
PLENITUDE OF POSSIBLE STRUCTURES

Our chief concern is with actuality, with the way the world is.  But inquiry

into the actual may lead even to the farthest reaches of the possible.  For

example, to know what consequences follow from a supposition, we need

to know what possibilities the supposition comprehends.  Suppose that

space is unbounded; does it follow that space is infinite, as was once

generally believed?  The possibility of "curved" space demonstrates the

opposite.  Inquiry is driven by logic, and logical relations hold or fail to

hold according to what is logically possible.

Whence come our beliefs about logical possibility?  Typically, they

derive from the analysis of non-logical concepts, general and individual.  I

know that no bachelor could possibly be married because of what I know

about necessary and sufficient conditions for the application of the

concept of bachelor.  I know that Ronald Reagan could not have

discovered the theory of relativity, if I do, because of what I know about

necessary and sufficient conditions for being the individual Ronald

Reagan.  But not all beliefs about logical possibility can be attributed to

the analysis of non-logical concepts.  Sometimes we reason in accordance

with general principles that are constitutive of the concept of logical

possibility itself, principles to the effect that, if such-and-such is possible,

then such-and-so must be possible as well.  Call these principles of

plenitude.  I divide them into three sorts.  First, there are principles that

require a plenitude of recombinations.   We reason according to such

principles, for example, when we argue that it is logically possible for

there to be a human head attached to the body of a horse.  Second, and

more controversially, there are principles that require a plenitude of
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possible contents.  We reason according to such principles, for example,

when we argue that some or all of the actual individuals and properties

could be replaced by individuals and properties not of this world:  alien

individuals and properties.  Finally, there are principles that require a

plenitude of possible structures.  We reason according to such principles,

for example, when we argue that, if it is logically possible for there to be

four or five spatial dimensions, then it is logically possible for there to be

seventeen, or seventeen thousand.  These three sorts of plenitude, taken

together, delimit the scope of the possible.

In this paper I consider only the last-mentioned plenitude:  plenitude

of possible structures.  I take it that there are structures that we know to

be logically possible, for example, the three-dimensional Euclidean and

non-Euclidean spaces of constant curvature.  My goal is to uncover the

source of that knowledge, and, in so doing, to combat skepticism about

modality without appealing to any mysterious faculty of modal intuition.

On my account, our knowledge starts from our theorizing about the

actual world, and is extended, in accordance with the demands of

plenitude, by the results of mathematics.  I develop and defend a principle

of plenitude for structures, and motivate the principle pragmatically by

way of the role that logical possibility plays in our inquiry into the world.

Along the way, I compare my account with views put forth by Robert

Adams and David Lewis.

First, some preliminary points.  A structure is logically possible, on

my usage, only if there are or could be concrete entities that instantiate

that structure, that is, only if the structure is instantiated by (some or all)
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of the concrete inhabitants of some possible world.1  A structure is

instantiated by a plurality of inhabitants of a world in virtue of their

natural properties and relations; otherwise, structures would be too easily

instantiated, since instantiation would depend only upon cardinality.2  I

assume that structures exist as abstract entities of some sort.3   If

something more definite is wanted, structures may be represented set-

                                    

1Two points.  (1) Some authors use 'metaphysical possibility' for what I call 'logical

possibility', and reserve 'logical possibility' for some (prima facie) weaker notion of                       

"mathematical" (or "conceptual") possibility:  a putative abstract entity is

mathematically possible, roughly, if it can consistently be posited to exist.  All

structures are possible in this sense.  (2)  Although the inference from possibly

instantiated to instantiated at some possible world is sometimes controversial (e.g.,

when applied to alien properties), it does not seem problematic when applied to

structures; at any rate, I will assume that 'world' is taken in a broad enough sense so

as to make this so.

2Not every class of entities at a world is the extension of a natural property;               

belonging to the extension of a natural property may be a matter of shared

universals, or duplicate tropes, or primitive naturalness applied to classes of

possibilia; I need not decide that here.  For discussion and comparison of these views,                   

see David Lewis, On the Plurality of Worlds (Oxford:  Basil Blackwell, 1986), pp. 59-69.                                                 

I discuss naturalness more extensively below.

3Platonism about structures could be avoided by taking "mathematical possibility" as

a primitive, and speaking of structures as mathematically possible rather than

abstractly existing.  The problem of plenitude of structures would then be the

problem of determining the relation between mathematical possibility and logical

possibility.  Nothing that follows depends upon this choice.
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theoretically in ways familiar from model theory for first-order

languages.4

I will focus in what follows upon spatial and spatiotemporal

structures.  Not because I think these are the only sorts of structure to

which plenitude applies:  worlds have a pattern of instantiation of non-

spatiotemporal natural properties and relations; and perhaps some worlds

have irreducible causal, or nomological, or probabilistic structure.  I

focus upon spatial and spatiotemporal structures because they provide

substantive examples upon which there is at least some initial agreement

as to possibility.5

I

                                    
4For example, in the simplest case, we can take a model to be an ordered pair whose            

first member is a set, called the domain of the model, and whose second member is a               

set of properties or relations (set-theoretically construed) on the domain.  Each model

represents a unique structure; isomorphic models represent the same structure.  A           

structure is instantiated at a world if and only if it is represented by some model                       

whose domain consists of (concrete) entities existing at the world, and whose second

member consists of extensions of natural properties and relations.

5Beware.  I normally use 'space' and 'spatial structure' interchangeably to refer to a

"mathematical" entity; but 'space' also has a physical interpretation.  Thus, when I

say that Euclidean space is instantiated at a world, I do not thereby say that physical

space at the world is Euclidean.  The latter requires that the structure, Euclidean

space, be instantiated by the right entities (all the points of physical space, for the

realist), and perhaps also in virtue of the right natural relations (for example, the

distance relation at the world).
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There is one more piece of business before turning to plenitude of

structures.  A principle of plenitude for structures, on my account, does

not by itself determine which structures are possible.  It serves rather as a

principle of inference for modal reasoning:  given that these initial

structures are possible, these other structures are possible as well.  The

possibility of the initial structures must be believed on independent

grounds.  What might these be?

