. For an elaboration on this theme, see the introductory chapter of Charles Misner, Kip 
Thorne, and John Wheeler, Gravitation (San Francisco, 1973), 4. 

26. David Lewis, Introduction to Philosophical Papers, Volume I1 (Oxford, 1986), 3-4. 
27. David Lewis, in the passage just quoted, requires that local properties be intrinsic 

properties of points (or their point-sized occupants); but I do not think that is how ‘local’ is 
standardly used in mathematics or physics. 

28. Neighborhood-dependent properties may be exclusive or inclusive: those are exclusive 
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that exclude information about the intrinsic nature of points that instantiate them. Thus, a 
property P of points is exclusively neighborhood-dependent iff, for any points p and q, for 
any neighborhood N of p and any neighborhood M of q. if N - p is a duplicate of M - q, 
then P holds of p iff P holds of q. 

29. This is a bit fast and loose. Unless the paths through p are embedded in some 
higher-dimensional Euclidean space, the derivatives in question are not defined, and tan- 
gent vectors are instead identified with (directional) derivative operators. (See O’Neill, 
Elementary Differential Geometry, 182-84.) But the argument is essentially unchanged, since 
derivative operators, which require manifold structure, are no less neighborhood-dependent 
than derivatives. 

30. One might ask, independently of the question whether perfectly natural properties 
can be extrinsic, whether ‘duplicate’ in ordinary usage means ‘local duplicate’ or ‘intrinsic 
duplicate’, or is indeterminate. Tesr case. Consider a cube with sides of two feet and a sphere 
with a diameter of one foot, each composed of (the same kind of) homogeneous continuous 
matter. The sphere has continuum-many intrinsic duplicates among the parts of the cube; 
but the sphere has no local duplicates, since no interior point of the cube is a local duplicate 
of any boundary point of the sphere. Using our ordinary notion of duplicate, how many 
duplicates of the sphere are there in the cube? It seems to me one can answer either way. 

3 I .  This is an instance of the principle of recombination put forth by David Lewis. See 
On the Plurality of Worlds, 86-92. (Of course, the points in question must be of the same 
kind, be it Newtonian or spatiotemporal.) 

32. The argument is especially compelling if one holds that perfectly natural properties 
correspond to immanent universals or classes of tropes. For immanent universals or tropes 
are present in their instances. Now consider a neighborhood-dependent, perfectly natural 
property of p. The corresponding universal, or a corresponding trope, is present at p. And, 
unlike a dyadic universal or trope, it is wholly present at p. (Remember: its holding at p 
tells one nothing about any point other than p, not even something relational.) Intrinsic or 
not, how can one deny that it is part of the nature of p, and so must be “recombined” along 
with p? 

33. Michael Tooley has argued that extrinsic (or “Russellian”) velocity should be 
grounded in this way on primitive velocities that are intrinsic to points. But the theoretical 
reasons for positing primitive velocities, at least at worlds approximating ours, seem to me 
much weaker than the theoretical reasons for positing primitive local metrics. See Michael 
Tooley, “In Defense of the Existence of States of Motion,” Philosophical Topics 16 (Spring 

34. Denis Robinson asks whether vectors could be intrinsic to points, and answers “no,” 
in “Matter, Motion, and Humean Supervenience,” Australasian Journal of Philosophy 67 
(December 1989): 394-409. I concur. Although vectors are spatially less complex than 
tensors, they have a “tail” and a “tip”: too much to fit within a single point. 

35. Non-standard analysis is applied to differential geometry, for example, in Abraham 
Robinson, Non-Standard Analysis, rev. ed. (Amsterdam, 1974). 

1988): 225-54. 




