Towards a biological theory of
phonetic perception



Q

Can we build a theory of phonetic perception
from the ground up using neurological
primitives?



A

so far, so good



Q

Why would this be desirable?



A

 Many theories at the ‘computational
level’ (exemplar theory, Bayesian models,
etc...) have no obvious way of linking up with

cell biology

* Maybe if we start from the bottom, a good
formal characterization of the basic biology
will suggest (or force upon us) a theory at the
‘computational level’



How this will work

Fact: The preferred stimuli of many neurons in
higher auditory areas are complex sounds

Fact: The behavior of these neurons can be
modeled as linear operators

Hypothesis: Phonetic categories are an ensemble
of specific neurons with specific spectrotemporal
preferences which span the space of the sounds
of that category

Hypothesis: The characteristics of phonetic
perception are a reflex of the structure of these
operators
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neurons

linear operators
simulation

discussion
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desiderata:
building blocks

A (well-behaved) mathematical characterization of
the behavior of auditory neurons in response to

sound _
Linear Noise

operator term

' N

O(t)= J] STRF(f,©)S(f ,t —t)dtdf +spontaneous activity

I I

Spike rate



desiderata
nonlinear identification functions

LABELLING DATA

1004~-2., n.—a—&-..\

bt /, d \, g pI

25+

PER CENT IDENTIFICATION

T‘9.I11"ir
7 8 9 1011 12 {3 14

6
MULUS VALUE

o
~
-’\

Liberman et al, 1957



desiderata
nonlinear discrimination functions
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anti-desiderata
acoustic ‘features’ fed into black boxes
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Nneurons



Cochlear filters

Frequency Response of the Cochlea Filters
LI L I g g 8 LI DL T

Gain/dB

.70 1 A Ll I A L 1

10
Frequency /Hz

Wang et al, 2014



Auditory nerve (cat)
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Spike Count
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Al (cat)
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HG (human, multiunit)
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STRFs as efficient coding transform

e “..STRFs result from an optimal tradeoff
between maximizing the sensory information
the brain receives, and minimizing the cost of
the neural activities required to represent and
transmit this information. Both terms depend
on the statistical properties of the sensory
inputs and the noise that corrupts them ...”

(Zhao & Zhaoping, 2011)



STRFs as phonetic feature detectors
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linear operators



STRFs as linear operators

Spectrogram: log|S| Spectrogram: log|S|

Lindeberg & Friberg, 2015



Log Frequency (semitones)

STRFs as linear operators
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STRFs as linear operators

Spectrogram: log|S| Spectrogram: log|S|

Lindeberg & Friberg, 2015



STRFs as linear operators

Onset detection: o,T log|S| > 0 Onset detection: 0,T log|S| > 0
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Projection operators




Working hypothesis

Phonetic categories are vector subspaces

Vectors are the complex-valued bark-scaled
spectra

Each subspace (category) comes with a
projection operator

Phonetic identity is recovered by applying
projection operators to input signals and
measuring the extent to which they project
onto that subspace






equations
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in 2D with standard bases

'‘category
boundary’




in 2D with standard bases
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simulation

e Every [s] and [sh] in TIMIT training dataset
used to estimate projection operators

* For every speaker in the test data set with at
least 1 [s] and [sh], a linear continuum
constructed, and probabilities and distances
between successive items in the continua
computed



ID and discrimination functions
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SRFs from projection operators

Amplitude
Amplitude




Spike Count
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