
 1

A remark on ties in Harmonic Serialism
John McCarthy
12/8/2009

Introduction

These thoughts were stimulated by Kathryn Pruitt’s presentation about ties in
HS. Ties present problems for the implementation in OT-Help 2, and I have a
suggestion about how to address these problems.

Disclaimer

I’m focusing, as Kathryn did, on problematic ties, not intentional ties. This isn’t
about variation.

Assume

For the input I, there is a set of tied winning candidates T={t1, t2, …} (|T| > 1).

The difference between I and tj is precisely described by an operation oj.1 The set

of all such operations, one for each member of T, is O={o1, o2, …}.
In practice, the operations in a given O are always of the same type: only deletion, only
insertion, etc. No O can contain non-homogeneous operations because different
faithfulness constraints would be violated, so the candidates they produce wouldn’t be
tied. (This comment presupposes minimal competence on the part of the analyst.)

Definitions

(1) Order-independence

Given I, T, and O, if o1(o2(…(I))) = o2(o1(…(I))) = … for all permutations of O,
then O or T can be called order-independent.

(2) Tie union
If O is order-independent, the tie union t*=o1(o2(…(I))). (If O is not order-
independent, t* does not exist.)

(3) Winning tie union
If t* ≻ tj ∀tj ∈ T, then t* is a winning tie union.

1 To “precisely characterize” the mapping from I to tj, oj has to say more than just “Insert” or

“Delete”. It has to say what is inserted or deleted, and where. In other words, oj(I) is a function. It is a
localized unfaithful mapping in the sense of Hidden Generalizations.

 2

Examples

 Codas delete one at a time, but all eventually delete:
(4) NO-CODA >> MAX with input [pak1pak2]

a. T={papak2, pak1pa}.
b. O={“delete k1”, “delete k2”}.
c. O is order-independent because “delete k1”(“delete k2”(pak1pak2)) = “delete

k2”(“delete k1”(pak1pak2)).
d. Tie union t* = [papa].
e. t* is a winning tie union because [papa] ≻ [papak], [pakpa].

Discussion: Example (4) is a typical convergent tie in HS. O is order-independent, so t*
exists. Furthermore, t* is a winning tie union. It would be safe to declare that t* is the
output of the evaluation, even though it is not among the candidates that were
originally evaluated.

*LAPSE offers several locations for a foot. They are mutually inconsistent:

(5) *LAPSE >> ALIGN-L(word, foot) with input [o1o2o3o4o5] (assuming trochees)
a. T = { o1(ˈo2o3)o4o5, o1o2(ˈo3o4)o5, o1o2o3(ˈo4o5)}
b. O = {“parse trochee o2o3”, “parse trochee o3o4”, “parse trochee o4o5”}.
c. O is not order-independent, since the operations in O make inconsistent

demands on the output. E.g.
“parse trochee o2o3”(“parse trochee o3o4”(“parse trochee o4o5”(o1o2o3o4o5))) =

[o1(ˈo2o3)ˈo4o5)]
≠
“parse trochee o2o3”(“parse trochee o4o5”(“parse trochee o3o4”(o1o2o3o4o5))) =
[o1o2(ˈo3o4)o5]

d. Therefore, the tie union t* does not exist.
Discussion: Example (5) is the type of non-convergent tie that OT-Help currently
handles incorrectly. OT-Help could check for the existence of a tie union; if one is not
found, it could report the problem and refuse to proceed.

There are two possible ways of satisfying NO-CODA and only one is needed:
(6) NO-CODA >> MAX with input [pat.ki]

a. T={pa.ki, pa.ti}.
b. aO={“delete t”, “delete k”}.
c. aO is order independent.
d. Tie union t* = [pa.i].
e. But t* is not a winning tie union because [pa.ki], [pa.ti] ≻ [pa.i].

Discussion: Example (6) would be a tie in parallel OT too. OT-Help could refuse to
proceed, or it could pick a winner at random and also issue a warning. (Or it could
follow all of the derivational futures of the tied winners, but that would probably
involve a lot of additional coding at this point.)

 3

Questions

Do the statements about these particular examples generalize to all ties?
Probably not, since subsequent derivational steps might produce convergence
even in cases where there is no (winning) tie union. But maybe we should
regard such “successes” as accidental and unstable, so losing sight of them may
not be a great loss.

From an implementational perspective, the calculation needed to determine
whether O is order-independent is unattractive since it requires time
proportional to |O|!. Could we get away with a quicker but less accurate
calculation, such as looking only at all orders on pairs of elements in O? Or is
there a string-based approach to determining whether t* exists? This is only
quadratic in |O|. We’d then be relying on the locality of operations in GEN to
protect us from missing non-convergent interactions involving more than two
operations. Another approach is to take a string-based rather than an order-
based approach to finding the tie union (if one is to be found).

What if there’s a tie union only on some proper subset of T? Is that interesting or
useful information? Perhaps, since the analysis would be well-behaved if there
were a way of eliminating from the tie those candidates that aren’t in that
subset. Perhaps this could be part of an informative error message when OT-
Help refuses to proceed.

Theory versus implementation

The theory needs to tell us what to do even in situations where OT-Help might
refuse to proceed. In classic OT, “tell us what to do” means “find the most
harmonic candidate”. In P&P, “tell us what to do” means “give an output
(‘converge’) or give no output (‘crash’)”. In HS-the-theory, the derivation forks at
ties, and so an output is always provided. In non-convergent cases, more than
one output may emerge. In HS-the-implementation, however, it might make
more sense to crash in situations that we know to be undesirable.