Consider Newtonian spacetime:  any two events have an absolute

spatial and an absolute temporal separation.  I assume we all believe that

Newtonian spacetime is logically possible.  But, thanks to Einstein, we no

longer believe it is actual, or even compatible with the actual laws.  This

suggests that logical possibility is required to encompass, not only

actuality and nomological possibility, but our theorizing about actuality

and nomological possibility as well.  I propose:

(B)  We have warranted belief that a structure is logically

possible if that structure plays, or has played, an

explanatory role in our theorizing about the actual world.

A number of comments are in order.  (1)!!Condition (B) makes

warranted belief about logical possibility relative to history and to a

community of theorizers, as it should; it does not make logical possibility

itself relative.  (2)!!As the case of Newtonian spacetime suggests, the

historical relativity is asymmetric:  the structures believed with warrant to

be possible by a community only increase over time.  (3)!!If a bad theory

takes hold in a community, positing gratuitous structure that explains
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nothing, condition (B) does not apply.  To "play an explanatory role" is

not just to be taken to play an explanatory role by the community.  The

structure must have genuine explanatory power.6  (4)!!Although it is

primarily scientific theorizing about the world that I have in mind, (B) is

not thus restricted.  Philosophers and theologians have posited

explanatory structures in their theorizing about the world.  However

much we mistrust their speculations, we should not exclude these

structures without cause.  We can eliminate bad philosophy or theology in

the same way we eliminate bad science:  by requiring genuine explanatory

power.  (5)!!It is enough for a theory to be seriously considered by a

community; it need not ever be believed.  Belief in the possibility of

Lobachevskian space (of very small negative curvature) is warranted by

(B), because it was seriously considered (in the nineteenth century)

whether measurements of stellar parallax supported the Euclidean or

Lobachevskian theory of space.  (6)!!Whenever a structure is instantiated

at a world, so are all its substructures.  For example, a world at which

three-dimensional Euclidean space is instantiated is also a world at which

one- and two-dimensional Euclidean space is instantiated.  Thus,

                                    

6Perhaps even Newtonian spacetime fails this test due to its gratuitous positing of

absolute rest; in which case only so-called Neo-Newtonian, or Galilean, spacetime,

which posits absolute acceleration but not absolute rest, could be warranted by (B).

The possibility of Newtonian spacetime would then be derived from plenitude.  For

the distinction between Newtonian and Galilean spacetime, and a discussion of the

explanatory adequacy of spatiotemporal structures, see Michael Friedman,

Foundations of Space-Time Theories (Princeton:  Princeton University Press, 1983),                                                                   

pp. 71-92, 236-263.
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warranted belief in the possibility of a structure passes to all of its

substructures.  For convenience, I will interpret "plays an explanatory role

in our theorizing" in such a way that, whenever a structure plays such a

role, all of its substructures do so as well.

II

At last, I turn to plenitude.  The structures satisfying (B) are not the only

structures we believe to be possible.  There are structures we believe

possible that neither play, nor have played, any explanatory role in our

theorizing.  We believe them possible, I suppose, because we believe that

the space of logical possibilities must be "filled out" or "completed" in

some non-arbitrary way.  But what counts as arbitrary here?  Can these

constraints on logical space be made more precise?

As a first try, we might take the intuitive idea underlying plenitude to

be that "there are no gaps in logical space."7  But what constitutes a gap?

Suppose that there are worlds with Euclidean space of six dimensions, and

worlds with Euclidean space of eight dimensions, but none with Euclidean

space of seven dimensions.  Would that be a violation of plenitude, a gap

in logical space?

                                    
7From David Lewis, On the Plurality of Worlds, p. 86.  Other expressions Lewis uses for                                                 

the intuitive idea of plenitude include:  "the worlds are abundant"; "logical space is

somehow complete"; [there are] no vacancies where a world might have been but

isn't" (p. 86).
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It would indeed; but one must be cautious in giving the reason.  Six-

sided regular polyhedra (cubes) are logically possible, as are eight-sided

regular polyhedra (octohedra), but not seven-sided regular polyhedra.

Yet that does not constitute a gap in logical space.  Wherein lies the

difference?  There is a gap in the first case because mathematical

generalizations of three-dimensional Euclidean space to higher dimensions

include a seven-dimensional space whenever they include six- and eight-

dimensional spaces; and they provide a natural ordering of the spaces

according to which the seven-dimensional space falls between the other

two.  There is no gap in the second case because mathematics teaches us

that a seven-sided regular polyhedron is a contradiction in terms; so in

going from six-sided to eight-sided, nothing has been left out.  In sum,

mathematics provides the backdrop of structures and the natural

orderings on structures, without which the notion of a gap in logical space

would make no sense.

It is not enough, however, to rule out gaps in logical space; plenitude

demands that logical space contain no arbitrary or unnatural boundaries.

Suppose that Euclidean spaces of all dimensions up to six were logically

possible, but none of greater dimension.  That too would be a violation of

plenitude.  The mathematical generalization of three-dimensional

Euclidean space to four-, five-, and six-dimensional Euclidean space

applies, mutatis mutandis, to all finite dimensions; there is no natural

stopping point among the finite-dimensional spaces.  To allow that some

but not all finite-dimensional Euclidean spaces are logically possible would

assign an unnatural boundary to logical space.

