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21.1  Introduction 
 

At the beginning of Bever’s career it was possible to do both phonology and syntax: just 

three years separate Aspects (Chomsky, 1965) and SPE (Chomsky and Halle, 1968); four 

years separate Katz and Postal (1964) and Postal (1968); three years separate Bever (1967) 

from Bever (1970). The other contributions to this volume deal mostly with The horse 

raced past the barn fell and its fallout; we will instead try to update some of the 

phonological points made in Bever (1967). In arguments later cited in SPE and many other 

places, Bever (1967) argues for abstract, opaque phonological analyses of Menomini, 

specifically citing simplicity of grammatical description as a major driving force for the 

analysis (Bever, 1967: 18-20). These ideas have once again gained prominence with  the 

rise of Bayesian approaches to problems of parsimony (Jaynes, 2003, Dowe, Gardner, and 

Oppy, 2007; on parsimony in general, see Sober, 1975, 1988, 1990, 1994), and the 

Bayesian approaches yield a new (probabilistic) understanding of evaluation measures and 

their relation to computational learning theories (Solomonoff, 1964ab, Rissanen, 1978). In 

addition to providing new formal tools for evaluating representational complexity, 

Bayesian approaches also highlight another idea championed by Bever, analysis-by-



synthesis (Bever and Poeppel, 2010), by mathematically relating posterior probability 

(analysis) and likelihood (synthesis). In this chapter we capitalize on the formal tools from 

Bayesian approaches to inference to offer a new understanding of an argument for opaque 

phonological analyses, which we will illustrate with a problem from Kalaallisut.   

In the study of human language, as in any science, the data is noisy, is typically 

many layers removed from the real object of study, and for any number of other reasons, 

tends to underdetermine the theory. Thus, as in any science, we must constantly engage in a 

process analogous to what statisticians call ‘model comparison’, examining two or more 

competing theories and evaluating them to see which provides a better explanation of the 

data. In the study of human cognition, however, model comparison has a second 

significance, entirely separate from the ordinary workings of science. A productive 

language system develops over time in a child in response to linguistic input; the diversity 

of human languages and the uniformity of speakers’ generalizations within a linguistic 

community show that the language system internalized by the learner (the internal model) 

depends on the input (the data). Implicitly or explicitly, then, the language learner is 

making comparisons between possible models of the ambient language, while the language 

scientist makes comparisons between possible models of the language learner. 

The search for formal principles of discovery has always been of great interest 

within linguistics, from Harris’s (1951) algorithmic recommendations for the analyst, 

through Chomsky and Halle’s (1968) evaluation measure, to modern simulated parameter 

learners like those of Dresher and Kaye (1990) and Yang (2002). Yet the analyst attempting 

to deduce the correct mental analysis of some language still relies largely on subjective 

criteria; it is safe to say that, although model comparison is an integral part of linguistics, 

our understanding of the human language learner’s principles of model comparison have 



yet to reach the stage where they are useful to linguists. At the same time, however, the 

science of complex inference is a well developed one, with much to offer the cognitive 

scientist. One of the most popular modern approaches is the Bayesian approach, which 

leverages a particular kind of probabilistic reasoning. The main insight behind probabilistic 

approaches to model comparison is that the problems involve uncertainty, for the analyst 

and for the learner alike; probability theory is the simplest and most widely accepted formal 

theory of reasoning under uncertainty.  

To demonstrate the utility of this reasoning for language scientists, we take a 

standard problem of abstractness in phonological grammar as an example problem. Since 

the publication of the Sound Pattern of English (SPE; Chomsky and Halle, 1968), 

phonologists have been deeply concerned with the question of what constitutes an 

appropriate use of abstractness in a phonological analysis (Kiparsky, 1968, 1971; Hooper, 

1976). More recently, many researchers formulating grammars in Optimality Theory (OT; 

Prince and Smolensky, 1993) have avoided analyses which crucially rely on opaque 

process interactions (Sanders, 2003). This is because in its original formulation, OT 

captures only surface-true interactions among processes, although a number of 

contemporary versions of OT are specifically aimed at allowing derivational analyses to be 

stated (McCarthy 1999, 2007, 2010). 

Here we focus on a typical case of abstractness in phonology, a simple apparent 

case of opacity in Kalaallisut, an Inuit language of Greenland, and argue from Bayesian 

reasoning that opaque or non-surface-true representations of the Kalaallisut vowel system 

are preferred. Although a full analysis is beyond the scope of this current paper, our goal 

here is to highlight the way this reasoning works. In particular, we highlight the fact that a 

Bayesian learner will, all other things being equal, favour simpler models; that is, if we 



assume the axioms of decision making under uncertainty that underlie this approach, we 

immediately impute an Occam's Razor like simplicity bias to the learner. We show how a 

particular set of assumptions about the mechanisms of phonological grammar would 

compel an ideal learner to arrive at an abstract solution simply by force of these well-

motivated domain-general reasoning strategies. We discuss the implications for the study of 

language acquisition. 

 

21.2  Kalaallisut phonology 

Kalaallisut is an Inuit language spoken in Greenland; it has been the sole official language 

of Greenland since 2009. The inventory of Kalaallisut, closely following Rischel (1975), is 

given in Table 21.1 (omitting length distinctions, which are contrastive for both vowels and 

consonants, but irrelevant here).1 

The vowel inventory shown in Table 21.1 contains three phonemes, /i/ , /u/ , and 

/a/ . As in many languages with uvular consonants, including the other Inuit languages, 

vowels are affected by following uvulars, being subject to the process described by the rule 

in (1) (Rischel, 1975; Dorais, 1986). 

(1)  [ ]+syll  → [ ]+RTR   ⧸ ──  
⎣⎢
⎢⎡

⎦⎥
⎥⎤

-syll
+cons
+RTR

  

 
The existence of the process in (1) means that the vowels of Kalaallisut each have a 

retracted allophone. We will notate these segments as [ e ] , [ o ] , and [ ɑ ]  for the sake of 

presentational convenience, and not to make any precise claims about the phonetic values 

of these variants. Examples are given in (2)–(3) (examples from Bittner, undated).2 

(2)  ani + pallag + pu + q → [anipaɬɬappoq], ‘went quickly’ 
 



(3)  salu + qi + llu + ni + lu → [saloqalunilu], ‘and he is very thin’ 
 
In addition to vowel shifts before uvular consonants, processes of regressive 

consonant assimilation are also common across the Inuit languages, and are most total and 

apply most liberally in the easternmost dialects (Dorais, 1986), including Kalaallisut. 

Importantly, in addition to total regressive assimilation targeting all other classes of 

consonants, Kalaallisut has regressive assimilation targeting uvulars, as seen in (4)–(6). 

