Vowel Harmony Acquisition

Jordan Kodner \& Spencer Caplan*
NECPHON 2016 UMass-Amherst

Vowel Alternation Patterns

Turkish Allomorphy:

- Plural -larl-ler
- Baş-lar vs. Beşev-ler

Fula Stem Alternations:

- With -on suffix
- mbeel-u ~ mbecl-on 'shadow'
- peec-i~ pe\&c-on (proper noun)

Vowel Alternation in Finnish:

- kumarreksituteskenteleentuvaisehkollaismaisekkuudellisenne skenteluttelemattomammuuksissansakaankopahan vs.
- epäjärjestelmällistyttämättömyydellänsäkäänköhän

What is Vowel Harmony?

- Language-wide vowel alternation patterns
- Patterns systemic across roots and affixes
- May or may not affect borrowed vocabulary
- Vowels partitioned into sets
- Harmonizing classes
- Neutral vowels
- Caused by feature spreading
- Frontness (Turkish, Finnish)
- ATR (Mongolian, Javanese, Fula)
- Roundness (Turkish, Warlpiri)

Finnish

Quantitative Metrics of Harmony

- Typologies in theoretical phonology are true and useful abstractions of a system
- Global vs. local
- Opaque vs. transparent
- OT Constraints
- But the learner does not have direct access to these
- direct input is just a surface form!
- Learning model is used to translate between raw input and abstract input/output
- Utility of statistical harmony metrics
- used to quantify the degree of (dis)harmony present in a language (and thus that a child will be exposed to) (Sanders and Harrison 2012)

Automatic Harmony Characterization

- Seven-month-olds (with no feedback or annotation) (Mintz et al. 2006)
- So harmony characterization should be easy
- Yet few previous models exist

Our Approach

- Leverage distributional asymmetries in small wordlists (tested on as few as 500 types)

Previous Models

Goldsmith and Riggle (2012) use an HMM and Boltzmann distribution to model Finnish harmony learning, but with limitations:

- Model does not represent an acquisition pipeline
- the HMM is able to partition harmonizing vowels only if provided with the set of neutral vowels up front
- Doesn't differentiate between input with (e.g. Finnish) and without (e.g. English) vowel harmony present
- No robust psychological motivation for the computational tools employed

Framework of a Good Model of Harmony Acquisition

- Limited Data
- Pre-segmentation (or mid-segmentation)
- Running text (phonemes) rather than neatly cut words
- No frequency counts (need to be able to handle high frequency exceptions)
- But V/C tiers are accessible! (Newport and Aslin 2004)
- Psychologically motivated tools
- Any calculations posited should be able to implemented by the learner
- Online processing?
- Algorithms often assume we have all our data before we try to learn from it; in reality we need to learn from input as it is encountered

Automatic Harmony Characterization by Distribution

- What the fingerprint of vowel harmony looks like
- Divergence from a base uniform distribution
- Frequency effects don't matter
- Mutual information corrects for the frequency bias of co-occurrence probability
- Handling issue of marginal vowels
- Differentiating neutral from harmonizing vowels
- Evaluating efficacy of proposed clustering

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels
Output: Partitions of vowels into neutral and
harmony sets
Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering ($k=2$) of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Calculating cooccurrence:

- Whole-word context
- tier-adjacent context

Whole-word context toy example:

Corpus: Coocurrence matrix:
2 aba
2 aeb a 2 4
1 eeba
e 4 1

Vowel frequencies
7 a
4 b

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Whole-word context toy example:

Corpus: Coocurrence matrix:

2 aba
2 aeb
1 eeba
a e
a 24
e 41
Vowel frequencies
7 a
4 e

1. Calculate vowel probabilities $P(a)=7 / 13$
$P(b)=4 / 13$

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Whole-word context toy example:
2. Normalize columns by vowel
Coocurrence matrix:
e 4/P(a)

```
```

a

```
a
a 2/P(a) 4/P(e)
a 2/P(a) 4/P(e)
e 4/P(a) 1/P(e)
```

e 4/P(a) 1/P(e)

```
2. Normalize columns by vowel
```

frequency

```
```

e.g. norm(a|a) = count(a|a)/P(a)

```
e.g. norm(a|a) = count(a|a)/P(a)
frequency
```

```
e.g.on(a)
```