The idea that logical space contains no unnatural boundaries can be

taken to supercede and clarify the idea that it contains no gaps.  A gap in
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logical space is formed by two boundaries, one from either side.  Call a

gap natural if both its boundaries are natural; unnatural otherwise.  A

prohibition on unnatural boundaries entails a prohibition on unnatural

gaps; natural gaps in logical space, if any there be, need not be a violation

of plenitude.

It should be apparent by now that an account of plenitude must rely

heavily on a notion of naturalness (or some equivalent).  I will assume

that naturalness applies to classes generally, and, in particular, to classes

of structures.  Talk of natural boundaries in logical space is easily

translated into talk of natural classes:  any class of logically possible

structures determines a boundary in logical space; the boundary is natural

just in case the class is natural, or is a union of natural classes.  Although I

have no analysis of naturalness to offer, some words of clarification and

illustration are in order.

Naturalness applies both to classes of physical entities and to classes

of mathematical entities.  In either case, what the natural classes are is

not determined by us:  it is a matter of objective, non-contingent fact.

Examples of natural classes of mathematical entities include:  the natural

numbers, the real numbers, the ordinal numbers, recursive functions of

natural numbers, continuous functions of real numbers.  Examples of

natural classes of mathematical structures include:  groups, vector spaces,

topological spaces, Euclidean spaces.  Each of these natural classes serves

as the principle object of study for some major area of mathematics.  If a

working criterion for naturalness is wanted, we have here, at least, a

sufficient condition.  That is not to say, however, that the above-

mentioned classes are natural because mathematicians have chosen to
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study them.  Rather, mathematicians have chosen to study them, I take it,

in part because they are natural classes.

Natural classes arise in mathematics in two complementary ways:  by

postulate and by construction.  The class of structures satisfying some

natural set of postulates is, I suppose, a natural class; here one finds

groups, lattices, and other structures familiar from abstract algebra.  On

the other hand, natural classes of structures may be constructed from a

given class of structures by some natural operation on (classes of)

structures.  The constructions that will be of primary interest to us are

the mathematically natural processes of generalization.

Although I will speak of classes simply as natural or unnatural, it is

clear that naturalness is a matter of degree.  The odd natural numbers do

not form a natural class in the sense here intended:  the study of odd

number theory, as opposed to number theory, would be a largely fruitless

endeavor.  But the odd numbers deviate from naturalness less than the

numbers that are odd up to a hundred and even thereafter; and these

numbers in turn deviate from naturalness less than some really gruesome

class of numbers not even definable within elementary arithmetic.  For

what follows, I need to assume that classes of structures may be perfectly

natural, that there is a greatest degree of naturalness; when I say a class is

'natural', I mean 'perfectly natural'.  Perhaps that assumption is

controversial; in any case, I will not try to defend it here.

Since structures can themselves be represented by classes, they can

be judged natural or unnatural, one by one, according to the naturalness

of their representatives.  It is important, however, not to equate the

naturalness of a class of structures with the naturalness of its members.

For example, the class of partial orders is a natural class of structures,
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even though it contains some gruesome members that no one would (or

could) consider individually.  In the other direction, a disparate collection

of individually natural structures need not form a natural class.  But note

one exception:  the naturalness of a singleton structure, I take it, goes by

the naturalness of its sole member.

Naturalness itself imposes a structure on the classes of structures.

Some assumptions about this structure will be needed below.  I assume

that the natural classes exhaust the class of all structures, that is, that

every structure belongs to some natural class.  I assume that the natural

classes are not closed under unions or complements.  Perhaps they are

closed under intersections, but since that is controversial, I will not

assume it in what follows.  Finally, I assume that the class of all structures

is not a natural class, on grounds of heterogeneity; but the formulations

below could easily be revised to accommodate the contrary judgment.

III

With the notion of naturalness of classes in hand, I turn to formulations of

a principle of plenitude for structures.  The easiest way to meet the

demand that there be no unnatural boundaries is to draw no boundaries

at all:

(P1)  Every structure is a logically possible structure.

I find (P1) attractive as a principle of plenitude for structures.  For one

thing, it provides an exceedingly simple account.  Once (P1) is accepted,

(B) becomes superfluous; mathematics alone--perhaps, mathematical
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logic alone--determines which structures are possible.  Moreover, though

the notion of naturalness may play a role in motivating (P1), it plays no

role in its formulation.  Unfortunately, (P1) goes far beyond anything

demanded by the idea that logical space be characterizable in a non-

arbitrary way.8  Perhaps (P1) could be defended by way of the benefits it

confers upon our total theory.  In any case, I will here remain agnostic

towards (P1), and go on to develop a (somewhat) more conservative

principle that is capable of a stronger defense.

There is another simple way to meet the demand that the space of

possible structures contain no unnatural boundaries:

(P2)  The class of logically possible structures is a natural class.

(P2) constrains the shape of logical space.  It does not by itself tell us

whether any particular structure is logically possible.  But when combined

with (B), it may support inferences to the possibility of particular

structures.  Thus, let B be the class of structures warranted by (B).  Any

structure that belongs to every natural class of structures that includes B

is warranted by (P2).  (I say a structure is warranted, for short, if belief in

its logical possibility is warranted.)  For example, suppose that B

contained only the Euclidean spaces of one-, two-, and three-dimensions;

then (P2) would warrant the other finite-dimensional Euclidean spaces.

However, (P2) will not do as a principle of plenitude for structures:  it

is both too strong and too weak.  To see that it is too strong, consider the

                                    

8And, we shall see below, beyond what I take to motivate that idea:  the role that

logical possibility plays within our inquiry into the actual world.
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class of logically possible spatiotemporal structures.  I take it we believe,

based upon (B), that this class includes both continuous and discrete

spacetimes,9 but I do not believe that any natural class encompasses them

both; the mathematics of continuity and the mathematics of discreteness

have little in common.  Thus, B is not included in any natural class,

making the acceptance of (P2) incompatible with (B).