(4)  aŋala + taʁ + pu + q → [aŋalasɑppoq], ‘he always travelled’  

(5)  uqaʁ + pu + q → [oqɑppoq], ‘he said’  

(6)  sinig + niaʁ + tu + t → [sininniɑttut], ‘he said’  

 
As can be seen in this second set of examples, these two rules can both apply 

(indeed, the syllable structure of the language makes it impossible to construct an example 

of assimilation of a uvular in which the retraction rule would not apply), and the resulting 

interaction is opaque (a case of counterbleeding in the sense of Kiparsky, 1971). 

Kalaallisut opacity is a somewhat nuanced, however, and helps to illustrate some of 

the controversy surrounding this kind of abstractness. The nature of the assimilation of 

uvulars in Kalaallisut has been a matter of some discussion, for two reasons. First, because, 

unlike all other consonant assimilations, the underlying uvular consonant rather than the 

surface assimilated consonant is marked in Kalaallisut orthography, so that [sininniɑttut] is 

written as sininniartut, with the assimilation marked for the [g] but not the [ʁ]. Second, it is 

often a detectably incomplete neutralization, even to non-native speakers. Phonetic analysis 

by Mase and Rischel (1971) revealed no evidence of frication in assimilated /ʁ/, but our 

own informal listening suggests that some trace of uvularity remains audible in a 

substantial number of cases. 



Rischel (1974) proposes several alternate analyses of this fact. In one, the surface 

uvularity is cued entirely by the vowel quality. The assimilation in Kalaallisut is across-the-

board total assimilation, as in (7). 

                                             C           C 

(7)                                          
                                                         Root 
 
This analysis claims that the interaction between the two processes is an opaque 

one, as shown in (8). 

 
(8)   

 
 
 

 
Though the opaque analysis is one theoretical possibility, there is another 

grammatical analysis that has been preferred. Under Rischel’s preferred analysis, 

assimilation spreads all features but [RTR] (Rischel's [± retracted]). Under this analysis, the 

underlying uvular consonant retains its [+RTR] feature after assimilation, and there is no 

opacity. 

The phonetic question of whether tongue retraction is detectable on the surface ‘in 

the consonant’ or not is a crucial one, and it is characteristic of the debate that takes place 

in these cases. In this case, it is quite a difficult one, given the results of Alwan (1999), 

which suggest that, in the absence of a burst, the main cues to uvular place information are 

to be found in the first formant of an adjacent vowel. Nevertheless, assuming that 

languages can make a contrastive difference between uvular consonants and non-uvular 

consonants which happen to be preceded by [+RTR] vowels, the question is empirical and 

as yet unresolved (we recommend further MRI studies of tongue root position). It is fair to 

 /uqaʁpuq/ 
(1)  [oqɑʁpoq] 
(7)  [oqɑppoq] 
 [oqɑppoq] 



say that much rests on empirical outcomes like this, as true cases of counterbleeding are a 

problem for monostratal theories of phonology (Prince and Smolensky, 1993), and 

substantial effort has been devoted to denying their existence, sometimes by appealing to 

subtle phonetic arguments. 

What follows is a theoretical argument. If we assume that uvularity is obscured ‘in 

the consonant’ in at least some tokens, then it is reasonable to call the current case in some 

sense opaque. In the current paper we are primarily interested here in examining one sort of 

argument that has been made against these kinds of opaque interactions. In the absence of 

phonetic facts that might undermine the case for true surface opacity, researchers have 

given ‘transparent’ analyses of opacity in which the ‘opaque’ segments have been 

reanalyzed as independent phonemes. 

For the well-known case of Canadian Raising, for example, where ]aw[  and ]aj[  

alternate with [ʌw] and [ʌj] before voiceless stops even when they are neutralized by a 

subsequent flapping rule, Mielke, Anderson and Hume (2003) propose that, rather than a 

single pair of phonemes, /aw/  and /aj/ , subject to a raising process, there are four 

phonemes: /aw/ , /aj/ , /ʌw/, and /ʌj/. Storing the surface form in this manner is possible 

only in cases where the alternation does not occur across a morpheme boundary. For cases 

in which the raising does apply across a morpheme boundary, the grammar must preserve 

both processes. The facts are contested in the case of Canadian English (see Idsardi, 2006). 

Importantly for present purposes, the above examples demonstrate that both retraction and 

assimilation processes must apply across morpheme boundaries in Kalaallisut. 

 Our focus here is on this second kind of argument. Let us therefore assume that (7) 

is basically correct, and that the assimilation is truly total for uvulars, at least in some cases. 



If the set of Kalaallisut vowels is as given in Table 21.1, then we have an  opaque analysis; 

but there is clearly an alternate analysis—a  transparent analysis—in which both rules still 

exist (though now perhaps as rules of allomorph selection), but the Kalaallisut vowels are 

as in Table 21.2. 

Under such an analysis, the underlying form for a word like [oqɑppoq] would be 

/oqɑʁ + pu + q/, with stored retracted vowels in the first morpheme (guaranteed to be stored 

under the Lexicon Optimization hypothesis of Prince and Smolensky, 1993). By the 

process corresponding to (1), we get a retracted vowel in the second morpheme; we get 

assimilation of the final consonant of the first morpheme by the process corresponding to 

(7). Sometimes we have morphological evidence sufficient to rule out the transparent 

analysis. However in Kalaallisut, we do not, despite its highly agglutinative nature, as we 

would need a sequence /CQV/ ++ , where Q is either [ q ]  or [ ʁ ] . The only such 

morpheme we are aware of is the third person singular morpheme -/q/, but this always 

appears word-finally, and consequently cannot display assimilation. 

This is a typical case of abstractness, an apparent case of opacity in phonology. 

There are several possible analyses; here we focus on two. The transparent analysis has 

more phonemes (possible lexical segments); the opaque anlaysis relies on interesting non-

trivial properties of complex phonological systems. There is an intuition that one is 

somehow ‘closer’ to what is observed than the other, but the question of which analysis a 

human learner would select, particularly given that the crucial data appears to be obscured, 

is an empirical one. This is exactly where we would like some other facts about the human 

inference system (the language acquisition device) to come to bear. This is a case where a 

theory of inference under uncertainty would be informative, because there are multiple 



reasonable solutions. In this case, we argue that Bayesian inference can be brought to bear 

directly on the question of abstractness. 

 

21.3  Bayesian reasoning in linguistics 

In the previous section we have demonstrated a typical case of model selection in 

linguistics. The decision between transparent and opaque models of the Kalaalisut vowel 

system hinges crucially on a fundamental and divisive issue in the field, that of 

abstractness. These two models pit storage against computation. In this, we would benefit 

from having an independently motivated theoretical stance on the learner. 

