- 1. Record your name and ID number on the scantron form. - 2. Record the **test ID** letter in the top right box of the scantron form. - 3. Record all of your answers on the scantron form. - 4. Show your ID and scantron form to a TA. - 5. Put your scantron form in the correct box by color. You have 120 minutes. GOOD LUCK! Final | - 1 | XX 71 · 1 | | .1 | , • | 1 1 | 1 | 1 4 0 | | |-----|-----------|------------|-----|----------|-------|-----------|------------|--| | 1. | wnich | species in | tne | reaction | below | undergoes | reduction? | | $$2 \text{ Na(s)} + 2 \text{ H}_2\text{O(aq)} \rightarrow 2 \text{ Na}^+\text{(aq)} + 2 \text{ OH}^-\text{(aq)} + \text{H}_2\text{(g)}$$ - a. Na - b. H₂O - c. Na+ - d. OH- - e. H₂ 2. Ammonia gas is synthesized according to the balanced equation below. $$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$ If $1.56 L N_2$ react with $4.32 L H_2$, what is the theoretical yield (in liters) of NH_3 ? Assume that the volumes of reactants and products are measured at the same temperature and pressure. - a. 2.88 L - b. 3.12 L - c. 4.32 L - d. 4.68 L - e. 5.88 L 3. If an aqueous solution of ____ is added to an aqueous solution of BaCl₂ and Fe(NO₃)₃, the barium ion will precipitate, but the iron ion will remain in solution. - a. NaOH - b. Na₂SO₄ - c. K₃PO₄ - d. KCl - e. $Pb(NO_3)_2$ 4. Which of the following molecules is/are polar **molecule(s)**? a. BF₃ only d. C_2H_4 and BF_3 b. NH₃ only e. NH₃ and ClF₃ c. C_2H_4 only 5. Which of these isoelectronic species has the **smallest radius**? - (a) $K^+(b) Ca^{2+}(c) Cl^-(d) Ar$ - a. K+ c. Cl- b. Ca²⁺ d. Ar |
6. | Which may be a correct Lewis structure for ca | c. | n disulfide, CS ₂ ? S=C=S | |---------|--|-------|---| | | b. 5.——5. | d. | •• | |
7. | Estimate ΔH in kJ for the following gas phase r CFCl ₃ + HF ==> CF ₂ Cl ₂ + HCl given the following bond energies in kJ/mol: C-F 485, H-F 565, C-Cl 331, H-Cl 431 | eact | | | | a. $+20$ | d. | -180 | | | b20
c. +180 | e. | + 288 | |
8. | Write a balanced net ionic equation for the react acid. a. $HCO_3^-(aq) + CH_3CO_2H(aq) \rightarrow CH_3CO_2^-(ab)$ b. $2 NaHCO_3(aq) + CH_3CO_2H(aq) \rightarrow 2 Na_2CO_2$ c. $NaHCO_3(aq) + H^+(aq) \rightarrow H_2CO_3(s) + Na^+(ab)$ d. $HCO_3^-(aq) + H^+(aq) \rightarrow H_2O(\ell) + CO_2(g)$ e. $HCO_3^-(aq) + H^+(aq) \rightarrow H_2CO_3(aq)$ | q) + | | | 9. | below:
$2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na}(s) + 3 \text{ N}_2(g)$ | | gen gas, according to the balanced chemical equation by the balance of 811 mm Hg at 25 °C? ($R =$ | |
10. | Which of the following sets of quantum number | rs re | efers to an atomic <i>d</i> -orbital? | ____ 11. A certain radiation has a wavelength (λ) of 3.40 x 10⁻⁷ meters. Calculate the energy in kJ of **one mole** of photons of this radiation. a. 5.85 x 10⁻¹⁹ a. $n = 4, l = 0, m_l = 0$ b. $n = 4, l = 3, m_l = 1$ d. 1.20 x 10⁻⁴ c. $n = 3, l = 1, m_l = 1$ d. $n = 3, l = 2, m_l = 1$ b. 1.03 x 10³⁹ u. 1.20 X 10 c. 252 ____ 12. Photons **absorbed** by the H-atom which have the **shortest** wavelength are represented by which lettered transition? - a. A - b. B - c. C - d. D - e. E - 13. Chloroform, CHCl₃, is a common organic solvent. Which of the following statements concerning chloroform is/are CORRECT? - 1. CHCl₃ has three isomers. For one isomer of CHCl₃, the chlorine atoms are all adjacent to each other and the molecule is polar. - 2. CHCl₃ has three isomers. For one isomer of CHCl₃, the chlorine atoms are in a trigonal arrangement, the molecule is nonpolar. - 3. The hybridization of the central carbon atom is sp^3 . - a. 1 only - b. 2 only - c. 3 only - d. 1 and 2 - e. 1, 2, and 3 - 14. A molecule is found to contain 64.27% by mass C, 7.191% by mass H, and 28.54% by mass O. What is the empirical formula for this molecule? - a. C_2H_6O - b. C₃H₄O - c. $C_3H_8O_2$ - d. $C_4H_6O_2$ - e. $C_4H_8O_3$ |