A solution is not far to seek.  Although the class of possible

spacetimes is not a natural class, it is a union of natural classes; we call

them all "spacetimes" not because they form a natural mathematical kind,

but because of some looser family resemblance.  This suggests that we

weaken (P2) as follows:

(P3)  The class of logically possible structures is a union of

natural classes.

(P3) still constrains the shape of logical space, assuming, at any rate, that

singletons are not in general natural classes.  But (P3) is genuinely weaker

than (P2) because the natural classes are not closed under unions.

Moreover, when combined with (B), it still supports inferences to the

possibility of particular structures:  given a structure b in B, (P3) warrants

any structure that belongs to every natural class containing b.  Finally,

                                    

9(B) supports belief in the possibility of discrete spacetimes that are observationally

indistinguishable from the continuous spacetimes posited by physical theory.  The

physical possibility of discrete space, time, or spacetime has been taken seriously by

scientists and philosophers from antiquity to the present day.
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(P3) is still sufficiently strong to guarantee that the space of possible

structures contain no unnatural boundaries.

Nevertheless, I think (P3) is too weak in at least two ways.  And if I am

right, the condition that logical space contain no unnatural boundaries

cannot be sufficient for plenitude.  First, there is a problem of crosswise

generalizations.  Suppose that there are two natural ways of generalizing

from a structure b in B, resulting in two natural classes containing b.  If

these generalizations cut crosswise, they may have only the structure b in

common; in which case, no inference from the possibility of b to the

possibility of any of the structures that generalize b will be supported by

(P3).  Consider this example.  Suppose again that three-dimensional

Euclidean space is one of the structures in B.  One can generalize the

number of dimensions to any finite value while keeping the space

Euclidean, or generalize the curvature to any constant negative or positive

value while keeping the space three-dimensional.  Both generalizations, it

seems to me, result in natural classes of spaces.  It is compatible with (P3)

that the spaces from only one of these classes be possible.  But that is too

weak.  I think we have grounds to infer that all the spaces in question are

possible, grounds that (P3) fails to capture.  (P3) allows crosswise

generalizations in effect to cancel each other out, without consequence.

One might simply concede that cross-generalizations on a single

structure b cancel one another unless there are other structures in B that,

together with b, support inferences to the structures that generalize b.

Thus, plenitude of structures demands that all finite-dimensional

Euclidean spaces be possible only because B contains, in addition to the

three-dimensional Euclidean space, the one-, and two-dimensional

Euclidean spaces; and any natural class containing these three spaces
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contains all finite-dimensional spaces.  (Similarly, all three-dimensional

spaces of constant curvature are possible because B contains three-

dimensional spaces of (very small) negative and positive constant

curvature.)  This suggests it might suffice to enhance (P3) as follows:

(P4)  The class of logically possible structures is a union of

natural classes.  Moreover, suppose S is a class of logically

possible structures that is included in some natural class.

Any structure that belongs to every natural class of

structures that includes S is logically possible.

(P4) falls midway in strength between (P2) and (P3):  unlike (P3), it

permits inferences from classes of structures, not just from single

structures; but unlike (P2), it does not require that every class of logically

possible structures be included in some natural class.

Is (P4) strong enough to capture plenitude of structures?  I think not.

For (P4) as well as (P3), there is a problem of nested generalizations.

Consider the supposition that there are possible Euclidean spaces with any

finite number of dimensions, but no possible Euclidean spaces with

infinitely many dimensions.  This supposition posits no unnatural

boundaries in logical space:  the class of finite-dimensional Euclidean

spaces is a natural class, an appropriate object of study in mathematics.

Thus, the supposition violates neither (P2), (P3), nor (P4).  But I claim it is

a violation of plenitude nonetheless.  The natural generalization of one-,

two-, and three-dimensional Euclidean space to other finite dimensions

can itself be naturally extended into the infinite.  For example, there is a

natural generalization of the Euclidean metric to spaces of continuum-
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many dimensions which makes use of the way that integration generalizes

finite summation.10  Assuming that the Euclidean spaces in B are all

finite-dimensional, it follows that they are included in at least two natural

classes, one a subclass of the other.  (P4) provides no grounds for

inferring that any space contained only in the larger of the two

subclasses--that is, any infinite-dimensional Euclidean space--is logically

possible.  But on what grounds does plenitude differentiate between the

possibility, say, of a seventeen-dimensional Euclidean space, and the

possibility of an infinite-dimensional Euclidean space?  What does the size

of a spatial structure have to do with the possibility of its instantiation?

One might reply:  the seventeen-dimensional space is closer to the

spaces in B than any infinite-dimensional space, according to the natural

ordering of structures.  But this reply is incompatible, at least in spirit,

with the all-or-nothing approach to logical possibility taken by (P2)

through (P4).  If a relation of closeness to the structures in B is what

differentiates the finite- and infinite-dimensional spaces with respect to

possibility, it becomes an utter mystery why a space of seventeen

thousand dimensions should be no less possible than a space of

seventeen.  The reply in question leads inevitably, I think, to the view that

logical possibility is a matter of degree, in which case logical implication

becomes a matter of degree as well.  That is a truly radical view; I do not

reject it out of hand, but it will not be considered further in this paper.

                                    

10A standard example.  Let the points of the space be the continuous real-valued

functions defined on the real interval [0, 1].  Define the distance between two points,

f!and!g   , to be:     (g    (x    ) - f    (x   ))2dx    .      
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I know of no other grounds for favoring the finite-dimensional over

the infinite-dimensional Euclidean spaces.  I conclude that any principle of

plenitude that warrants belief in the possibility of the former must

warrant belief in the possibility of the latter.  (P4) fails this test.