The approach we take is to study an ideal learner. The problem of language 

acquisition is the problem of searching for a grammar that is in some sense an optimal 

model with respect to the primary linguistic data. One theoretical approach to language 

acquisition is to focus on the consequences of various search procedures; this is the general 

character of the proposals made by Dresher and Kaye (1990), Clark (1992), Niyogi and 

Berwick (1996), and Yang (2002), among others. Each of these proposals describes a 

different algorithm for exploring the set of possible grammars (in the case of Yang, 2002, a 

probabilistic search). On the other hand, the phonological category acquisition work of 

deBoer and Kuhl (2001), Vallabha et al., (2007), has taken a different approach. This 

literature applies standard statistical techniques to a learning problem—in this case, the 

problem of determining the location and extent of vowel categories in a language in 

acoustic space—in order to approximate some theoretically optimal solution. By 

proceeding in this way, these researchers have drawn the conclusion that the search 

problems under consideration are in principle solvable in a relatively straightforward search 

space (in the vowel-learning case, the space of possible formant values, plus several other 



acoustic parameters); similarly, by adapting these same models to deal with more 

complicated vowel systems and more realistic data sets, Dillon, Dunbar, and Idsardi (to 

appear), have drawn inferences about what restrictions need to be put on the hypothesis 

space a priori for phonological category learning. 

Here we present a study of the second kind. Rather than specifying the mechanism 

by which the learner reaches the adult state, we will describe the learning problem at an 

abstract level and attempt to find a theoretically optimal solution, in the hope that this will 

shed light on the question of what is learnable in phonological grammar (see Hayes and 

Wilson, 2008 for a proposal along similar lines emphasizing the use of a maximum entropy 

principle). In what follows, we state how this kind of reasoning works. We show how an 

Occam's Razor effect is observed as a result. We then state certain theoretical assumptions 

which will allow us to highlight this approach in grammatical inference; finally, we spell 

out some details in the current case. 

 

21.3.1  Probability 

In this section we provide a brief overview of the elements of probabilistic reasoning, using 

examples from phonology. 

Let us begin with the phonetics-phonology mapping. Following standard 

assumptions, we assume that the mapping from phonetic to phonological representations is 

a mapping from continuous values (the outputs of lower-level audition) to discrete values 

(the alphabet of the phonological system). On this assumption, the learner’s task is to 

determine exactly how this mapping is structured. This follows from the fact that identical 

phonetic values are mapped to different phonological categories across languages, a fact 

which can be seen both in the operation of phonological processes and in speech perception 



(Stevens et al., 1969; Werker and Tees, 1984; Kazanina et al., 2006; Herd, 2000; Dresher, 

2009). 

In probabilistic modeling, the general term for a model in which each observed data 

point is a member of one of a finite number of categories is a  mixture model. The intuition 

behind a mixture model is that, in order to generate a data point, some procedure selects a 

category, and, a category having been selected, some other procedure generates an instance 

of the selected category. In the current case, using a mixture model to describe vowels 

simply asserts that there is a many-to-one mapping from possible phonetic tokens to vowel 

categories. From a probabilistic modeling perspective, the statement of a mixture model is 

as in (9): 

  

(9)   )|(Pr)(Pr=)(Pr
1=

ii

C

i
cxcx ∑  

  
Equation (9) is read as follows: the probability of some observed phonetic value x  

is equal to the following value, summed over all C  vowel phonemes: the probability of the 

phoneme ic  times the within-phoneme (conditional) probability of the observed token, 

once we assume that x  is an instance of ic . This statement follows from the basic axioms 

of probability, which require that the probability of any of a finite number of mutually 

exclusive events (such as the occurrences of a phonetic value x  conjoined with each 

member of the set of phonemic categories) be equal to the sum of the probability of each 

event (the law of total probability), and that conditional probabilities be related to joint 

probabilities (probabilities of conjunctions) by (10). 

 
(10)	  	  Pr(x  and ci ) = Pr(x | ci )Pr(ci )  



  
 

Importantly, it is not the case that a mixture model treatment of this process 

commits the theorist to a probabilistic view of grammar, as deterministic models may be 

taken to be special cases of the stochastic model we formulated above. To see more clearly 

how a probabilistic formulation can give a deterministic model, consider the problem of 

recognizing speech. Given some segment with phonetic values x , the problem is to 

determine the phonological category xc  which generated x ; that is, we must find the value 

of c  which maximizes )|(Pr xc . The crucial relation here is  Bayes' Rule, given in (11): 

  

(11) 
)(Pr

)(Pr)|(Pr=)|(Pr
x

ccxxc  

  
Furthermore, we can expand the denominator using the law of total probability: 
  

(12) 
)(Pr)|(Pr

)(Pr)|(Pr=)|(Pr

1=
ii

C

i
ccx

ccxxc
∑

 

  
Now suppose that there is no overlap between phoneme categories, that is, that there 

is no acoustic value x  such that the phonetics-phonology mapping would simultaneously 

assign 0>)|(Pr 1cx  and 0>)|(Pr 2cx  for 21 cc ≠ ; put another way, suppose there are no 

regions of  uncertainty. Then, if we are given some x , there is only ever one category ic  

with a non-zero value in the expansion of denominator in (12); furthermore, the probability 

of the correct category ic  (correct according to the model) given some data point x , is 

always 1: 

  

(13) 
0)(Pr)|(Pr0

)(Pr)|(Pr=)|(Pr
++++  ii

ii
i ccx

ccxxc  



 1=  
  

Because a mixture model is a stochastic model, it is capable of imputing detailed 

‘degrees of certainty’ (probability) about various inputs (a probability distribution); 

nevertheless, probability distributions have as special cases both maximal certainty 

(determinism) and maximal uncertainty (uniform distributions). Because of this link, 

probability theory can be used as a way of formalizing reasoning in cases of high and low 

uncertainty alike. In the case of absolute certainty, it can be shown that it reduces to 

Aristotelian logic; when there is uncertainty, it can be shown to be reducible to a very small 

number of axioms of consistent reasoning (Cox, 1946; Jaynes, 2003). While there are other 

deductive systems for reasoning under uncertainty (for example, fuzzy logic, and the 

consequent ‘possibility theory’; see Zadeh, 1978), probability theory is by far the most 

widely accepted. 

 

21.3.2  Bayes Rule and model comparison 

Because the calculus of probability theory gives us formal tools to evaluate inference in a 

flexible manner, we can cast the problem of phonological acquisition as inference about the 

ideal mapping between phonetic values and their associated category labels. On this 

formalization, the optimal solution to this problem is the model M  which has maximal 

probability given the observed data D : 

  

(14) M =
m

argmaxPr(m |D)  

  
Many of the theoretical approaches to learning in the literature attempt to specify 

the method for searching for this optimal model. For example, in Yang (2002), the learner 



uses a simple reinforcement learning algorithm to incrementally update )|(Pr Dm . Our 

approach here is different. In what follows, we simply try to estimate what the values of 

this criterion would be under various possible models. We thus use Bayes' Rule, given 

above, to get the criterion in a more convenient form, as in (15). 

