
 1 

Lab Session 4: Schoenfinkelizing and Writing Functions for Transitive Verbs 
September 30, 2013 

 
Goal: Why, at the end of last discussion (9/26), did we decide to write the denotation for loves in 
the way that we did? The goal of this lab session is to understand and motivate denotations like 
(1) a bit more.  
 
(1) [[loves]] = g: De  D<e,t>, for all y ∈ De, g(y) =     

         Read: the function g such that it maps entities to type <et> functions, where for  
all entities y, application of g to y yields…. 

   
   hy : De  Dt, for all x ∈ De, hy(x) = 1 iff x loves y 
   Read: ...a function hy such that it maps entities onto truth values, where for  

all entities x, application of hy to x yields true if and only if x loves y.  
 
1. What syntax we assume 
 
• Syntactic structure is important to semantics because it determines how different words can 

combine together. 
 
• We assumed a syntactic structure like (2) for the sentence Ilaria loves Scipio. 
 
(2)   S 
    4 
 NP  VP 
           1       4 
             N  V            NP            1      1           1 
         Ilaria    loves             N           1 
           Scipio 
    
• In (2), the transitive verb V loves combines with an NP (its direct object; Scipio) to form a VP. 

The VP then combines with the subject NP (Ilaria) to form a sentence S. 
 
• We will assume binary branching structures like in (2) for this class. Syntax has given us a 

number of reasons to think that the structure should be as in (2) and not as in (3).  
 

o Key insight from syntax: The subject and direct object of a verb do not stand in 
a symmetrical relationship with each other.  

 
(3)             S   
No!    q1p 
 NP            V     NP 
 1          1    1 
   N         loves     N 1     1 
           Ilaria    Scipio 



 2 

2. A naïve analysis of the meanings of transitive verbs 
 
• In class on Thursday, we assumed the binary branching structure in (2) and, as such, decided 

that we would treat transitive verbs as functions of type <e,<e,t>>.  
 
• We can describe a function of type <e,t> as being a one-place function because it is a function 

that combines with one thing (here, an entity).  
 

o We can also describe a function of type <e,<e,t>> as being 1-place. Why? 
Because it is a function that combines with one thing (here, an entity).  

 
 
• Let’s forget for a moment that we want to assume a binary branching structure like in (3). 

Then, let’s rewind two weeks to our discussion of relations. What did we say about relations? 
 

o Ordered tuples (e.g., pairs, triples, 4-tuples, 5-tuples…) can help us talk about 
relations (or, statements) that hold between two or more individuals.   
 

o A relation like is bigger than can be defined as an ordered pair.  
 
Let’s say that De = {Leopold, Dmitri, Sebastian} 
 
Sebastian is the biggest goat, Dmitri is the middle sized goat, Leopold is the smallest goat 
 
How can we write the relation is bigger than as a set of ordered pairs? (let’s call that relation 
Rbigger) 
 
(4) Rbigger=  
 
Now, I ask you to write the characteristic function for the set in (4). We’ll call that function 
fbigger. The characteristic function takes an ordered pair and returns 1 iff that ordered pair is in the 
set in (4).  
 
Let’s write it in table notation, since that’s a clear way to write characteristic functions. 
 
 
 
 
 
 
 
(5) fbigger = [ 

 
 
<Sebastian, Dmitri>  1 
<Sebastian, Leopold>  1 
<Sebastian, Sebastian>  0 
 

<Dmitri, Dmitri>  0 
<Dmitri, Leopold>  1 
<Dmitri, Sebastian>  0 
 

<Leopold, Dmitri>  0 
<Leopold, Leopold>  0 
<Leopold, Sebastian>  0 

] 



 3 

Question 1: If fbigger were the denotation of is bigger than, then we can say this is a how-many-
place function (I.e., is it 1-place? Is it 2-place?)? Why? 
 
Question 2: If fbigger were the denotation of is bigger than, would the syntax look like? Would it 
look more like (2) or like (3)? Why? 
 
 
Programmatic decision: Based on what we know about syntax, we’ll always assume binary 
branching structures.  
 

…a consequence of this decision is that transitive verbs will always be analyzed as 1-
place functions.  Even though a transitive verb has two syntactic arguments (a direct 
object and a subject), we will feed these arguments in one at a time.   

 
3. Schoenfinkelization! 
 
• Thanks to a fellow named Moses Schoenfinkel, we have a way to take an n-place function (like 

the characteristic function that we wrote above for is bigger than, fbigger in (5)) and turn it into a 
series of 1-place functions so that we can keep our binary branching structures.  

 
• There’s two ways to Schoenfinkelize a 2-place function like fbigger.  
 
Way One to Schoenfinkelize: Left-to-right  
Let’s define a new function, gbigger, which is the left-to-right Schoenfinkelized version of fbigger. 
The function gbigger applies to the first (i.e., lefthand) member of each ordered pair in (5). The 
output of gbigger is a function that applies to the second (i.e., righthand) member of each ordered 
pair in (5) and returns 1 iff the first member is bigger than the second member.  
 