The same conclusion can be reached by a slightly different route.

Suppose again that plenitude requires that there be no arbitrariness in

logical space.  One way for logical space to be arbitrary, I have said, is to

have an unnatural boundary, that is, to not be a union of natural classes.

But there is another way.  Consider a nested sequence of natural classes

representing more and more high-powered generalizations of some

structures in B; suppose that any member of B occurs in the first member

of the sequence or in no member at all; suppose further that any natural

class that includes every class in the sequence is itself a member of the

sequence.  If Z is the union of all classes in the sequence, then Z contains

all the structures that are candidates for logical possibility in virtue of the

mathematical generalizations of the structures in question in B.  Now, (P4)

permits any division of Z into possible and not possible, so long as the

possible structures form a natural class (and include the given structures

in B).  But it would be arbitrary for the boundary of logical space to

follow one such division over any other.  The only way to avoid such

arbitrariness in logical space is to impose no division of Z.  This suggests

the following principle of plenitude:

(P5)  Suppose s is a logically possible structure.  Any structure

that belongs to any natural class of structures containing s

is logically possible.
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(P5) substantially strengthens (P4).  When combined with (B), it supports

inferences to the possibility of spaces of any infinite dimensionality, as

long as those spaces arise from a natural mathematical generalization of

ordinary Euclidean space.

I wish I could in good conscience stop here; but a complication

remains.  There is a problem of overhasty generalization.  Consider one-

dimensional Euclidean space; that is, the structure of the real numbers

with the usual metric:  distance!(x,!y)!=!|x!-!y|.  Is there any natural

process of generalization that, when given only this structure as input,

gives the finite-dimensional Euclidean spaces as output?  I think not.  The

fundamental form of the Euclidean metric--being the square root of a sum

of squares--plays no role in the one-dimensional case.  Granted, one-

dimensional Euclidean space is a special case of finite-dimensional

Euclidean space; but it is too trivial a special case to support a

generalization to higher dimensions.  This leads to a problem with (P5).

Given the possibility of only the one-dimensional Euclidean space, (P5)

supports the inference to the possibility of all the finite-dimensional

Euclidean spaces.  That inference seems just as overhasty as the

generalization upon which it is based.

There is an easy fix that should be resisted.  We could say that

plenitude of structures only supports inferences based upon

generalizations involving two or more structures.  But that fails to get to

the heart of the problem.  Natural generalizations can, I think, be based

upon a single structure if that structure isn't a trivial or degenerate case

of the generalization; perhaps three-dimensional Euclidean space is an

example.  On the other hand, two structures may be no better than one, if

both structures are trivial cases of the generalization in question.  The
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number of structures needed to support a generalization is relative both

to the type of generalization and to the particular structures chosen; it

cannot be specified, once and for all, in advance.

I see no choice, then, but to conclude that the notion of natural class

is not by itself sufficient for formulating a principle of plenitude for

structures; we need a relation that holds between a class of structures and

those classes of structures that are natural generalizations of it.  A natural

generalization of a class of structures is always a natural class; but a

natural class need not be a natural generalization of all of its subclasses.

Switching from natural classes to natural generalizations transforms (P5)

into:

(PS)  Plenitude of Structures.  Suppose S is a class of logically

possible structures.  Any structure belonging to any

natural generalization of S is logically possible.

This is the principle of plenitude for structures that I accept.  It shares all

the virtues of (P5):  the logical space of possible structures has no

unnatural boundaries, nor arbitrariness in the way boundaries are set.

Indeed, it may be that when applied to (B), (P5) and (PS) differ not at all

with respect to the structures they warrant.  But if and when they do

differ, I stand by (PS).

IV

Thus far I have assumed without argument that logical space should have

natural boundaries set in a non-arbitrary way.  Can this assumption itself
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be defended?  I think it can.  I take it to be constitutive of logical

possibility that it provide a suitable framework for our inquiry into the

actual world; whoever denied this could not mean what I do by 'logical

possibility'.  Our inquiry into the actual world involves concepts--such as

space, time, and spacetime--that have meaningful application beyond the

actual world, indeed, beyond the nomologically and the doxastically

possible worlds.  Since part of that inquiry is inquiry into the nature of

these concepts and their logical interrelations, logical possibility must

extend at least as far as the meaningful application of these concepts.

Consider the question with which I began this paper:  if (physical)

space is unbounded, must it also be infinite in extent?  Suppose the

question had been asked in the 18th century, prior to the discovery of

non-Euclidean geometry.  I think the answer would have been "no" even

then:  'space' did not then mean 'Euclidean space', any more than it does

now.  Thus, questions about the world that might well have been asked in

the 18th century could only have been answered in the light of

mathematical generalizations that were then unknown.  The situation is

no different today.  We do not know in advance which mathematical

generalizations of our concepts will turn out to be relevant to our

inquiry.11  If the class of logically possible structures includes some but

not all of these generalizations, as is allowed by (P2) through (P4), then

logical possibility may be unfit to provide a logical framework for our

                                    

11Actually, I hold something stronger, that we know in advance that every

generalization is logically relevant, so long as it is compatible with whatever

necessary conditions we place on the concept.  But that depends upon a theory of

content for concepts that I won't defend here.
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inquiry into the world.  In order to ensure that no relevant structure is

left out of logical space, we need to posit a plenitude of possible

structures, we need the space of possible structures to be filled-out in a

non-arbitrary way.

The role that logical possibility plays in inquiry can motivate and

justify both (B) and (PS); does it also support (P1), that every structure is

logically possible?  No; logical possibility must be broad enough to

accommodate inquiry into matters of contingent truth, not matters of

necessary truth.  I do not require, nor is it customary to require, that

logical possibility provide a framework for mathematics.  If a structure

does not belong to any mathematical generalization of any actual

structure, or of any structure warranted by (B), then it is logically

irrelevant to our inquiry into the actual world.12  It could safely be

excluded from logical space.