  

(15) 
)(Pr

)(Pr)|(Pr=)|(Pr
D

MMDDM  

  
This statement should be read as follows: the probability of the model after having 

seen some data (the  posterior; Pr(M|D)) is proportional to the probability of the data under 

that model (the  likelihood; Pr(D|M)), times the a priori probability of that model (the  

prior; Pr(M)). When scaled down by the overall, or  marginal probability of the data, the 

relation becomes one of equivalence. The  Bayesian approach to model comparison makes 

use of this expansion to do inference. In particular, it accepts that having a probability 

distribution over possible models is reasonable; this is to be contrasted with the  frequentist 

approach to statistical inference, which dominated the statistical toolbox used by scientists 

throughout most of the twentieth century (there has been a surge in interest in Bayesian 

methods in recent years: Kass and Raftery, 1995; Jaynes, 2003; Mackay, 2003; Gelman, et 

al., 2003; Gallistel, 2009). The frequentist approach rejects the use of )(Pr M , because it 

interprets probability theory not as a theory of reasoning under uncertainty, but as theory of 

the counts of particular classes of events as the number of observations goes to infinity; in 

such a theory, talk of the probability of a model is incoherent, because models are not 

observable events. There are a number of important theoretical reasons for adopting the 

Bayesian approach, however, including a number of well-known paradoxes under the 

frequentist interpretation; more importantly, just as probability theory follows as a 



straightforward generalization of Aristotelian logic, Bayesian inference is supported by a 

handful of very general decision-theoretic principles (see Ghosh et al., 2006; Robert, 2007). 

Bayesian reasoning gives us the decision rule in (16), the Bayes decision rule. 

  

(16) 
Pr(D |M1)Pr(M1)
Pr(D |M2 )Pr(M2 )

>1:M1,

                    otherwise : M2

	  

 
  

The left-hand side in (16) is the ratio of )|(Pr 1 DM  and )|(Pr 2 DM . The rule is 

read as follows: if the left-hand side (the  Bayes factor) is greater than one, decide in favour 

of model 1M ; if the Bayes factor is less than one, decide in favour of model 2M ; the larger 

the Bayes factor, the better the evidence for 1M . This can be interpreted as an ‘odds,’ in the 

gambler’s sense. (Comparisons are usually done in log, so that, for example, a difference of 

two orders of magnitude is considered strong evidence; see Goodman, 1998). 

The important thing to note here is that the likelihood and the prior are in a trading 

relation. We can maximize )|(Pr MD  by maximizing the likelihood if the prior is 

uninformative, or by maximizing the prior if the likelihood does not help in the model 

comparison. An immediate consequence of this is, all other things being equal, we should 

pick the a priori more probable model. 

As has often been pointed out (Mackay, 2003; Jaynes, 2003), a Bayes factor 

analysis gives an automatic model complexity penalty, because models with more free 

parameters yield smaller probabilities. To see this intuitively, consider the simple case in 

which two models are under comparison, one of which has a single binary valued 

parameter, and the other of which has two binary-valued parameters. Suppose that under 

either model, there is a single parameter value ( 1̂θ , 2̂θ  respectively) that gives a reasonably 



good fit—that is, gives a reasonable likelihood—and the others (or the single other) give 

near-zero likelihood. We expand out )|(Pr MD  (a  marginal likelihood, because it 

averages over all parameter values under model M ) to get the crucial decision ratio in (17). 

  

(17) Pr(D | θ̂1,M1)Pr(θ̂1 |M1)Pr(M1)
Pr(D | θ̂2,M2 )Pr(θ̂2 |M2 )Pr(M2 )

 

  
Suppose both parameter values are equally likely under Model 1, and all four 

parameter values are equally likely under Model 2. If the two models are equally likely, and 

they assign equal probability to the data under the single good parameter value for each, we 

get the decision rule in (18). 

  

(18) 
Pr(θ̂1 |M1)
Pr(θ̂2 |M2 )

>1:M1,

        otherwise : M2

 

  
Since there are  four possible parameter values under 2M , and under 1M  only  two, 

if they are all equally likely a priori, the Bayes factor is one quarter divided by one eighth—

Model 1 is twice as probable. 

Importantly, this means the following: Bayesian reasoning not only tells us that, all 

other things being equal, we should pick the most probable model (or, of course, 

conversely, the priors being equal, we should pick the model that assigns the higher 

probability to the data); it also tells us that we should in general pick the model with fewer 

free parameters. In essence, we derive Occam's Razor. 

A word of warning is in order. Fully Bayesian inference will compare models by 

averaging over all possible parameter values (thus, by using the marginal likelihood). In our 

example, we assumed that there was only one parameter value worth looking at, because 



the rest assigned negligible probability to the observed data; thus averaging would be 

pointless, because we would multiply in likelihood values close to zero for the other 

parameter values. We will continue to use this oversimplified reasoning to illustrate how 

the Bayesian approach can bring this important complexity penalty to linguistics. In reality, 

as we increase the number of free parameters, a number of things change about the 

performance of the model. First, we can eventually find parameter values that give greater 

likelihood to the observed data (imagine a model with as many parameters as data points); 

second, we can find  more high-likelihood models (there are more ways to get the same 

data). Thus, averaging, we might find that all things are not equal, not only because the best 

parameter value may be better under the more complex model, but also because there might 

be more ‘best’ parameter values to choose from. There will be some tradeoff against model 

complexity, as we have shown, of course; the question is simply how quickly the 

likelihoods and the number of good fits grow, as compared to how quickly the conditional 

priors on the parameters shrink. This can only be determined given the particular model and 

data set we are working with. 

Abstracting away from this, however, the logic is clear: all other things being equal, 

Bayesian reasoning tells us to prefer simpler models. This is the essence of the reasoning 

we use in this paper: simpler models are preferred. In the current case, models with fewer 

phonemes are preferred. What follows is simply filling in the details. 

 

21.3.3  Theoretical assumptions 

In order to illustrate our point, we will need to make some assumptions about the shape of 

the phonological model. 

Recall from the preceding discussion that to assume discrete phonemes is to assume 



a mixture model, in which there is a choice between some finite number of categories, and 

each category has some distribution. 

  

(19) )(Pr)|(Pr=)(Pr
1=

ii

c

i
ccxx ∑  

  
This probability has two parts for each component: a  class-conditional probability 

)|(Pr icx , and a  mixing probability )(Pr ic . For example, following deBoer and Kuhl, 

2001, Vallabha et al., 2007, and Feldman et al., 2009, we might assume that )|(Pr icx  

(yielding the probability distribution for acoustic tokens under each phoneme, or  

component of the mixture) follows a multivariate Gaussian distribution; we might consider 

assuming other distributions, including uniform distributions, though the speech perception 

literature seems to us to suggest that a uniform distribution is an inappropriate model for 

vowels, since identification rates vary in proportion to distance from the category centre 

(see for example, Pisoni, 1975; Kuhl, 1991; Savel,a 2009). For current purposes, )(Pr ic , 

the mixing probability, is immaterial; it is most often modeled as a multinomial distribution 

(Vallabha et al., 2007), but Feldman et al. (2009) construct a more complicated model 

which, seen as a mixture, essentially uses a draw of a word from a simulated lexicon to get 

these probabilities. 