 
 
 
 
 
 
 
(6)   gbigger = [ 

 
 
 
Sebastian   
 
 
Dmitri  
 
 
 
Leopold  

 

[ 
[ 
[ 

 
 
Dmitri  1 
Leopold  1 
Sebastian  0 
 
Dmitri  0 
Leopold  1 
Sebastian  0 
 
Dmitri  0 
Leopold  0 
Sebastian  0 

 

] 
] 
] ] 

     ⇑                     ⇑ 
   this is the input to gbigger this function is the output of gbigger 
   (AKA, the argument  (AKA, the value that each argument 
               of gbigger)     is mapped onto by gbigger) 



 4 

When the function gbigger is applied to Sebastian, then it outputs a type <e,t> function which maps 
any goat onto 1 iff Sebastian is bigger than that goat. 
 
What is produced when the function gbigger is applied to Dmitri?  
 
What is produced when the function gbigger is applied to Leopold? 
 
 
Way Two to Schoefinkelize: Right-to-left 
Let’s define a new function, hbigger, which is the right-to-left Schoenfinkelized version of fbigger. 
The function hbigger applies to the second (i.e., righthand) member of each ordered pair in (5). 
The output of is hbigger is a function that applies to the first (i.e., lefthand) member of each 
ordered pair in (5) and returns 1 iff the second member is smaller than the first member.  
 
 
 
 
 
 
 
 
(7)   hbigger = [ 

 
 
 
Dmitri   
 
 
 
Leopold  
 
 
 
Sebastian  

 

[ 
[ 
[ 

 
 
Sebastian  1 
Dmitri 0 
Leopold  0 
 
Sebastian 1 
Dmitri  1 
Leopold  0 
 
Sebastian  0 
Dmitri  0 
Leopold  0 

 

] 
] 
] ] 

 
 
!!! Why is right-to-left Schoenfinkelization very useful to think about, given the way in 
which we wrote our ordered pairs in (4) and (5)? 
 
The way we wrote our ordered pairs in (4) (which was the relation is bigger than) and in (5) 
(which was the not-Schoenfinkelized characteristic function of is bigger than) was like this: 
<subject, object>. As Heim and Kratzer say (1998: 31), this is a totally arbitrary choice that 
we probably have made because subjects come before objects in English.  
 
Given the way that we have defined hbigger in (7), hbigger is combining first with the object of the 
verb is bigger than. The output of hbigger is three new, type <e,t> expressions: is bigger than 
Dmitri, is bigger than Leopold, and is bigger than Sebastian. These functions then go on to 
combine with the subject.  
 
Upshot of all this: By Schoenfinkeling in this way, we have defined a function hbigger that seems 
to capture the way that a transitive verb like is bigger than combines with its arguments in the 
syntax.  



 5 

(8)               S Sebastian is bigger than Leopold 
    4 
 NP    VP 
     Sebastian        4 
       V            NP 
     is bigger than         Leopold 
 
 
 
We can write out the denotation for is bigger than that will get us the right result given the 
structure in (8).  
 
 
 
(9) [[is bigger than]] =  hbigger : De  D<e,,t>, for all y ∈ De, hbigger(y) = hbigger-than-y : De  Dt,  

for all x ∈ De, hbigger-than-y(x) = 1 iff x is bigger than  y 
 
 
The entire table diagram (enclosed by the biggest set of brackets) is a way of representing hbigger.  
 
 
 
Question: Looking back at our table diagram for hbigger in (7), which parts of the table 
correspond to the function hbigger-than-y (AKA, the second line of the denotation in (9))? 
 
 
 
 
 
4. In-class exercise 
 
 
Let’s say that De = {Basil, Sybil, Polly} 
The following are true statements in the actual world: Basil loves Sybil, Polly loves Basil, and 
Sybil loves Polly.  
 
a. Please write the relation loves as a set of ordered pairs. 
 
 
 
 
b. Please write the two-placed (AKA, not-yet-Schoenfinkelized) characteristic function (call 
it floves) for the relation you wrote above. Please write it in table notation.  
 
 
 
 
 
 
 
 
 
 



 6 

c. Please Schoenfinkelize your function floves right-to-left. Call the new function you make 
hloves. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d. Using (9) as a model, please write a denotation for loves based on your answer for (c). 
 
 
 
 
 
 
 
 
e. Put everything together. Write out the full derivation of the truth value for the sentence 
Basil loves Sybil.  
 (i) Draw a tree for the structure 
 (ii) Write out lexical entries for Basil, Sybil, and loves 
 (iii) Do subproofs for both NPs and VP.  
 (iv) Put the subject NP and the VP together to make S and get a truth value.  
 
Since all expressions will be evaluated in the actual world (w0), don’t worry about writing 
your superscript w0

 on your denotations.  
 
 