                                    

12Of course, it may be psychologically relevant by suggesting analogies, serving as a

heuristic tool, and so on.
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V

I wish now to illustrate my account of plenitude of structures, and to

compare it with what others have said.  I begin with an application of (PS)

that has played an important role in the history of science:  the

development of Riemannian geometry.  Consider the following questions.

Is there a possible space with variable curvature, sometimes negative,

sometimes positive?  Is there a possible non-orientable space in which a

right-handed glove could be made to coincide with a left-handed glove by

transporting it to and from some distant place?  I think it would be a

mistake to claim ignorance here.  These questions can be answered, and

answered decisively, using (PS).  Moreover, the answers do not come from

some special faculty of modal intuition; according to (PS), they come

straight from mathematics.  Great advances in mathematics are often as

much a matter of discovering what the natural classes are (the

definitions) as discovering truths about them (the proofs).  Indeed, it is

the former sort of discovery that brings whole fields of mathematics into

being.  Riemann was the first to characterize the natural class of

structures--the class of Riemannian spaces--that provides the objects of

study in differential geometry.  The way in which Riemannian space

generalizes Euclidean space is difficult to make mathematically precise,

but the underlying idea is simple enough:  Riemannian space is locally

Euclidean; it approximates Euclidean space in the small.  The

generalization is universally recognized to be natural, and to result in a

natural class of structures.  Thus, by (PS), all Riemannian spaces are

possible structures (assuming Euclidean space is), and the answer to the
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above questions is "yes."  It is because we accept (PS) that, as

mathematics discovers more inclusive natural classes of structures, our

beliefs about possibility expand accordingly.

So say I.  Robert Adams has discussed this case, and come to a

contrary conclusion.13  Adams is concerned to argue against the idea,

traceable to Leibniz, that there is a general presumption in favor of

possibility in the absence of proof to the contrary.  When applied to

structures, this amounts to the claim that a structure should be presumed

to be possible (i.e., possibly instantiated) unless and until its instantiation

is proved to be impossible.  (PS) does not embody any such rule of

presumption; indeed, its role is to provide standards of proof for

possibility, not to prescribe what to do in the absence of proof.  But it is

clear that Adams would hold that (PS), no less than a rule of presumption,

is based upon "an unreasonable prejudice ... in favor of enlarging the

extent of possibility."  (P. 28).  Discussing the case of Riemannian

space14, he writes:

Should it have been believed metaphysically possible [in the 19th

century] for there to be, for example, a "curved," Riemannian

                                    
13In "Presumption and the Necessary Existence of God," Nous, 22, (1988), 19-32.          

14Unfortunately, 'Riemannian space' in ordinary usage is ambiguous between (1)

the spaces of constant positive curvature satisfying the axioms of elliptical geometry,

and (2) the more general spaces of variable curvature studied in differential

geometry.  The mention of postulates in the following quotation suggests that Adams

has the former in mind; the mention of current theories in physics suggests the

latter.  I always mean the latter by 'Riemannian space'.
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physical space that would satisfy the theses of Riemannian

geometry?  The metaphysical possibility of such a space does not

follow from the formal consistency of the axiom and postulate

set.  In the absence of proof, should the possibility of curved

physical space have been accepted on the ground that there is a

presumption in favor of possibility?  I think that would have

been an implausible way of deciding the issue. ...  If the majority

opinion today is that curved space is metaphysically possible,

the principal reason for this belief is surely not a presumption of

possibility, but the fact that the actuality (and hence the

possibility) of Riemannian space is implied by otherwise

attractive theories in physics.  This kind of broader theoretical

consideration seems an eminently reasonable basis for deciding

issues about metaphysical possibility.  (Pp. 29-30)

This suggests that, before Einstein, we did not have warranted belief in the

possibility of Riemannian space.  Moreover, the only sorts of

consideration that could warrant belief in the possibility of Riemannian

space are (some of) those embodied in (B), not (PS).  Adams seems to

reject what I call plenitude of structures altogether.

Why does Adams think that prior to Einstein we should have been

agnostic about the possibility of non-Euclidean space?  He mentions here

Kantian views according to which we can "just 'see', intuitively, that space

must be Euclidean." (P. 29).  Adams does not endorse such Kantian views;

but he nonetheless holds that "the history of the subject" casts doubt on

the claim that "if there were something impossible about non-Euclidean

space we would probably have discovered it." (P. 30).
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Although I agree with Adams' rejection of a general rule of

presumption, his account of our belief in the possibility of non-Euclidean

space does not seem to me cogent.  For one thing, the Kantian views all

rest on idealist suppositions to the effect that our mental faculties

somehow constrain the structure of physical space; and I, for one, place

no credence in that.  For another thing, I do not think the history of the

subject supports Adams' account.  The view that we have a priori

knowledge of the Euclidean nature of (physical) space was abandoned by

most philosophers and mathematicians in the 19th century in direct

response to the mathematical development of non-Euclidean geometry.15

If Adams were right, it should not have been abandoned until the 20th-

century development of general relativity; for, according to Adams, it was

not until then that we had reason to believe that non-Euclidean space was

possible.  Moreover, suppose we concede that there is some broadly

philosophical reason for withholding belief in the possibility of non-

Euclidean space, a reason that was not undercut by the mathematical

discovery of non-Euclidean geometry.  I do not see how the development

of general relativity could have undercut that reason.  Einstein did nothing

                                    

15To pick just one example, Riemann himself writes:  "These facts [of Euclidean

geometry] are ... not necessary but of a merely empirical certainty; they are

hypotheses; one may therefore inquire into their probability, which is truly very

great within the bounds of observation, and thereafter decide concerning the

admissibility of protracting them outside of the limits of observation, not only toward

the immeasurably large, but also toward the immeasurably small."  From "On the

Hypotheses which Lie at the Foundations of Geometry," reprinted in David Eugene

Smith, A Source Book in Mathematics (New York:  Dover, 1959), p. 412.                                                        
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to address the philosophical issues that, according to Adams, might be

responsible for an as yet undiscovered impossibility in non-Euclidean

space.  So it is unclear, on Adams' account, why we should not remain

agnostic about the possibility of non-Euclidean space, even in the light of

current physics.