We will further assume a model of the phonetics-phonology mapping in which the 

computation of allophony is a subsymbolic process, in particular, the model argued for by 

Dillon, et al. (to appear). In this model, phonetic categories are fit simultaneously with a set 

of subsymbolic shifts in phonetic space corresponding to allophonic rules. In this model, 

there crucially are no phonetic categories (‘phones’), in the sense of phonemes with all 

postlexical processes applied to them. This model can be seen as taking extremely seriously 



Liberman and Pierrehumbert’s (1984) hypothesis that post-lexical rules are actually 

phonetic rules, so that the surface inventory and allophonic ‘categories’ are epiphenomenal. 

This model has many consequences discussed elsewhere, but, here, crucially, it is not the 

case that, in order to get a model with three phoneme categories, the learner must first find 

six phonetic categories; rather, the learner will find three phonetic categories corresponding 

in this case to the lexical vowels of Kalaallisut. It is also not the case that the three phonetic 

categories discovered will each need to cover the entire phonetic space covered by both 

(retracted and non-retracted) allophonic variants; the retracted variants will be shifted to fall 

into the phonetic region covered by the unretracted ones. 

The final assumption we make is a theory of possible underlying forms. Under the  

Richness of the Base theory, ‘which holds that all inputs are possible in all languages, 

distributional and inventory regularities follow from the way the universal input set is 

mapped onto an output set by the grammar,’ (Prince and Smolensky, 1993; emphasis 

added). One way to interpret this is to say that, a priori, no sequence of length N  is more 

probable than any other. This has the consequence that, for some underlying sequence 

/ABC/ , Pr(/ABC/) = Pr(/A/)Pr(/B/)Pr(/C/) . 

We believe that most of these assumptions are well justified. More importantly, we 

take up these assumptions in part because they allow us to highlight the Occam’s Razor 

effect of Bayesian reasoning. While there are many benefits to be reaped from taking the 

theory of reasoning under uncertainty seriously, we believe that this particular point will be 

of deep interest to linguists. 

 

21.3.4  The need for fewer categories: a bias in the prior 



In this section we show how the simplicity preference inherent in Bayesian inference 

manifests itself in the prior by showing how a plausible set of assumptions about what it 

means to learn categories and grammars would force the abstract solution. 

Following the reasoning given above, we compare two different models for the 

Kalaallisut vowel space: om , an opaque model that incorporates three phoneme categories 

and a system for deriving surface pronunciations, and tm , a transparent model that contains 

six vowel phonemes and no opaque interactions, using a decision rule as in (20). 

  

(20) 
Pr(D |mo )Pr(mo )
Pr(D |mt )Pr(mt )

>1:mo,

                  otherwise : mt

 

  
Recall from the previous section that, ordinarily, in model comparison, the 

hypotheses under comparison each consist of a range of possible parameter values, and in 

order to compare the two models, we integrate over all parameter values. In the present 

case, this type of comparison would require far more involved mathematical analysis than 

is appropriate here. To get at the intuition behind the approach, we will thus attempt a 

simpler comparison, between two particular sets of parameter values under the two models, 

but taken in the abstract. 

Recall also the fact that, if the likelihoods are equal under two models, model 

comparison will be driven by the priors. To illustrate the logic, we will assume this to be 

true in this section. This is of course not a reasonable assumption in general (otherwise the 

data would never have any effect on the outcome of learning), but it is at least plausible for 

the optimal solutions under either number of categories. In any case, it is a formal way of 

stating the bind we take ourselves to be in: the theory is truly underdetermined by the data, 



to the point that neither model is a better explanation of the observation. In such a situation, 

in the model comparison rule in (20), )|(Pr omD  is always equal to )|(Pr tmD , and we 

always get (21). 

  

(21) 
Pr(mo )
Pr(mt )

>1:mo,

 otherwise : mt

 

  
A model of the phonetic/phonological grammar has several parts. First, we must 

know the number of categories, K . For om , we have 3=K ; for tm , 6=K . Second, there 

will be some grammar, oG  for om , tG  for tm . Finally, we have some set of parameter 

values for each category in each model; for om , call these o/,i/θ , o/,a/θ , θ /u /,o , and call the 

whole collection oC ; for tm , call them t/,i/θ , t/,e/θ , t/,a/θ , t/,A/θ , t/,u/θ , t/,o/θ , and call the 

whole collection tC . (These parameter values, might, for example, be the means and 

covariance matrices of multivariate Gaussians.) We thus state the models as in (22). 

  
 〉〈 ooo CGKm ,3,=:=  
(22) 〉〈 ttt CGKm ,6,=:=  

  
We can write out the function in (21) in terms of this parameterization and expand it 

using the chain rule of probability to obtain (23). 

  

(23) 
6)=(Pr6)=|(Pr6)=,|(Pr
3)=(Pr3)=|(Pr3)=,|(Pr=

)(Pr
)(Pr

KKCKCG
KKCKCG

m
m

ttt

ooo

t

o  

  
This can be seen as three separate ratios. The leftmost ratio compares the two 

grammars. The ratio 
6)=,|(Pr
3)=,|(Pr

KCG
KCG

tt

oo  will be different from one to the extent that there is 



an inherent cost to crucially derivational grammars (assuming that, apart from the ordering, 

the two grammars are the same); this cost might be different depending on the rest of the 

model, but, again, this bias, if any, would be an a priori one. For example, if there were a 

coherent rule-based analysis in which the two rules were in some sense ‘unordered,’ this 

would have twice the probability of either ordered rule analysis if the two orders were 

equally probable. In an ideal learner model, this is in fact a very reasonable way to spell out 

the intuition that the opaque system is ‘hard to learn,’ or that the learner would ‘wait for 

certain data points’—like the crucial case of both rules applying across morpheme 

boundaries—to posit the opaque analysis. The intuition behind these statements is that, 

even though both the opaque and the transparent model can give the same strings, the 

transparent model is inherently preferred unless there is some data that it would not 

generate—that is, that has lower probability (perhaps not zero, though, since the learner can 

always treat it as noise). 

The rightmost ratio, 
6)=(Pr
3)=(Pr

K
K , asks whether there is an inherent preference for 

some number of categories. We can think of this as being a bias inherent to Universal 

Grammar—are languages with three vowel categories treated as inherently more probable 

by learners than languages with six vowel categories? This is different from a bias driven 

by properties of the deductive system, as we will see. 

