1. Record your name and ID number on the scantron form.
2. Record the test ID letter in the top right box of the scantron form.
3. Record all of your answers on the scantron form.
4. Show your ID and scantron form to a TA.
5. Put your scantron form in the correct box by color.

You have 120 minutes. GOOD LUCK!

Final
\qquad 1. Which species in the reaction below undergoes reduction?

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

a. Na
b. $\mathrm{H}_{2} \mathrm{O}$
c. Na^{+}
d. OH^{-}
e. H_{2}
\qquad 2. Ammonia gas is synthesized according to the balanced equation below.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

If $1.56 \mathrm{~L} \mathrm{~N}_{2}$ react with $4.32 \mathrm{~L} \mathrm{H}_{2}$, what is the theoretical yield (in liters) of NH_{3} ? Assume that the volumes of reactants and products are measured at the same temperature and pressure.
a. $\quad 2.88 \mathrm{~L}$
b. $\quad 3.12 \mathrm{~L}$
c. $\quad 4.32 \mathrm{~L}$
d. $\quad 4.68 \mathrm{~L}$
e. $\quad 5.88 \mathrm{~L}$
\qquad 3. If an aqueous solution of \qquad is added to an aqueous solution of BaCl_{2} and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$, the barium ion will precipitate, but the iron ion will remain in solution.
a. NaOH
b. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
c. $\mathrm{K}_{3} \mathrm{PO}_{4}$
d. KCl
e. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
4. Which of the following molecules is/are polar molecule(s)?
$\begin{array}{llll}\mathrm{BF}_{3} & \mathrm{ClF}_{3} & \mathrm{NH}_{3} & \mathrm{C}_{2} \mathrm{H}_{4}\end{array}$
a. BF_{3} only
b. NH_{3} only
c. $\mathrm{C}_{2} \mathrm{H}_{4}$ only
d. $\mathrm{C}_{2} \mathrm{H}_{4}$ and BF_{3}
e. NH_{3} and ClF_{3}
5. Which of these isoelectronic species has the smallest radius?
(a) K^{+}(b) Ca^{2+} (c) Cl^{-}(d) Ar
a. K^{+}
b. Ca^{2+}
c. Cl^{-}
d. Ar
6. Which may be a correct Lewis structure for carbon disulfide, CS_{2} ?
a.

c.

\qquad 7. Estimate ΔH in kJ for the following gas phase reaction:
$\mathrm{CFCl}_{3}+\mathrm{HF}==>\mathrm{CF}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}$
given the following bond energies in $\mathrm{kJ} / \mathrm{mol}$:
C-F 485, H-F 565, C-Cl 331, H-Cl 431
a. +20
b. -20
c. +180
d. -180
e. +288
8. Write a balanced net ionic equation for the reaction of aqueous solutions of baking soda $\left(\mathrm{NaHCO}_{3}\right)$ and acetic acid.
a. $\quad \mathrm{HCO}_{3}^{-}-(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})$
b. $2 \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{CH}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})$
c. $\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{Na}^{+}(\mathrm{aq})$
d. $\mathrm{HCO}_{3}^{-}-(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{CO}_{2}(\mathrm{~g})$
e. $\quad \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
9. Sodium azide decomposes rapidly to produce nitrogen gas, according to the balanced chemical equation below:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
What mass of sodium azide will inflate a 56.6 L airbag for a car to a pressure of 811 mm Hg at $25{ }^{\circ} \mathrm{C}$? $(R=$ $0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K} ; 760 \mathrm{mmHg}=1 \mathrm{~atm}$)
a. $\quad 17.6 \mathrm{~g}$
b. 39.5 g
c. 107 g
d. 161 g
e. 241 g
10. Which of the following sets of quantum numbers refers to an atomic d-orbital?
a. $n=4, l=0, m_{l}=0$
b. $n=4, l=3, m_{l}=1$
c. $n=3, l=1, m_{l}=1$
d. $n=3, l=2, m_{l}=1$
11. A certain radiation has a wavelength (λ) of 3.40×10^{-7} meters. Calculate the energy in kJ of one mole of photons of this radiation.
a. $\quad 5.85 \times 10^{-19}$
b. $\quad 1.03 \times 10^{39}$
c. 252
d. 1.20×10^{-4}
e. 352
12. Photons absorbed by the H -atom which have the shortest wavelength are represented by which lettered transition?

a. A
d. D
b. B
e. E
c. C
13. Chloroform, CHCl_{3}, is a common organic solvent. Which of the following statements concerning chloroform is/are CORRECT?