Finally, consider Adams' claim that the reason we believe today that

Riemannian space is possible is that "the actuality (and hence the

possibility) of Riemannian space is implied by otherwise attractive

theories in physics."  But which Riemannian spaces should we believe

possible?  Current theories of gravitation are compatible with some

Riemannian spaces, but not all; indeed, even the spaces of constant

positive and negative curvature are incompatible with current theory.

Does Adams think we have reason to believe in the possibility of these

simple non-Euclidean spaces?  If not, then I submit that his view of

possibility is too narrow, too far removed from the accepted conception.

If so, then the mathematical relations between these simple spaces and

the spaces that are compatible with current theory must play a supporting

role.  Adams must implicitly be supplementing (his version of) (B) with

some principle of plenitude:  from the possibility of some Riemannian

spaces, the possibility of other Riemannian spaces follows.  Of course,

Adams might only endorse a principle much weaker than (PS).  I have

attempted to defend the full strength of (PS) above.

VI

I wish now to consider a second application of (PS).  Unlike the previous

case, it involves a process of generalization that is mathematically easy to
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specify.  The resulting class of structures is natural, not because it is a

mathematically interesting object of study, but because it is formed by a

process of generalization universally recognized to result in natural

classes.  Not all natural classes of structures are mathematically

interesting.

The process of generalization is this.  Suppose that we are

interested in some kind of structure, say, vector spaces.  And

suppose that particular structures of the kind in question have been

characterized by specifying values for one or more independent

parameters.  For example, by specifying that the dimension is to be

one, two, or three and that the vector components are to be real

numbers, we uniquely characterize the vector spaces V1(R), V2(R),

and V3(R).  To generate a larger class of structures, it suffices to

choose, for each parameter, a larger class of values.  The resulting

class of structures is a natural generalization of the original

structures if and only if, for each parameter, the new class of values

is a natural generalization of the old.  Thus, for vector spaces, the

number of dimensions might be taken to range over the natural

numbers, and the source of vector components might be taken to

range over arbitrary fields.  The resulting class of vector spaces,

{Vn(F):  n a natural number, F a field}, is a natural generalization of

the vector spaces V1(R), V2(R), and V3(R) because the class of

natural numbers is a natural generalization of the numbers one,

two, three, and the class of fields is a natural generalization of the

structure of the reals.
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The second application of (PS) uses the above process of

generalization to generate a very large class of spatiotemporal structures.

This application is no more controversial, I think, than the first:  one

switches from Riemann's generalization of Euclidean space to Cantor's

generalization of natural number.  Thus consider the question:  is there,

for any ordinal number  a, a possible spacetime with a distinct instants of

time?  (PS) demands that the answer be "yes," supposing the possibility of

discrete time.  More exactly, I suppose that the following spacetime is

possible:  there are exactly w instants of time, a first instant, a second

instant, and so on for each natural number; space is Euclidean and three-

dimensional, the structure E3; and spacetime is Newtonian.  The

spatiotemporal structure in question is thus the Cartesian product space,

wxE3.  Since   wxE3 is possible, so are its substructures, nxE3, with n finite;

call the class of such substructures Ω.  Since the spatiotemporal

structures in Ω are Newtonian, the temporal and spatial parameters can

be independently varied.  Now, apply the process of generalization

illustrated above.  Generate a larger class of spatiotemporal structures,

Ω', by allowing the temporal parameter to range over the class of ordinal

numbers, and the spatial parameter to range over any natural class of

spatial structures containing E3.  Ω' will be a natural generalization of Ω if

the class of ordinal numbers is a natural generalization of the natural

numbers.  Which it is:  the naturalness of Cantor's generalization of the

natural numbers to the class of ordinals is adequately attested by the role

the ordinals play in set theory and mathematics generally.  So, by (PS),

every member of Ω' is a possible structure; that is, for every ordinal

number a, there is a possible spacetime with a distinct instants of time.
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Thus, if one accepts (PS), and the possibility of discrete time, one is

lead to the conclusion that there is no set of possible worlds, that there

are at least "as many" possible worlds as there are ordinal numbers.16

According to David Lewis, this conclusion leads to trouble.17  Lewis hopes

to avoid the trouble by requiring that there be "some restriction on the

possible size of spacetime."  Against the charge, made by Peter Forrest and

D. M. Armstrong,18 that any such restriction is ad hoc, he replies:

"Maybe so; the least arbitrary restriction we could possibly

imagine is none at all, and compared to that any restriction

whatever will seem at least somewhat ad hoc.  But some will

                                    

16This doesn't quite follow from (PS) alone:  if there is a single world whose instants

of time are similar in structure to the ordinal numbers in toto, then all members of Ω'             

may be instantiated at that one world.  It does follow, however, if one assumes that,

for any possible spacetime, there is a world at which that spacetime, and none larger,                               

is instantiated.  I won't argue for that here.

17To some extent, I agree:  if there is no set of all worlds, then we cannot freely make

use of set-theoretic constructions of worlds for purposes of semantics, epistemology,

logic, whatever.  But we can learn to live with the trouble, just as we have learned to

live with the fact that there is no set of all sets.  I propose an iterative conception of

worlds according to which each world is assigned to a level of a cumulative

hierarchy analogous to the hierarchy of pure sets; a plurality of worlds forms a set if

and only if there is some level of the hierarchy that contains them all.  There is no

space to elaborate here.