Finding the values of these two ratios means solving two rather difficult empirical 

questions—indeed, this is so even if the null hypothesis is for the learner to be in some 

sense unbiased, because the structure of the model we assume will induce biases even if the 

precise details are all totally unknown. Without any knowledge about what these two biases 

are, let us leave their combined effect as a constant J . If J  is less than one, the decision 



will be biased in favour of the transparent analysis; if it is more than one, the decision will 

be biased in favour of the opaque analysis. 

The interesting ratio here is 
6)=|(Pr
3)=|(Pr

KC
KC

t

o . Let us expand this factor in the decision 

rule. 
  

 (24) 

Pr(Go |Co,K = 3)Pr(Co |K = 3)Pr(K = 3)
Pr(Gt |Ct,K = 6)Pr(Ct |K = 6)Pr(K = 6)

= Pr (Go | Co , K = 3) Pr (K = 3)

Pr (Gt | Ct , K = 6) Pr (K = 6)

⎡

⎣
⎢

⎤

⎦
⎥ ⋅

Pr(θ / i /,o,θ /a /,o,θ /u /,o |K = 3)
Pr(θ /e /,t,θ /A/,t,θ /o/,t,θ / i /,t,θ /a /,t,θ /u /,t |K = 6)

= J ⋅
Pr(θ / i /,o,θ /a /,o,θ /u /,o |K = 3)

Pr(θ /e /,t,θ /A/,t,θ /o/,t,θ / i /,t,θ /a /,t,θ /u /,t |K = 6)
	  

 
  

The decision ratio in (24) compares (in addition to the fixed cost ratio for the rule 

ordering and the number of categories) the probability of the particular categories 

(parameter values of some phonetic probability distributions) recovered under each 

solution. Intuitively, the ratio will be smaller than one, because the set of three-category 

solutions is a proper subset of the set of six category solutions; each time we must estimate 

a new category, we add further uncertainty to the solution. 

To make this true in our case, we need some assumptions. As discussed above, 

under the theory of Dillon et al. (to appear), the continuous input space in which the 

phonetic categories are fit has already had the effects of allophonic processes removed (of 

course, the categories must be learned simultaneously with the grammar). This means that, 

ideally, if we can find the true categories in the data, we should have 

6)=|,,(Pr /,u//,a//,i/ Kttt θθθ  exactly equal to 3)=|,,(Pr /,u//,a//,i/ Kooo θθθ , because the recovered 

categories will be the same. Of course, as discussed in greater detail elsewhere, it might be 

the case that, under one or the other hypothesis, it is more difficult to find the true 



categories (indeed, this is almost certainly the case); but, so long as there is no strong prior 

on the phonetic location and extent of categories, the two should be roughly equal. 

This means that we can productively expand the decision rule in (21) and (24) using 

the chain rule. If, as we assume, some of the categories are shared between the two 

solutions and the probabilities cancel, then we have (25). 

  

(25) 
6)=|,,,,,(Pr

3)=|,,(Pr

/,u//,a//,i//,o//,A//,e/

/,u//,a//,i/

K
K

J
tttttt

ooo

θθθθθθ
θθθ

⋅  

 1
/,u//,a//,i//,o//,A//,e/ 6)=,,,|,,(Pr( −⋅≈ KJ tttttt θθθθθθ  

  
Clearly, the second factor must be greater than one, because the probability inside 

the reciprocal can by definition be no more than one. We thus have a direct comparison: 

whatever the inherent cost of process ordering, and whatever inherent bias learners might 

have for more categories (if this is plausible), their combined value (some 1<J ) must 

overcome the inherent cost of estimating three new categories in order for a transparent 

solution to get off the ground. 

In order for this to be the case it would need to be that, at least given the correct 

estimates for the three categories /i/ , /a/ , /u/ , the remaining three sets of parameter values 

were extremely probable. Assuming each to be equiprobable, they would each need to have 

(conditional) probability 3 J . Even for apparently quite strong biases like 310= −J , we get 

that each set of parameter values would need to have probability 0.10 , which indicates 

substantial bias toward certain phonetic categories. 

 

21.3.5  An analysis of Kalaallisut underlying representations: a bias in the likelihood 

In this section we build on the analysis of the previous section, applying the same reasoning 



to a slightly different part of the problem. In particular, while in the previous section we 

assumed that the likelihoods were comparable under the two hypotheses, we will weaken 

that assumption here. We show how the same type of reasoning applies: when there are 

more things to estimate under a particular model, the probability of any individual solution 

under that model drops, so that, to the extent that the solutions under that model are roughly 

as good and as probable as under the simpler model, we should prefer the simpler model. 

In particular, recall that the Bayes factor for model comparison is a ratio of two 

model probabilities, where each is as in (26). 

  

(26) 
)(Pr

)(Pr)|(Pr=)|(Pr
D

MMDDM  

  
In this section we focus on the fact that by hypothesis the underlying 

phonetic/phonological model M  provides information about phonetic values only by way 

of phonological categories. If the model is relatively uninformative with respect to n-gram 

probabilities of potential phonological strings, then a model with more phonemes will 

assign lower probability to an individual string. This affects the likelihood, )|(Pr MD , 

which we previously assumed to be roughly equal under the two hypotheses. In the extreme 

case, if the probability of a phonemic string—say /puq/ —is simply the product of the 

probabilities of the individual phonemes, then the fact that having phoneme categories 

means greater uncertainty will mean smaller string probabilities. As discussed above, the 

assumption that all phonemic strings are equiprobable is roughly the Richness of the Base 

hypothesis of Prince and Smolensky, 1993. In this section we specify more precisely how 

such an assumption would interact with the kind of model comparison under discussion. 

Given data D  equal to some phonetic input x , the learner must compare models 



using a Bayes factor constructed from (26). For x  a single one-segment data point we have 

(27), where each ic  is one of the K  phoneme categories. 

  

(27) 
)(Pr

)(Pr)|(Pr),|(Pr
=)|(Pr 1=

x

MMcMcx
xM

ii

K

i
⎥⎦
⎤

⎢⎣
⎡∑

 

  
The expansion in (27) says that each token might have been generated by any of the 

K  phoneme categories, and that the learner (and the listener) must decide which; equality 

follows from the law of total probability. Similarly, if we consider x  corresponding to a 

sequence of phonemes, we have (28), where w  ranges over all possible underlying 

category sequences. 

  

(28) 
)(Pr

)(Pr)|(Pr),|(Pr
=)|(Pr

x

MMwMwx
xM w

⎥⎦
⎤

⎢⎣
⎡∑

 

  
Making the assumption that the data consists of a sequence of independently drawn 

sequences of phonetic values (that is, that the probability assigned by the model to one 

phonetic string does not depend on the identity of the previous ones), we get that the learner 

will do model comparison using the Bayes factor in (29), where x  ranges over all phonetic 

sequences in the data, and w  ranges over all possible phonemic strings. 

