Vienna Schrödinger Lecture 2

Oct 20, 2015

Overall theme: General Relativity as a quantum field theory like our other fundamental interactions

Today: Constructing GR as a gauge theory

Next week: Treating quantum GR as an effective field theory

Nov 3: Low energy theorems of quantum gravity and frontier directions

Web page: JFD – Teaching – Vienna Schrödinger lectures – Also GRQFT pages

Today: Gauge theory construction

References:		
	A great early reference along the lines that I presented the material	
	is <u>Kibble on fermions and gauge structure</u>	
	The other primary reference is Utilizane on Cravity as a gauge the	
	The other primary reference is <u>Utiyama on Gravity as a gauge the-</u>	
	ory.	
	I have an appreciation of a paper by	
	Hayashi and Shirafuji - a remarkably good early paper in the spirit of	
	effective field theory (although I would do some things differently).	
	,	
	Weinberg's GR textbook has a related development, but without	
	fermions, in Chapter 12.	
	I highly recommend Maurizio Gasperini's book Theory of Gravita-	
	tional Interactions (Springer) as a resource if you are interested in fol-	
	lowing up on this material. Even though he does not construct GR in	
	this fashion, his treatment is more general than most and he derives	
	many useful relations.	

Particle Physics gravity Higgs Z = -m. \$ \$ \$ \$ \$ \$ $V(r) = -\left(\frac{1}{8710^2}\right) \frac{m_1 m_2}{r} 2$ 1) ma + MN 2) B. E. not accounted for 3) No combo of scalar couplings work

E + Mom assource $T_{uv} = \frac{\partial J}{\partial (\partial_{x} \phi)} \quad \partial_{v} \phi - g_{uv} J \quad \text{Noether}$ Scalar field $T_{uv} = \frac{\partial J}{\partial (\partial_{x} \phi)} \quad \partial_{v} \phi - \frac{1}{2} \gamma_{uv} (\partial_{x} \phi) \quad \partial_{v} \phi - m^{2} \phi^{2}$ $\frac{T_{uv}}{\int g \, \omega^{m-2}} \quad G \, m \, m$ NR

Tuy as source? Gauge theories: currents as sources Global invariance 4-20-164, 4->U4 = Current Local envariance 4 -> 4 = U(x) 4 $D_{1} + D_{1} + D_{2} + D_{3} + D_{4} = U(\omega) D_{1} + D_{3}$ $D_n = \partial_n + i A_n = \partial_n + i \frac{\lambda^n}{2} A_n^q$ $= \int \mathcal{L} = \mathcal{P}(\mathcal{B} - m) \psi = - - - - \Lambda^{\alpha} \psi \gamma^{\alpha} \gamma^{\alpha} \psi$

[Dn, Dv]
$$\mathcal{A} = i \mathcal{F}_{m} \mathcal{A}$$
 $\mathcal{F}_{mv} = \mathcal{A}_{m} \mathcal{A}_{m}$

Global: x'm = L 1x + an 1 - b) = · dx m Local dx' = / (x) dx New field gov (x) ACZ = gray dx dx Sorvanance g'es 1 m 16 m = gus Inverse (x) = [M, 4)] gas = 1 mn y gav

Tetrad/vierbein gm (x) = yab t (x) t (x)

 $\mathcal{I}_{\mathcal{P}}$

Immediate success!

I g = Det gml

Invariant volume

Sd 4 F-g $S = \int dx \sqrt{-g} \left[\int_{-g}^{g} \int_{-g}^{g} dx dx dx - m^{2} d^{2} \right] \quad \text{invariant}$ \[\frac{\fi $=\frac{1-8}{2}$ Tur source! 5-(Sgrav) + Sm , 55g = 1.) Tul

Broked: Foresty + Fermions

$$\chi''' = L'' \wedge \chi' = \chi'' \times \chi'' \times$$

Snv = i Tnv [Snv, Sap] = Nv2 Snp - - - - - -

50(1,3)

Gauging Pornicas Global x'= L" x + a" 4 k') = S4k)

woo invariance

Translation

1) 1 = x + an(x) = Ax = An(x)

2) Lorenty or spen transformation $Y(\chi) = S(\chi)Y(\chi)$ could add $dx' = \Lambda^{n}(\chi)d\chi^{\nu}$

= (1+1 was 5) 7

Seneral covariance

1) Translation tetred , u = 0, 1, 2, 3 spacetime induce (condition) $L = \Psi \left(i t_a (x) \delta^a \partial_{y_a} - m \right) \Psi$ A = 0, 1, 2, 3 = Lorenty likemakes invariant

2) Lorenty trans. covariant derivative $\Psi'(x) = S(x) \Psi(x)$ $L = \Psi \cdot \left(i t_a \delta^a D_a - m \right) \Psi \Rightarrow \Psi S' \left(i t_a \delta^a D_a - m \right) S \Psi$

_

$$D_n = \partial_n + A_n = \partial_n + \frac{1}{2} Sab A_n^{ab}$$

$$Savanane A_n' = SAS^n + (\partial_n S)S^n'$$

Also need
$$S^{-1}S^aS = S^b \int_{a}^{a} (ww)$$

$$t_a^{m} w) = \int_{a}^{b} (ww) t_a^{m}$$

Invariant

$$[D_n, D_v] = R_{nv} = \frac{1}{2} S_{ad} R_{nv}^{ab}$$

action - Diff from usual gauge theory

Simplest invariant $R = t^{a} t^{b} R^{ab} (A)$ Sgrav = Sd4/- = -2 R(t)A)

Variation

1) M. R. E. A Dyty - Dyty = 0 Dytz = 2tr+Arety

=> solve fn A = (

2) W. n. t tim => Ru - ta R = 0 xtav / Row-gov R = O/ Fanstein

Relation to the usual formulation of no fermions, can use spacetime indices only Da V = Da V + Par VV Ruva = In Bu - Dr That + The Brat - Train R=gna Rupa But Tur is ambiguous: "contorsion tensor" Par = { 200 } - Kno Torsion" = Tuy - Tuy Iny = tadato + ta A to to the not automatically symmetric