1. CHCl_{3} has three isomers. For one isomer of CHCl_{3}, the chlorine atoms are all adjacent to each other and the molecule is polar.
2. CHCl_{3} has three isomers. For one isomer of CHCl_{3}, the chlorine atoms are in a trigonal arrangement, the molecule is nonpolar.
3. The hybridization of the central carbon atom is $s p^{3}$.
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 1,2 , and 3
4. A molecule is found to contain 64.27% by mass $\mathrm{C}, 7.191 \%$ by mass H , and 28.54% by mass O . What is the empirical formula for this molecule?
a. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
b. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$
c. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{2}$
d. $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$
e. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$
5. What are the spectator ions in the reaction between aqueous hydrobromic acid and aqueous sodium hydroxide?
a. Na^{+}only
b. H^{+}and OH^{-}
c. Na^{+}and Br^{-}
d. Br^{-}only
e. $\mathrm{H}^{+}, \mathrm{Br}^{-}, \mathrm{Na}^{+}$, and OH^{-}
6. What is the mass percent of iodine in calcium iodide?
a. 13.64%
b. 24.00%
c. 66.67%
d. 76.00%
e. 86.36%
7. Which of the following atomic orbitals has exactly one spherical node?
a. $3 p$
c. 3d
b. 3 s
d. 4 s
8. What $2+$ ion has the following ground state electron configuration?
[Kr]

a. Cd^{2+}
b. Sr^{2+}
c. Zn^{2+}
d. Sn^{2+}
e. None
9. Which of the following relationships is/are CORRECT for gases?
10. The moles of a gas is inversely proportional to its volume (at constant pressure).
11. The volume of a gas is inversely proportional to its temperature in kelvin (at constant pressure).
12. The pressure of a gas is directly proportional to its temperature in kelvin (at constant volume).
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 2 and 3
13. What is the formal charge on each non-hydrogen atom in the Lewis structure for the neutral molecule HONS, shown below?

a. $\quad \mathrm{O}=+5 ; \mathrm{N}=+5 ; \mathrm{S}=+7$
b. $\quad O=-1 ; N=-1 ; S=+2$
c. $\quad \mathrm{O}=+1 ; \mathrm{N}=0 ; \mathrm{S}=-1$
d. $\quad \mathrm{O}=0 ; \mathrm{N}=+1 ; \mathrm{S}=-1$
14. What is the net ionic equation for the reaction of aqueous calcium acetate and aqueous sodium sulfide ?
a. $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}(\mathrm{~s})$
b. $\quad \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{aq})$
c. $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{CO}_{2}(\mathrm{~s})$
d. $\quad \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaS}(\mathrm{s})$
e. $\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq}) \rightarrow \mathrm{CaNa}_{2}(\mathrm{~s})$
15. How many protons, neutrons, and electrons are in a yttrium-89 atom?
a. 39 protons, 50 neutrons, 39 electrons
b. 39 protons, 89 neutrons, 39 electrons
c. 39 protons, 50 neutrons, 50 electrons
d. 50 protons, 39 neutrons, 50 electrons
e. 39 protons, 11 neutrons, 39 electrons
16. Determine the enthalpy change for the oxidation of ethanol to acetic acid,

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\ell)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{COOH}(\ell)+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

given the thermochemical equations below.