  

(29) 
[ ]
[ ] )(Pr)|(Pr),|(Pr

)(Pr)|(Pr),|(Pr
=
)|(Pr
)|(Pr

ttt
w

ooo
w

xt

o

mmwmwx

mmwmwx

mD
mD

∑
∑

∏  

  
As we know from the previous section, the rightmost factors (the priors) will tend to 

favour om  by some amount. It is not clear a priori which of the two likelihood terms should 



dominate. Note, however, that under certain assumptions the contribution of ),|(Pr omwx  

as versus ),|(Pr tmwx  will be nil. In particular, under the model of the phonetics–

phonology interface discussed above, the interface categories are estimated using phonetic 

values corrected for the effects of allophonic processes. The consequence of this is that, in a 

three-category system, the one-to-many mapping from categories to phonetic values does 

not result in three large categories. 

This is important, because, ordinarily, when fitting a mixture model, the choice 

between one category or two categories results in a roughly equal tradeoff between having 

greater or smaller mixing probabilities and requiring narrower or wider coverage. Figure 

21.1 illustrates this. In Figure 21.1, a single Gaussian is overlaid with a pair of Gaussians 

having roughly the same coverage. Above each is shown a mixing probability, the 

probability of selecting that category. If we treat the two Gaussians as an alternate solution 

to the single Gaussian, then, clearly, the mixing probability in the single category solution 

will of necessity be greater than either of the individual mixing probabilities in the two 

category solution, because probabilities must sum to one. This will be traded off, however, 

against the fact that the single Gaussian will need greater coverage, and thus any individual 

value will be smaller, again because probabilities must sum to one. Thus, comparing the 

probability density at an individual point will come out roughly equal, and comparing 

individual segment likelihoods will be uninformative to the extent that the best fit under the 

two solutions has basically the same coverage. 

On the other hand, under the model we assume, the single category phoneme model 

needs only to have the extent of one of the allophonic variants, not both. Thus, although the 

mixing probability is greater, the individual densities are not smaller, and comparing points 



will favour the single-category solution. 

In particular, if the likelihood values for individual points in phonetic space are 

roughly the same, we can say something about the comparison between 

)|(Pr),|(Pr oo mwmwx  and )|(Pr),|(Pr tt mwmwx , by comparing the probabilities of 

various underlying forms. In particular, we will get a model comparison ratio in which the 

important terms (the ones that differ between numerator and denominator) will be 

probabilities of underlying forms containing retracted vowels under tm , but non-retracted 

vowels under om , as in (30). 

  

 (30)  

Pr(D |mo )
Pr(D |mt )

=
x  with […eZ…]
∏ + Pr(x | /…iZo…/,mo )Pr(/…iZo…/ |mo )Pr(mo )+

+ Pr(x | /…eZt…/,mt )Pr(/…eZt…/ |mt )Pr(mt )+

 

 =
x  with […eZ…]
∏ + Pr(/…iZo…/ |mo )Pr(mo )+

+ Pr(/…eZt…/ |mt )Pr(mt )+
 

  
The summation is over possible alternate underlying forms for x ; by removing the 

likelihood term we make the simplifying assumption that we can basically ignore the 

‘incorrect’ underlying forms potentially posited by the learner/hearer, and that the 

remaining likelihoods are roughly equal across all possible underlying forms in each model, 

and roughly equal across the two models. This is a stronger version of the assumption just 

discussed—that the probability of individual phonetic segments does not change under the 

two hypotheses; this is the crucial premise to our version of Occam's Razor, but now 

operating ‘inside’ the likelihood function. 

The reasoning is now similar to the reasoning from the previous section. By the 

chain rule of probability, we obtain (31) from (30). 



  
(31) 

 

x  with […eZ…]
∏ + Pr(x | /…iZo…/,mo )Pr(/…_Zo…/ | /i/,mo )Pr(/i/ |mo )Pr(mo )+

+ Pr(x | /…eZt…/,mt )Pr(/…_Zt…/ | /e/,mt )Pr(/e/ |mt )Pr(mt )+
 

  
The assumption of Richness of the Base given above then crucially tells us the 

following: 

  

(32) 
)|/a(/Pr)|/q(/Pr)|/e(/Pr)/,eqa/|]eqa([Pr
)|/a(/Pr)|/q(/Pr)|/i(/Pr)/,iqa/|]eqa([Pr

tttt

oooo

mmmm
mmmm  

  
Given that the probability of the surface string is roughly the same under both 

grammars, this reduces to (33). 

  

(33) 
)|/e(/Pr
)|/i(/Pr

t

o

m
m  

  
Assuming a uniform distribution of segments, the fact that Kalaallisut has fifteen 

consonant phonemes gives us a ratio of 1.17
315
615 ≈

+
+ , preferring the opaque solution. 

Clearly, the same will hold for any other sequence. Here, as above, then, we see that putting 

linguistic assumptions into a formal framework for decision making under uncertainty can 

often be informative; in this case, we see how simple principles of reasoning under 

uncertainty can take hold under the right circumstances to give interesting results that 

inform our understanding of general issues like abstractness in learning. 

Note, however, that we are not finished: this was just one form. The model 

comparison ratio is a  product, taken over the entire data set; this means that each data point 

will contribute by  multiplying in its probability, which, being less than one, will shrink 

overlall probabilities exponentially. In the analysis of scientific data, Bayes factors are 



usually compared as logarithms; comparisons of 3 or more in favour of a model are 

generally considered very strong evidence (Goodman, 1998). The log score in favour of an 

abstract model for a here is 
t

o

t

o

m
m

m
mN

Pr
Prlog0.154

Pr
Prlog1.17log +≈+ , where N  is the 

number of data points. Clearly it will take very little time for this number to reach 3, 

regardless of how the model priors compare. The more times the learner must use its 

grammar to encode speech, the less probable that particular data set is. 

As we have seen, this type of result falls out under the Bayesian approach to 

reasoning under uncertainty, because the Bayesian approach is to assume probability 

distributions over parameter vectors and models; as shown here, however, under certain 

models, this type of effect can even be obtained within the likelihood term, because the 

structure of certain models (like a model in which phonetic values are generated by discrete 

phonemes) implies a kind of ‘hidden prior’, in this case so that if the observed phonetic 

values are roughly equally probable under either model, we fall back on the probabilities of 

underlying phoneme sequences. The correct interpretation of this quantity is up for debate, 

but it is plausibly not informatively modeled under either hypothesis, leading us to 

conclude that, in the case of the number of phonemes in the model, the tendency to 

minimize the objects in the model is very strong. 

One possible objection here is to our interpretation of the Richness of the Base. 

