- 1. Record your name and ID number on the scantron form.
- 2. Record the **test ID** letter in the top right box of the scantron form.
- 3. Record all of your answers on the scantron form.
- 4. Show your ID and scantron form to a TA.
- 5. Put your scantron form in the correct box by color.

You have 120 minutes. GOOD LUCK!

Final

- 1	XX 71 · 1		.1	, •	1 1	1	1 4 0	
1.	wnich	species in	tne	reaction	below	undergoes	reduction?	

$$2 \text{ Na(s)} + 2 \text{ H}_2\text{O(aq)} \rightarrow 2 \text{ Na}^+\text{(aq)} + 2 \text{ OH}^-\text{(aq)} + \text{H}_2\text{(g)}$$

- a. Na
- b. H₂O
- c. Na+
- d. OH-
- e. H₂

2. Ammonia gas is synthesized according to the balanced equation below.

$$N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$$

If $1.56 L N_2$ react with $4.32 L H_2$, what is the theoretical yield (in liters) of NH_3 ? Assume that the volumes of reactants and products are measured at the same temperature and pressure.

- a. 2.88 L
- b. 3.12 L
- c. 4.32 L
- d. 4.68 L
- e. 5.88 L

3. If an aqueous solution of ____ is added to an aqueous solution of BaCl₂ and Fe(NO₃)₃, the barium ion will precipitate, but the iron ion will remain in solution.

- a. NaOH
- b. Na₂SO₄
- c. K₃PO₄
- d. KCl
- e. $Pb(NO_3)_2$

4. Which of the following molecules is/are polar **molecule(s)**?

a. BF₃ only

d. C_2H_4 and BF_3

b. NH₃ only

e. NH₃ and ClF₃

c. C_2H_4 only

5. Which of these isoelectronic species has the **smallest radius**?

- (a) $K^+(b) Ca^{2+}(c) Cl^-(d) Ar$
- a. K+

c. Cl-

b. Ca²⁺

d. Ar

 6.	Which may be a correct Lewis structure for ca	c.	n disulfide, CS ₂ ? S=C=S
	b. 5.——5.	d.	••
 7.	Estimate ΔH in kJ for the following gas phase r CFCl ₃ + HF ==> CF ₂ Cl ₂ + HCl given the following bond energies in kJ/mol: C-F 485, H-F 565, C-Cl 331, H-Cl 431	eact	
	a. $+20$	d.	-180
	b20 c. +180	e.	+ 288
 8.	Write a balanced net ionic equation for the react acid. a. $HCO_3^-(aq) + CH_3CO_2H(aq) \rightarrow CH_3CO_2^-(ab)$ b. $2 NaHCO_3(aq) + CH_3CO_2H(aq) \rightarrow 2 Na_2CO_2$ c. $NaHCO_3(aq) + H^+(aq) \rightarrow H_2CO_3(s) + Na^+(ab)$ d. $HCO_3^-(aq) + H^+(aq) \rightarrow H_2O(\ell) + CO_2(g)$ e. $HCO_3^-(aq) + H^+(aq) \rightarrow H_2CO_3(aq)$	q) +	
9.	below: $2 \text{ NaN}_3(s) \rightarrow 2 \text{ Na}(s) + 3 \text{ N}_2(g)$		gen gas, according to the balanced chemical equation by the balance of 811 mm Hg at 25 °C? ($R =$
 10.	Which of the following sets of quantum number	rs re	efers to an atomic <i>d</i> -orbital?

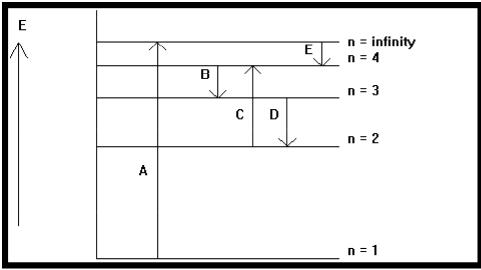
____ 11. A certain radiation has a wavelength (λ) of 3.40 x 10⁻⁷ meters. Calculate the energy in kJ of **one mole** of photons of this radiation.

a. 5.85 x 10⁻¹⁹

a. $n = 4, l = 0, m_l = 0$

b. $n = 4, l = 3, m_l = 1$

d. 1.20 x 10⁻⁴


c. $n = 3, l = 1, m_l = 1$ d. $n = 3, l = 2, m_l = 1$

b. 1.03 x 10³⁹

u. 1.20 X 10

c. 252

____ 12. Photons **absorbed** by the H-atom which have the **shortest** wavelength are represented by which lettered transition?