18In "An Argument Against David Lewis' Theory of Possible Worlds," Australasian                         

Journal of Philosophy, 62 (June, 1984), pp. 164-8.                                          
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seem worse than others.  A restriction to four-dimensional, or to

seventeen-dimensional, manifolds looks badly arbitrary; a

restriction to finite-dimensional manifolds looks much more

tolerable.  Maybe that is too much of a restriction, and

disqualifies some shapes and sizes of spacetime that we would

firmly believe to be possible.  If so, then I hope there is some

equally natural break a bit higher up:  high enough to make

room for all the possibilities we really need to believe in, but

enough of a natural break to make it not intolerably ad hoc as a

boundary.

... My thesis is existential:  there is some break, and the

correct break is sufficiently salient within the mathematical

universe not to be ad hoc.  If study of the mathematical

generalisations of ordinary spacetime manifolds revealed one

salient break, and one only, I would dare to say that it was the

right break--that there were worlds with all the shapes and sizes

of spacetime below it, and no worlds with any other shapes and

sizes.  If study revealed no suitable breaks, I would regard that

as serious trouble.  If study revealed more than one suitable

break, I would be content to profess ignorance.... 19

It is clear from this passage that, in important respects, Lewis and I are

in substantial agreement.  We both require that the boundary marking the

possible spacetimes be natural, and that its naturalness be decided by a

study of the mathematical generalizations of ordinary spacetimes.  But

                                    
19On the Plurality of Worlds, p. 103.                                                 



31

Lewis does not accept the full strength of (PS).  Indeed, when Lewis' talk

about natural breaks is translated into the terminology of natural classes,

it appears that he would accept only some weaker principle such as (P2)

(or (P3)).  For Lewis, plenitude of spacetimes requires only that there be

some natural break, that is, that the class of possible spacetimes be a

natural class (or a union of natural classes).20  He counts it no violation

of plenitude if spacetimes belonging to more inclusive natural classes are

deemed impossible.

I have already considered this view above; but let me reiterate one of

my arguments in the present context.  I think Lewis and I agree that

plenitude demands that the possible spacetimes be characterizible in a

non-arbitrary way.  Lewis seems to think, however, that arbitrariness can

be avoided as long as the boundary between the possible and the

impossible spacetimes is a natural one.  I disagree.  Consider again the

spacetimes in Ω'.21  There are many natural breaks in the succession of

ordinal numbers, for example, the first infinite ordinal, the first strong

limit ordinal, the first inaccessible ordinal; and it does not seem plausible

                                    

20With the proviso that it include those spacetimes whose possibility we "firmly" or

"really need" to believe in.  But what is the source of these firm beliefs?  Not (B),

apparently, for these beliefs may pertain to spacetimes of higher dimension.  In any

case, the proviso is no help in deciding between (PS) and a weaker principle; I have

argued that we need to believe in the possibility of all the spacetimes warranted by

(PS).

21The situation is less clear with respect to Lewis' example:  the mathematical

generalizations of continuous spacetimes to very large dimensions.  I prefer to rest

my argument on the spacetimes with discrete time, where the mathematics is trivial.
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to hold that one such break is somehow more natural than any of the

others.  Each natural break in the succession of ordinals corresponds to a

natural break among the spacetimes in Ω'.  To allow any one such break

to set a boundary in logical space, rather than any other, would be to

allow arbitrariness in the characterization of logical space.  That is why

only a strong principle such as (PS) can successfully capture plenitude of

structures.

VII

I conclude by summarizing the implications of my account for the

epistemology of modality.  I have attempted to steer a course between the

Scylla of modal skepticism and the Charybdis of an obscurantist modal

epistemology.  The skeptic I have in mind holds that our only grounds for

belief in the possibility of structures are the theoretical and explanatory

grounds embodied in (B).  Such skepticism is belied by ordinary practice,

by our ordinary ways of thinking about modality.  I take it our role as

philosophers is not to challenge ordinary practice--except perhaps in rare

cases--but to attempt to account for ordinary practice in a systematic

way.  I have developed and defended a principle of plenitude, (PS), that I

think adequately explains and locates the source of our belief in a

plenitude of possible structures.  It warrants belief in the possibility of

some structures that are not ordinarily thought to be possible; but these

structures are not ordinarily thought to be possible, I think, only because

they are not ordinarily thought of at all.  My account does not purport to

eliminate all ignorance as to which structures are logically possible.  If a

structure is not warranted by (PS) together with (B), it may or may not be
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logically possible, for all I have said; an absence of warranted belief does

not warrant belief in the contrary.22  Moreover, there is ignorance

associated with the application of (B) and (PS):  ignorance as to which

structures are explanatorily adequate to actual phenomena translates into

ignorance as to which structures are possible; as does ignorance as to the

mathematical generalizations of structures.  But although it may

sometimes be unclear how my account applies in a particular case, the

general grounds of our beliefs are made clear.  When we infer that some

structure is possible using (B) and (PS), we are guided by science (broadly

construed) and by mathematics, not by some mysterious faculty of modal

intuition.  Nor is any such faculty needed to motivate or defend (B) and

(PS).  They are motivated and defended, not by modal intuition, but by

what we require a theory of modality to do.  And there need be nothing

obscure about that.

Phillip Bricker

University of Massachusetts, Amherst

                                    
22My account is compatible with the view that only the structures warranted by (B)          

and (PS) are possible.  But I would reject that view on grounds of parochialism; it

would allow features of our inquiry, contingent and accidental though they be, to        

delimit the scope of the possible.