$$
\begin{array}{ll}
2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\ell)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{CHO}(\ell)+2 \mathrm{H}_{2} \mathrm{O}(\ell) & \Delta_{r} H^{\circ}=-400.8 \mathrm{~kJ} \\
2 \mathrm{CH}_{3} \mathrm{CHO}(\ell)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COOH}(\ell) & \Delta_{r} H^{\circ}=-584.4 \mathrm{~kJ}
\end{array}
$$

a. $\quad-985.2 \mathrm{~kJ}$
b. $\quad-492.6 \mathrm{~kJ}$
c. $\quad-183.6 \mathrm{~kJ}$
d. $\quad+183.6 \mathrm{~kJ}$
e. +492.6 kJ
24. Rank $\mathrm{S}, \mathrm{Se}, \& \mathrm{Cl}$ in order of increasing (smaller<larger) first ionization energy.
a. $\quad \mathrm{S}<\mathrm{Se}<\mathrm{Cl}$
b. $\quad \mathrm{Se}<\mathrm{Cl}<\mathrm{S}$
c. $\quad \mathrm{Cl}<\mathrm{S}<\mathrm{Se}$
d. $\quad \mathrm{Se}<\mathrm{S}<\mathrm{Cl}$
25. Elements in periodic groups IA and VIIA react with each other to form compounds that are usually
a. covalent
c. metallic
b. ionic
d. nsoluble in water
26. Which of the structures below is a valid Lewis dot structure for XeF_{4} ?

A

B

C

D

E
a. A
d. D
b. B
e. E
c. C
27. Which of the following chemical equations does not correspond to a standard molar enthalpy of formation?
a. $\mathrm{Ca}(\mathrm{s})+\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$
b. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
c. $\quad \mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})$
d. $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
e. $\quad \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)$
28. One product of the combustion of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$, is carbon dioxide. What change in hybridization of the carbon occurs in this reaction?
a. $s p^{3}$ to $s p^{2}$
b. $s p^{3}$ to $s p$
c. $s p^{2}$ to $s p^{3}$
d. $s p^{2}$ to $s p^{3} d^{2}$
e. $s p^{2}$ to $s p$
29. You have 0.575 mole of each of the following elements: $\mathrm{C}, \mathrm{Cl}, \mathrm{Ca}, \mathrm{Cr}$, and Cd . Which sample has the greatest mass?
a. C
b. Cl
c. Ca
d. Cr
e. Cd
30. An element consists of two isotopes. The abundance of one isotope is 60.1% and its atomic mass is 68.9256 u . The atomic mass of the second isotope is 70.9247 u . What is the average atomic mass of the element?
a. $\quad 69.7$ u
b. 69.9 u
c. 70.1 u
d. 84.1 u
e. $\quad 139.9 \mathrm{u}$
31. Which of the following statements about molecular orbital theory (MO theory) is/are true?
i. electron occupation of a bonding MO favors chemical bonding
ii. electron occupation of an anti-bonding MO favors chemical bonding
iii. electron occupation of a bonding MO disfavors chemical bonding
iv. electron occupation of an anti-bonding MO disfavors chemical bonding
a. i only
c. iv only
b. i and ii
d. i and iv
32. In formaldehyde, $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$, the type of hybrid orbitals of carbon consistent with the molecular geometry is:
a. sp
b. sp^{2}
c. sp^{3}
d. $\quad \mathrm{sp}^{3} \mathrm{~d}$
e. $\quad s p^{3} d^{2}$
33. Which of the following is the boundary surface for an atomic d-orbital?