Coocurrence matrix:

	a	e
a	$2 / P(a)$	$4 / P(e)$
e	$4 / P(a)$	$1 / P(e)$

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Whole-word context toy example:
3. Convert to probabilities by row e.g.
norm(*|a) $=$ norm(a|a) + norm(e|a)
$P(a \mid a)=$ norm(a|a) / norm(*|a)

Coocurrence matrix:

	a	e
a	$P(a \mid a)$	$P(e \mid a)$
e	$P(a \mid e)$	$P(e \mid e)$

Final values are probabilities [0,1]

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels
Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering ($k=2$) of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Identifying neutral vowels:

- Vowels with sufficiently level mutual information
- Threshold proportional to cardinality of vowel set

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(k=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

K-means clustering:

- Harmony is an opposition between 2 sets
- Cluster on normalized cooccurence probability vectors

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels
Output: Partitions of vowels into neutral and
harmony sets
Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Partitioning on F:

- Harmony is an alternation on a phonological feature
- So proposed harmony must alternate on a feature

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels
Output: Partitions of vowels into neutral and
harmony sets
Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Algorithm - on Wordlists

Input: Wordlist with frequencies, list of vowels Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Secondary Harmony:

- Collapsing vowels on F removes primary harmony signal
- Rerunning the algorithm discovers secondary harmony

Extending to Unsegmented Utterances

- Children as young as seven months (Mintz et al. 2006) have been shown to be sensitive to vowel harmony
- Harmony sensitivity is language dependent (Kabak et al. 2010)
- Speakers can recognize words on the basis of harmony cues (Suomi et al., 1997; Vroomen et al. 1998)

Our Approach

- Test the algorithm on unsegmented utterances
- Use Wikipedia sentences with spaces removed

Challenge: Cooccurance across actual word boundaries introduces noise

Example Utterances

Finnish Examples (Wikipedia):

- Amsterdaminpaikallerakennettiinensimmäisetpuutalotluvunalkupuole lla
- Näinasukkaatsaivattästäkoituneettulotitselleen
- kauppalaajenijajaluvuillakaupunginasukaslukukasvoinopeasti

Warlpiri Examples (Steve Swartz):

- Jajarnumayinkili
- Ngulajangkajupakarninjawarnurlujumardalukinkinkujurnuwiyi
- jaantakupinyikangamiturakikirlangu

Algorithm - on Utterances

Input: Utterances with no segmentation, list of vowels
Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Trim tail off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering ($k=2$) of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Algorithm - on Utterances

Input: Utterances with no segmentation, list of vowels
Output: Partitions of vowels into neutral and harmony sets

Characterize Harmony:

1. Irim tail-off dataset
2. Tabulate vowel-vowel cooccurrence matrix
3. Convert counts to mutual information
4. Identify neutral vowels
5. K-means clustering ($k=2$) of remaining vowels
6. Check that harmony sets partitioned by single feature F.
7. Output neutral vowels and harmony sets
8. Collapse on F and repeat algorithm

Algorithm - on Utterances

Input: Utterances with no segmentation, list of vowels
Output: Partitions of vowels into neutral and
harmony sets
Characterize Harmony:

1. Tabulate vowel-vowel cooccurrence matrix

T Tier-adjacent within k (we used $k=1$)
2. Convert counts to mutual information
3. Identify neutral vowels
4. K-means clustering $(\mathrm{k}=2)$ of remaining vowels
5. Check that harmony sets partitioned by single feature F.
6. Output neutral vowels and harmony sets
7. Collapse on F and repeat algorithm

Results on Utterances

Language	Primary Harmony？	\％V Correct	Secondary Harmony？	\％V Correct
Turkish	\square	100\％	\square	100\％
Finnish	\square	100\％	区	100\％
Warlpiri	\square	100\％	区	100\％
English	区	100\％	区	100\％

Ongoing and Future Work

- Ongoing
- Capturing secondary harmony processes
- Differentiating global from local, opaque vs. transparent neutral vowels
- Future
- Differentiating non-productive disharmonic data from productive harmony process (e.g. Estonian vs. Finnish)
- Online processing (given an incoming stream of data)
- How much segmentation is possible given only output of harmony model