- a. A
- b. B
- c. C

- d. D
- e. E
- 13. Chloroform, CHCl₃, is a common organic solvent. Which of the following statements concerning chloroform is/are CORRECT?
 - 1. CHCl₃ has three isomers. For one isomer of CHCl₃, the chlorine atoms are all adjacent to each other and the molecule is polar.
 - 2. CHCl₃ has three isomers. For one isomer of CHCl₃, the chlorine atoms are in a trigonal arrangement, the molecule is nonpolar.
 - 3. The hybridization of the central carbon atom is sp^3 .
 - a. 1 only
 - b. 2 only
 - c. 3 only
 - d. 1 and 2
 - e. 1, 2, and 3
- 14. A molecule is found to contain 64.27% by mass C, 7.191% by mass H, and 28.54% by mass O. What is the empirical formula for this molecule?
 - a. C_2H_6O
 - b. C₃H₄O
 - c. $C_3H_8O_2$
 - d. $C_4H_6O_2$
 - e. $C_4H_8O_3$

 15.	What are the spectator ions in the reaction between aqueous hydrobromic acid and aqueous sodium hydroxide? a. Na^+ only b. H^+ and OH^- c. Na^+ and Br^- d. Br^- only e. H^+ , Br^- , Na^+ , and OH^-
16.	What is the mass percent of iodine in calcium iodide? a. 13.64% b. 24.00% c. 66.67% d. 76.00% e. 86.36%
 17.	Which of the following atomic orbitals has exactly one spherical node? a. 3p c. 3d b. 3s d. 4s
18.	What 2+ ion has the following ground state electron configuration?
19.	 Which of the following relationships is/are CORRECT for gases? The moles of a gas is inversely proportional to its volume (at constant pressure). The volume of a gas is inversely proportional to its temperature in kelvin (at constant pressure). The pressure of a gas is directly proportional to its temperature in kelvin (at constant volume). a. 1 only 2 only 3 only 1 and 2 2 and 3
 20.	What is the formal charge on each non-hydrogen atom in the Lewis structure for the neutral molecule HONS, shown below? H—O—N—S:

a. O = +5; N = +5; S = +7b. O = -1; N = -1; S = +2 $c. \quad O = +1; \ N = 0; \ S = -1 \\ d. \quad O = 0; \ N = +1; \ S = -1$

 21.		_	uation for the react	_	ueous calcium	n acetate and	d aqueous so	dium sulfide?
			$O_2^-(aq) \rightarrow Ca(CH_3)$					
		-	$\neg (aq) \rightarrow NaCH_3CO$ $\neg (aq) \rightarrow NaCH_3CO$	_				
		$Ca^{2+}(aq) + CH_3CO_2$ $Ca^{2+}(aq) + S^{2-}(aq) - Ca^{2+}(aq)$. •	¹ ₂ (8)				
		$Ca^{2+}(aq) + S^{2}(aq) - Ca^{2+}(aq) + 2Na^{+}(aq)$	` '					
	c. c	a (aq) + 21 1 a (ac	$q \rightarrow Carra_2(s)$					
 22.			trons, and electron	s are in a	yttrium-89 at	om?		
		9 protons, 50 neut						
		9 protons, 89 neut						
		9 protons, 50 neut 0 protons, 39 neut						
		9 protons, 11 neut						
22		-		1.43	-411-4	41		
 23.			change for the oxid			etic acia,		
			$O_2(g) \rightarrow CH_3COOF$ cal equations below		$O(\ell)$			
	_		$O_2(g) \rightarrow 2 \text{ CH}_3\text{CH}$		$H_{\bullet}O(\ell)$	$\Delta_r H^\circ = -40$	n 8 k I	
			$_{2}(g) \rightarrow 2 \text{ CH}_{3}\text{COO}$		= ::	$\Delta_r H^{\circ} = -58$ $\Delta_r H^{\circ} = -58$		
			2(g) /2 CH3COO	11(0)		Δ_{r} = -30	7.7 KJ	
	a. –	985.2 kJ						
	b. –	492.6 kJ						
		183.6 kJ						
		183.6 kJ						
	e. +	492.6 kJ						
 24.	Rank	S, Se, & Cl in orde	er of increasing (sn	naller <laı< th=""><th>ger) first ion</th><th>ization ene</th><th>rgy.</th><th></th></laı<>	ger) first ion	ization ene	rgy.	
	a. S	< Se < C1		C.	Cl < S < Se			
		e < Cl < S		d.	Se < S < Cl			
25	Elom	ents in nariadia ara	oung IA and VIIA	raaat syith	anah othar ta	form comr	sounds that or	o nanaliv
 25.		ovalent	oups IA and VIIA 1	c.	metallic	ionii comp	ounus mat ai	le usually
		onic		d.	nsoluble in v	vater		
 26.	Which	n of the structures	below is a valid Le	ewis dot s	tructure for X	leF ₄ ?		
		: F : .	:F: :	: F : 	: [:		: F :	
	: F-	Хе— ; : : ; —	-Xe—F: :F—	Хе— ; :	:F—Xe—	<u> </u>	-Xe-F:	
	:	F:	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	 F:	; ; F :		 :F:	
		 A	В	c	 D		E	
				.i	D			
	a. Ab. E			d. e.	D E			
	c. C			C.	ı			