1

2

3

4
a. 2 only
b. 1 and 2
c. 3 only
d. 4 only
e. 2 and 3
34. Which of the following molecules would have the greatest polarity?
a. HF
d. HI
b. HCl
e. F_{2}
c. HBr
35. Which combination of atoms is most likely to produce a compound with ionic bonds?
a. B and Cl
b. S and H
c. C and N
d. Si and I
e. Al and Br
36. Write a balanced chemical equation for the reaction of copper with oxygen to yield copper(I) oxide.
a. $\quad 4 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}$ (s)
b. $\mathrm{Cu}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuO}_{2}$ (s)
c. $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{s})$
d. $\quad \mathrm{Cu}(\mathrm{s})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CuO}(\mathrm{s})$
e. $2 \mathrm{Cu}(\mathrm{s})+\mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$
37. Identify the ions present in KClO_{4}.
a. $\quad \mathrm{K}^{+}, \mathrm{Cl}^{-}$, and O^{2-}
b. KCl^{+}, and O_{4}^{-}
c. K^{+}and ClO_{4}^{-}
d. KCl^{2+} and $\mathrm{O}_{4}{ }^{2-}$
e. $\quad \mathrm{K}^{2+}$ and $\mathrm{ClO}_{4}{ }^{2-}$
38. What is the correct formula for an ionic compound that contains barium ions and phosphate ions?
a. BaPO_{4}
b. $\mathrm{Ba}_{3} \mathrm{P}_{2}$
c. $\mathrm{Ba}_{2}\left(\mathrm{PO}_{4}\right)_{3}$
d. $\mathrm{Ba}\left(\mathrm{PO}_{4}\right)_{2}$
e. $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
39. Which molecule has an expanded octet?
a. OCl_{2}
b. IBr
c. SiH_{4}
d. $\left(\mathrm{ClF}_{4}\right)^{-}$
40. If 245 J is required to increase the temperature of 14.4 g of chromium by 38.0 K , what is the specific heat capacity of chromium?
a. $\quad 0.448 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
b. $\quad 2.23 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
c. $\quad 4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
d. $\quad 4.68 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
e. $\quad 92.8 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
41. The molecular geometry of BrF_{3} is:
a. trigonal plane
d. trigonal bipyramidal
b. tetrahedral
e. T-shaped
c. seesaw

Final Answer Section

MULTIPLE CHOICE

1. ANS: B
2. ANS: A
3. ANS: B
4. ANS: E
5. ANS: B
6. ANS: B
7. ANS: B
8. ANS: A
9. ANS: C
10. ANS: D
11. ANS: E
12. ANS: A
13. ANS: C
14. ANS: B
15. ANS: C
16. ANS: E
17. ANS: A
18. ANS: D
19. ANS: C
20. ANS: C
21. ANS: D
22. ANS: A
23. ANS: B
24. ANS: D
25. ANS: B
26. ANS: A
27. ANS: C
28. ANS: B
29. ANS: E
30. ANS: A
31. ANS: D
32. ANS: B
33. ANS: C
34. ANS: A
35. ANS: E
36. ANS: A
37. ANS: C
38. ANS: E
39. ANS: D
40. ANS: A
41. ANS: E

PTS: 4

TOP: 3.9 Oxidation-Reduction Reactions
TOP: 11.4 Gas Laws and Chemical Reactions
TOP: 3.6 Precipitation Reactions

TOP: 3.8 Gas-Forming Reactions
TOP: 11.4 Gas Laws and Chemical Reactions

TOP: 9.2 Valence Bond Theory
TOP: 2.10 Describing Compound Formulas
TOP: 3.7 Acids and Bases
TOP: 2.10 Describing Compound Formulas
TOP: 7.4 Electron Configurations of Ions
TOP: 11.2 Gas Laws: The Experimental Basis
TOP: 3.6 Precipitation Reactions
TOP: 2.2 Atomic Number and Atomic Mass
TOP: 5.7 Enthalpy Calculations

TOP: 5.7 Enthalpy Calculations
TOP: 9.2 Valence Bond Theory
TOP: 2.9 Atoms, Molecules, and the Mole
TOP: 2.4 Atom Mass

TOP: 8.1 Chemical Bond Formation
TOP: 3.2 Balancing Chemical Equations
TOP: 2.7 Ionic Compounds: Formulas, Names, and Properties
TOP: 2.7 Ionic Compounds: Formulas, Names, and Properties
TOP: 5.2 Specific Heat Capacity: Heating and Cooling