According to the Richness of the Base, the choice of phonological model does not affect the 

set of possible lexical encodings. Thus, one might conclude that we have a choice between 

/i/  and /e/  under either model. The consequence of this, however, depends on what it 

means to ‘learn the discrete category /i/ .’ If the category /i/  is really just a point in a 

finite-valued feature space, and learning that there are only three categories in om  simply 



means learning that some feature is truly irrelevant (except at the phonetics–phonology 

interface, where its effect will be restored), then it is reasonable to suppose that an encoding 

of /i/  is still an encoding of /i/ , regardless of the value for that feature. Thus when we talk 

about ‘representations containing /i/ ,’ we are referring to representations with either 

feature value, and are thus summing over both of the representations possible in tm ; the 

conclusion clearly does not change. 

In any case, there will be tradeoffs to be made under any set of assumptions. If there 

is a substantially better fit to the phonetic data under one theory than another, then the 

improved fit will accrue in the same way, multiplying through for each data point; and, if 

there are some surface forms that are ambiguous under one theory but not another, then 

those points would be more probable under that theory, because they would have more 

possible sources. We would be satisfied, however, regardless of the correct answer, simply 

to have the debate about learnability take place at this level rather than in the realm of 

speculation. 

 

21.4  Discussion 

In this chapter we have shown how Bayesian reasoning applies to problems of inference in 

linguistics, which arise both in the context of normal scientific reasoning, and because 

inference is part of the object of study. 

We selected a simple problem of phonological abstractness, in which more abstract 

solutions are pitted against solutions with more phonemes, to demonstrate an important 

feature of reasoning under probability theory, and, more specifically, Bayesian reasoning: 

more complex solutions are dispreferred, all other things being equal. In the case of 



Kalaallisut, the opaque 3-vowel solution is preferred to the transparent 6-vowel solution 

because of biases in both the prior and the likelihood terms involved in model selection. 

From the point of view of the prior, models with fewer free parameters will always be 

preferred because of their relative representational simplicity. In addition to this bias in the 

prior, we argued that there is a bias in the likelihood as well. The core of this argument was 

that having a smaller phonemic vocabulary maximized the probability of the output. This 

means that the learner is in general more confident of any parse under a smaller, opaque 

vowel system. Furthermore, relatively low-confidence parses that result from a transparent 

vowel system are compounded every time the phonological grammar is used to parse 

speech, leading to a substantial increase in the bias towards opaque systems as the number 

of data points grows. Taken together, these results provide an argument for the opaque 

analysis of the Kalaallisut vowel system on the grounds of representational simplicity.     

It is important to underline that our conclusions were based on a number of 

simplifying assumptions about the nature of phonology and phonetics as cognitive systems. 

Under other assumptions, or under a more realistic model comparison scheme, it is of 

course possible that we would have obtained different results. 

More crucially, model selection is almost inevitably strongly dependent on the 

parameterization of the space of possible hypotheses. Even under extensionally equivalent 

theories of grammar with the same general architecture, we might conclude that some 

grammar is far less likely in one theory than another, perhaps because it requires 

substantially more machinery to state; changing the distributional assumptions for our 

phonetic categories (even changing how those distributions are parameterized) will, of 

course, also change the solution in general. We believe that this simply indicates that the 

current state of the art in phonology is inadequate for proper, complete model comparison. 



If the various current models of interacting phonological processes could be reduced to 

their bare theoretical essentials and stated in a common metalanguage (for example, an 

automata-theoretic formulation along the lines of Heinz, 2007), then we would have a much 

clearer basis for comparison; arguments about the correct intensional statement of 

grammars would then to some degree be arguments about the priors.  

Our study has been of an ideal solution to an inference problem, thus a study at the 

computational level in the sense of Marr (1982), in that it specified the learning problem 

precisely without giving an algorithmic account of how the learner would arrive at the ideal 

solution. This is a more abstract approach than has been taken in some other theoretical 

language acquisition literature. It is in the spirit of the evaluation measure theory of 

Chomsky and Halle (1968), in the sense that it attempts to specify a cost function for 

grammar induction without specifying a search algorithm. In this case, the difference does 

not appear to be important, since the grammatical part of the solution—the two processes in 

(1) and (7)—is the same across both models. In other cases, the search function might need 

to be exposed to certain crucial data points in order to ‘discover’ certain rules that would 

allow it to escape from local maxima in the cost function. Nevertheless, we believe that 

specifying the cost function first is a fruitful approach in any case. 

Although we reach a similar conclusion to Chomsky and Halle—namely, that the 

evaluation measure includes an Occam's Razor like principle—it should be reiterated that 

the goal of the present work was to point out that such a principle follows from general 

principles of reasoning under uncertainty. Indeed, the ‘Occam factor’ obtained by Bayesian 

model comparison can be restated as (the limiting case of) a principle of Minimum 

Description Length (Rissanen, 1978), consonant with the counting-symbols cost function of 

Chomsky and Halle. 



Furthermore, our goal has not been to show definitively that an abstract solution for 

this particular problem is correct, but simply that a tendency towards abstract solutions falls 

out from simple, domain-general assumptions about rational decision making: you will pay 

for every extra phoneme with every word, but you will only pay for the grammar once. We 

believe that a future approach to linguistic theory that attempts to find optimal statistical 

solutions to the problems of inference we face will be highly informative, since it touches 

on the fundamental issues of simplicity and abstractness. Perhaps contrary to expectations, 

abstractness is not inherently more costly or difficult for the learner; indeed, it may be 

optimal. 

 

 



Table 21.1: The phonemic inventory of Kalaallisut, roughly following Rischel 1975. 
Length is also contrastive for both vowels and consonants (omitted here). The uvular nasal 

[ ɴ ]  is marginal. 
 
 

Bilabial Coronal Velar Uvular    Vowels   
p t k q   i  u 

v j  l  s  ʃ ɣ ʁ    a  

m n ŋ ɴ      
 
 
 

 

Table  21.2: The phonemic inventory of Kalaallisut under a transparent analysis 
(length omitted as above). Position in the chart is not intended to suggest any particular 

featural analysis. 
 
 

i     u 

  e     o   

  a ɑ   

 
  



 

  
Figure  21.1: A two-component Gaussian mixture distribution as versus a single 

Gaussian of similar shape to the combination of the two smaller ones. The pair of smaller 

distributions will each individually give greater likelihood values than the single Gaussian 

(as shown by the height of the peaks), but this must be traded off against the mixing 

probabilities (probabilities of the categories) by which each data point must be multiplied in 

model comparison. If the single distribution only needed to be the width of one of the two 

components, however, the greater mixing probability for a single category would favour the 

single category solution because of the increased likelihood. 

 
 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Table 21.1 deviates from the inventory adduced by Rischel in that it omits an underlying 

voiceless fricative series. The question is irrelevant for current purposes, and the argument 

in favour of such an analysis would seem dated by modern standards, as it turns only on the 



 
maintenance of the taxonomic phonemic level; see the original. 

	  
2 The non-low retracted variants are notated in the standard Kalaallisut orthography as e 

and o; the two variants of the low vowel are collapsed in the orthography as a. Rischel 

(1975) describes the variants as being lowered and pharyngealized. 

	  