2'	7. Which of the following chemical equations does not correspond to a standard molar enthalpy of formation? a. $Ca(s) + C(s) + 3/2 O_2(g) \rightarrow CaCO_3(s)$ b. $C(s) + O_2(g) \rightarrow CO_2(g)$ c. $NO(g) + 1/2 O_2(g) \rightarrow NO_2(g)$ d. $N_2(g) + 2 O_2(g) \rightarrow N_2O_4(g)$ e. $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(\ell)$
2:	3. One product of the combustion of ethane, C ₂ H ₆ , is carbon dioxide. What change in hybridization of the carbon occurs in this reaction? a. sp^3 to sp^2 b. sp^3 to sp c. sp^2 to sp^3 d. sp^2 to sp^3d^2 e. sp^2 to sp
29	 You have 0.575 mole of each of the following elements: C, Cl, Ca, Cr, and Cd. Which sample has the greatest mass? a. C b. Cl c. Ca d. Cr e. Cd
30	 An element consists of two isotopes. The abundance of one isotope is 60.1% and its atomic mass is 68.9256 u. The atomic mass of the second isotope is 70.9247 u. What is the average atomic mass of the element? a. 69.7 u b. 69.9 u c. 70.1 u d. 84.1 u e. 139.9 u
3	 i. electron occupation of a bonding MO favors chemical bonding ii. electron occupation of an anti-bonding MO favors chemical bonding iii. electron occupation of a bonding MO favors chemical bonding iii. electron occupation of a bonding MO disfavors chemical bonding iv. electron occupation of an anti-bonding MO disfavors chemical bonding a. i only b. i and ii c. iv only d. i and iv
32	2. In formaldehyde, $H_2C=0$, the type of hybrid orbitals of carbon consistent with the molecular geometry is: a. sp b. sp^2 c. sp^3

 33.	Which of the following is the boundary surface for an atomic d -orbital?
	8 8 0
	1 2 3 4
	a. 2 only b. 1 and 2 c. 3 only d. 4 only e. 2 and 3
 34.	Which of the following molecules would have the greatest polarity? a. HF d. HI b. HCl e. F_2 c. HBr
 35.	Which combination of atoms is most likely to produce a compound with ionic bonds? a. B and Cl b. S and H c. C and N d. Si and I e. Al and Br
 36.	Write a balanced chemical equation for the reaction of copper with oxygen to yield copper(I) oxide a. $4 \text{ Cu}(s) + O_2(g) \rightarrow 2 \text{ Cu}_2O(s)$ b. $\text{Cu} + O_2(g) \rightarrow \text{Cu}O_2(s)$ c. $2 \text{ Cu}(s) + O_2(g) \rightarrow 2 \text{ Cu}O(s)$ d. $\text{Cu}(s) + O(g) \rightarrow \text{Cu}O(s)$ e. $2 \text{ Cu}(s) + O(g) \rightarrow 2 \text{ Cu}_2O(s)$
 37.	Identify the ions present in $KClO_4$. a. K^+ , Cl^- , and O^{2-} b. KCl^+ , and O_4^- c. K^+ and ClO_4^- d. KCl^{2+} and O_4^{2-} e. K^{2+} and ClO_4^{2-}
38.	What is the correct formula for an ionic compound that contains barium ions and phosphate ions? a. $BaPO_4$ b. Ba_3P_2 c. $Ba_2(PO_4)_3$ d. $Ba(PO_4)_2$ e. $Ba_3(PO_4)_2$
 39.	Which molecule has an expanded octet ? a. OCl_2 c. SiH_4 b. IBr d. $(ClF_4)^-$