15. | What are the spectator ions in the reaction between aqueous hydrobromic acid and aqueous sodium hydroxide? a. Na^+ only b. H^+ and OH^- c. Na^+ and Br^- d. Br^- only e. H^+ , Br^- , Na^+ , and OH^- | |---------|--| | 16. | What is the mass percent of iodine in calcium iodide? a. 13.64% b. 24.00% c. 66.67% d. 76.00% e. 86.36% | |
17. | Which of the following atomic orbitals has exactly one spherical node? a. 3p c. 3d b. 3s d. 4s | | 18. | What 2+ ion has the following ground state electron configuration? | | 19. | Which of the following relationships is/are CORRECT for gases? The moles of a gas is inversely proportional to its volume (at constant pressure). The volume of a gas is inversely proportional to its temperature in kelvin (at constant pressure). The pressure of a gas is directly proportional to its temperature in kelvin (at constant volume). a. 1 only 2 only 3 only 1 and 2 2 and 3 | |
20. | What is the formal charge on each non-hydrogen atom in the Lewis structure for the neutral molecule HONS, shown below? H—O—N—S: | a. O = +5; N = +5; S = +7b. O = -1; N = -1; S = +2 $c. \quad O = +1; \ N = 0; \ S = -1 \\ d. \quad O = 0; \ N = +1; \ S = -1$ |
21. | | _ | uation for the react | _ | ueous calcium | n acetate and | d aqueous so | dium sulfide? | |---------|-------------------------------------|--|--|--|-----------------------|---|----------------|---------------| | | | | $O_2^-(aq) \rightarrow Ca(CH_3)$ | | | | | | | | | - | $\neg (aq) \rightarrow NaCH_3CO$
$\neg (aq) \rightarrow NaCH_3CO$ | _ | | | | | | | | $Ca^{2+}(aq) + CH_3CO_2$
$Ca^{2+}(aq) + S^{2-}(aq) - Ca^{2+}(aq)$ | . • | ¹ ₂ (8) | | | | | | | | $Ca^{2+}(aq) + S^{2}(aq) - Ca^{2+}(aq) + 2Na^{+}(aq)$ | ` ' | | | | | | | | c. c | a (aq) + 21 1 a (ac | $q \rightarrow Carra_2(s)$ | | | | | | |
22. | | | trons, and electron | s are in a | yttrium-89 at | om? | | | | | | 9 protons, 50 neut | | | | | | | | | | 9 protons, 89 neut | | | | | | | | | | 9 protons, 50 neut
0 protons, 39 neut | | | | | | | | | | 9 protons, 11 neut | | | | | | | | 22 | | - | | 1.43 | -411-4 | 41 | | | |
23. | | | change for the oxid | | | etic acia, | | | | | | | $O_2(g) \rightarrow CH_3COOF$ cal equations below | | $O(\ell)$ | | | | | | _ | | $O_2(g) \rightarrow 2 \text{ CH}_3\text{CH}$ | | $H_{\bullet}O(\ell)$ | $\Delta_r H^\circ = -40$ | n 8 k I | | | | | | $_{2}(g) \rightarrow 2 \text{ CH}_{3}\text{COO}$ | | = :: | $\Delta_r H^{\circ} = -58$ $\Delta_r H^{\circ} = -58$ | | | | | | | 2(g) /2 CH3COO | 11(0) | | Δ_{r} = -30 | 7.7 KJ | | | | a. – | 985.2 kJ | | | | | | | | | b. – | 492.6 kJ | | | | | | | | | | 183.6 kJ | | | | | | | | | | 183.6 kJ | | | | | | | | | e. + | 492.6 kJ | | | | | | | |
24. | Rank | S, Se, & Cl in orde | er of increasing (sn | naller <laı< th=""><th>ger) first ion</th><th>ization ene</th><th>rgy.</th><th></th></laı<> | ger) first ion | ization ene | rgy. | | | | a. S | < Se < C1 | | C. | Cl < S < Se | | | | | | | e < Cl < S | | d. | Se < S < Cl | | | | | 25 | Elom | ents in nariadia ara | oung IA and VIIA | raaat syith | anah othar ta | form comr | sounds that or | o nanaliv | |
25. | | ovalent | oups IA and VIIA 1 | c. | metallic | ionii comp | ounus mat ai | le usually | | | | onic | | d. | nsoluble in v | vater | | | | | | | | | | | | | |
26. | Which | n of the structures | below is a valid Le | ewis dot s | tructure for X | leF ₄ ? | | | | | | : F :
 . | :F: : | : F :
 | : [: | | : F : | | | | : F- | Хе— ; : : ; — | -Xe—F: :F— | Хе— ; : | :F—Xe— | <u> </u> | -Xe-F: | | | | : | F: | : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; |
F: | ;
; F : | |
:F: | | | | |
A | В | c |
D | | E | | | | | | | .i | D | | | | | | a. Ab. E | | | d.
