Philosophy 395: Philosophical Paradoxes

Fall, 2015 P. Bricker

Suggested Fourth Paper Topics

This is the fourth of four lists of suggested paper topics. You must do *two* papers for the course; and you may do three and count your best two For this paper, you may choose either a topic from this list or from the third paper topics list. These paper topics are just suggestions; I am happy to receive a paper on a topic of your own choosing, as long as it is on one of the paradoxes discussed in the class since the midterm. Papers should be about three pages, double-spaced. Papers from this list are due Friday, Dec. 11 at midnight as an e-mail attachment (word file or pdf).

- 1. Present the St Petersberg Paradox. Some have argued that the solution is to reject the possibility of assigning infinite value (utility) to any thing or outcome. Explain how that would solve the problem. Give arguments both for and against this solution. (An argument for rejecting infinite value would be to show that if we assign infinite value to some thing or outcome (such as Heaven), we cannot distinguish between the value of acts which lead to that thing with high probability and acts which lead to it with low probability.)
- 2. Consider the Nectie paradox and its solution, described here: https://en.wikipedia.org/wiki/Necktie_paradox
 Present the Two Envelope paradox, and explain how the solution to the Necktie Paradox might be applied to the Two Envelope paradox. Does this completely resolve the Two Envelope paradox? Explain clearly why or why not?
- 3. The Sleeping Beauty Puzzle is usually thought to be intricately connected with what we should say about our beliefs about chance processes (such as flipping a coin); and whether or not to allow violations of the Principal Principle. But consider any uncentered proposition (whole truth or falsity is independent of the circustances of Sleeping Beauty) that you assign degree of belief one half to. (For example, consider the proposition that the trillionith digit in the decimal expansion of pi is even.) Suppose whether we wake Sleeping Beauty up on Tuesday depends, not on whether a coin toss lands heads or tails, but on whether this proposition about pi is true or false. Does that change the puzzle in any significant way? If so, explain how. If not, say what this shows.