 40.	If 245 J is required to increase the temper	ature of 1	4.4 g of chromium by 38.0 K, what is the specific heat
	capacity of chromium?		
	a. 0.448 J/g·K		
	b. 2.23 J/g·K		
	c. 4.18 J/g·K		
	d. 4.68 J/g·K		
	e. 92.8 J/g·K		
41.	The molecular geometry of BrF ₃ is:		
	a. trigonal plane	d.	trigonal bipyramidal
	b. tetrahedral	e.	T-shaped
	c. seesaw		•

Final Answer Section

MULTIPLE CHOICE

1.	ANS:	В	PTS:	4	TOP:	3.9 Oxidation-Reduction Reactions
2.	ANS:	A	PTS:	4	TOP:	11.4 Gas Laws and Chemical Reactions
3.	ANS:	В	PTS:	4	TOP:	3.6 Precipitation Reactions
4.	ANS:	E	PTS:	4		
5.	ANS:	В	PTS:	4		
6.	ANS:	В	PTS:	4		
7.	ANS:	В	PTS:	4		
8.	ANS:	A	PTS:	4	TOP:	3.8 Gas-Forming Reactions
9.	ANS:	C	PTS:	4	TOP:	11.4 Gas Laws and Chemical Reactions
10.	ANS:	D	PTS:	4		
11.	ANS:	E	PTS:	4		
12.	ANS:	A	PTS:	4		
13.	ANS:	C	PTS:	4	TOP:	9.2 Valence Bond Theory
14.	ANS:	В	PTS:	4	TOP:	2.10 Describing Compound Formulas
15.	ANS:	C	PTS:	4	TOP:	3.7 Acids and Bases
16.	ANS:	E	PTS:	4	TOP:	2.10 Describing Compound Formulas
17.	ANS:	A	PTS:	4		
18.	ANS:	D	PTS:	4	TOP:	7.4 Electron Configurations of Ions
19.	ANS:	C	PTS:	4	TOP:	11.2 Gas Laws: The Experimental Basis
20.	ANS:	C	PTS:	4		
21.	ANS:	D	PTS:	4	TOP:	3.6 Precipitation Reactions
22.	ANS:	A	PTS:	4	TOP:	2.2 Atomic Number and Atomic Mass
23.	ANS:	В	PTS:	4	TOP:	5.7 Enthalpy Calculations
24.	ANS:	D	PTS:	4		
25.	ANS:	В	PTS:	4		
26.	ANS:	A	PTS:	4		
27.	ANS:	C	PTS:	4	TOP:	5.7 Enthalpy Calculations
28.	ANS:	В	PTS:	4	TOP:	9.2 Valence Bond Theory
29.	ANS:	E	PTS:	4	TOP:	2.9 Atoms, Molecules, and the Mole
30.	ANS:	A	PTS:	4	TOP:	2.4 Atom Mass
31.	ANS:	D	PTS:	4		
32.	ANS:	В	PTS:	4		
33.	ANS:	C	PTS:	4		
34.	ANS:	A	PTS:	4		
35.	ANS:	E	PTS:	4	TOP:	8.1 Chemical Bond Formation
36.	ANS:	A	PTS:	4	TOP:	3.2 Balancing Chemical Equations
37.	ANS:	C	PTS:	4		2.7 Ionic Compounds: Formulas, Names, and Properties
38.	ANS:	E	PTS:	4	TOP:	2.7 Ionic Compounds: Formulas, Names, and Properties
39.	ANS:	D	PTS:	4		
40.	ANS:	A	PTS:	4	TOP:	5.2 Specific Heat Capacity: Heating and Cooling
41.	ANS:	E	PTS:	4		