e. | D
E | | | | | | c. C | | | C. | ı | | | | | | | | | | | | | | | 2' | 7. Which of the following chemical equations does not correspond to a standard molar enthalpy of formation?
a. $Ca(s) + C(s) + 3/2 O_2(g) \rightarrow CaCO_3(s)$
b. $C(s) + O_2(g) \rightarrow CO_2(g)$
c. $NO(g) + 1/2 O_2(g) \rightarrow NO_2(g)$
d. $N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)$
e. $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(\ell)$ | |----|---| | 2: | 3. One product of the combustion of ethane, C ₂ H ₆ , is carbon dioxide. What change in hybridization of the carbon occurs in this reaction? a. sp^3 to sp^2 b. sp^3 to sp c. sp^2 to sp^3 d. sp^2 to sp^3d^2 e. sp^2 to sp | | 29 | You have 0.575 mole of each of the following elements: C, Cl, Ca, Cr, and Cd. Which sample has the greatest mass? a. C b. Cl c. Ca d. Cr e. Cd | | 30 | An element consists of two isotopes. The abundance of one isotope is 60.1% and its atomic mass is 68.9256 u. The atomic mass of the second isotope is 70.9247 u. What is the average atomic mass of the element? a. 69.7 u b. 69.9 u c. 70.1 u d. 84.1 u e. 139.9 u | | 3 | i. electron occupation of a bonding MO favors chemical bonding ii. electron occupation of an anti-bonding MO favors chemical bonding iii. electron occupation of a bonding MO favors chemical bonding iii. electron occupation of a bonding MO disfavors chemical bonding iv. electron occupation of an anti-bonding MO disfavors chemical bonding a. i only b. i and ii c. iv only d. i and iv | | 32 | 2. In formaldehyde, $H_2C=0$, the type of hybrid orbitals of carbon consistent with the molecular geometry is: a. sp b. sp^2 c. sp^3 | |
33. | Which of the following is the boundary surface for an atomic d -orbital? | |---------|--| | | 8 8 0 | | | 1 2 3 4 | | | a. 2 only b. 1 and 2 c. 3 only d. 4 only e. 2 and 3 | |
34. | Which of the following molecules would have the greatest polarity?
a. HF d. HI b. HCl e. F_2 c. HBr | |
35. | Which combination of atoms is most likely to produce a compound with ionic bonds? a. B and Cl b. S and H c. C and N d. Si and I e. Al and Br | |
36. | Write a balanced chemical equation for the reaction of copper with oxygen to yield copper(I) oxide a. $4 \text{ Cu}(s) + O_2(g) \rightarrow 2 \text{ Cu}_2O(s)$ b. $\text{Cu} + O_2(g) \rightarrow \text{Cu}O_2(s)$ c. $2 \text{ Cu}(s) + O_2(g) \rightarrow 2 \text{ Cu}O(s)$ d. $\text{Cu}(s) + O(g) \rightarrow \text{Cu}O(s)$ e. $2 \text{ Cu}(s) + O(g) \rightarrow 2 \text{ Cu}_2O(s)$ | |
37. | Identify the ions present in $KClO_4$. a. K^+ , Cl^- , and O^{2-} b. KCl^+ , and O_4^- c. K^+ and ClO_4^- d. KCl^{2+} and O_4^{2-} e. K^{2+} and ClO_4^{2-} | | 38. | What is the correct formula for an ionic compound that contains barium ions and phosphate ions?
a. $BaPO_4$
b. Ba_3P_2
c. $Ba_2(PO_4)_3$
d. $Ba(PO_4)_2$
e. $Ba_3(PO_4)_2$ | |
39. | Which molecule has an expanded octet ? a. OCl_2 c. SiH_4 b. IBr d. $(ClF_4)^-$ | |
40. | If 245 J is required to increase the temper | ature of 1 | 4.4 g of chromium by 38.0 K, what is the specific heat | |---------|--|------------|--| | | capacity of chromium? | | | | | a. 0.448 J/g·K | | | | | b. 2.23 J/g·K | | | | | c. 4.18 J/g·K | | | | | d. 4.68 J/g·K | | | | | e. 92.8 J/g·K | | | | 41. | The molecular geometry of BrF ₃ is: | | | | | a. trigonal plane | d. | trigonal bipyramidal | | | b. tetrahedral | e. | T-shaped | | | c. seesaw | | • | Final Answer Section ## MULTIPLE CHOICE | 1. | ANS: | В | PTS: | 4 | TOP: | 3.9 Oxidation-Reduction Reactions | |-----|------|---|------|---|------|--| | 2. | ANS: | A | PTS: | 4 | TOP: | 11.4 Gas Laws and Chemical Reactions | | 3. | ANS: | В | PTS: | 4 | TOP: | 3.6 Precipitation Reactions | | 4. | ANS: | E | PTS: | 4 | | | | 5. | ANS: | В | PTS: | 4 | | | | 6. | ANS: | В | PTS: | 4 | | | | 7. | ANS: | В | PTS: | 4 | | | | 8. | ANS: | A | PTS: | 4 | TOP: | 3.8 Gas-Forming Reactions | | 9. | ANS: | C | PTS: | 4 | TOP: | 11.4 Gas Laws and Chemical Reactions | | 10. | ANS: | D | PTS: | 4 | | | | 11. | ANS: | E | PTS: | 4 | | | | 12. | ANS: | A | PTS: | 4 | | | | 13. | ANS: | C | PTS: | 4 | TOP: | 9.2 Valence Bond Theory | | 14. | ANS: | В | PTS: | 4 | TOP: | 2.10 Describing Compound Formulas | | 15. | ANS: | C | PTS: | 4 | TOP: | 3.7 Acids and Bases | | 16. | ANS: | E | PTS: | 4 | TOP: | 2.10 Describing Compound Formulas | | 17. | ANS: | A | PTS: | 4 | | | | 18. | ANS: | D | PTS: | 4 | TOP: | 7.4 Electron Configurations of Ions | | 19. | ANS: | C | PTS: | 4 | TOP: | 11.2 Gas Laws: The Experimental Basis | | 20. | ANS: | C | PTS: | 4 | | | | 21. | ANS: | D | PTS: | 4 | TOP: | 3.6 Precipitation Reactions | | 22. | ANS: | A | PTS: | 4 | TOP: | 2.2 Atomic Number and Atomic Mass | | 23. | ANS: | В | PTS: | 4 | TOP: | 5.7 Enthalpy Calculations | | 24. | ANS: | D | PTS: | 4 | | | | 25. | ANS: | В | PTS: | 4 | | | | 26. | ANS: | A | PTS: | 4 | | | | 27. | ANS: | C | PTS: | 4 | TOP: | 5.7 Enthalpy Calculations | | 28. | ANS: | В | PTS: | 4 | TOP: | 9.2 Valence Bond Theory | | 29. | ANS: | E | PTS: | 4 | TOP: | 2.9 Atoms, Molecules, and the Mole | | 30. | ANS: | A | PTS: | 4 | TOP: | 2.4 Atom Mass | | 31. | ANS: | D | PTS: | 4 | | | | 32. | ANS: | В | PTS: | 4 | | | | 33. | ANS: | C | PTS: | 4 | | | | 34. | ANS: | A | PTS: | 4 | | | | 35. | ANS: | E | PTS: | 4 | TOP: | 8.1 Chemical Bond Formation | | 36. | ANS: | A | PTS: | 4 | TOP: | 3.2 Balancing Chemical Equations | | 37. | ANS: | C | PTS: | 4 | | 2.7 Ionic Compounds: Formulas, Names, and Properties | | 38. | ANS: | E | PTS: | 4 | TOP: | 2.7 Ionic Compounds: Formulas, Names, and Properties | | 39. | ANS: | D | PTS: | 4 | | | | 40. | ANS: | A | PTS: | 4 | TOP: | 5.2 Specific Heat Capacity: Heating and Cooling | | 41. | ANS: | E | PTS: | 4 | | | | | | | | | | |