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1. Introduction

Pollution is a public bad – the opposite of a public good – but its bur-
dens are not shared equally across the public. In the United States, a
large body of research has documented the disproportionate environ-
mental burdens faced by racial and ethnic minorities and low-income
households (see, for example, Szasz and Meuser, 1997; Ash and Fetter,
2004; Mohai, 2008; Bullard et al., 2011). These and other disparities
are important features of many environmental landscapes.

In examining environmental inequalities, a number of studies have
applied inequality measures that were originally developed to measure
the distribution of income and wealth. Many of these have focused on
international inequalities, including inter-country disparities in carbon
emissions (Heil and Wodon, 2000; Duro, 2012) and resource use
(Druckman and Jackson, 2008). With the exception of one study in the
state of Maine (Bouvier, 2014), however, inequality measures have
not been applied to the distribution of industrial air pollution exposure
within the U.S.
, klara.zwickl@wu.ac.at
In this studywe present several different inequality measures for in-
dustrial air pollution exposure in the U.S. states and compare the
resulting inter-state rankings. The extent of pollution exposure dispar-
ities between racial and ethnic groups and income classes has been
found to vary considerably across U.S. regions (Zwickl et al., 2014) and
metropolitan areas (Downey, 2007). Here we conduct our analysis at
the state level, intermediate between larger regions and smaller metro-
politan areas. Inter-state comparisons are of interest because states vary
both in the strength of their environmental regulations and in the ex-
tent to which their environmental policies incorporate explicit distribu-
tional objectives (Bonorris, 2010).

Using data on exposure to industrial air toxics from the Risk-
Screening Environmental Indicators (RSEI) database of theU.S. Environ-
mental Protection Agency (EPA), we compute several measures of in-
equality to consider three important questions:

• First, to what extent are measures of environmental inequality sensi-
tive towards the spatial scale and population weights? Previous stud-
ies have emphasized the importance of fine spatial disaggregation to
avoid the so-called “ecological fallacy” — erroneous inferences about
smaller geographical units or individuals drawn from data on larger
aggregates (Ash and Fetter, 2004). We apply a well-known measure
of inequality – the Gini coefficient – to air pollution exposure and
compare measures based on 810 m2 grid cells to those based on
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(generally larger) census tracts to examine whether these alternative
units of observation yield substantially different results. In addition,
we examine the effect of weighting these spatial units by their
population.
• Second, how do the sensitivities of inequality measures to different
ranges of the distribution affect inter-state rankings? In the case of in-
dustrial air pollution, exposures often are concentrated at the top of
the distribution: many households are exposed to relatively low
levels, while a small percentage is exposed to very high levels. Re-
searchers and policy makers may be particularly interested in mea-
sures that are more sensitive to differences within the upper range
of the distribution.
1 Similar statements appear in the Constitutions of many other nations. For examples
and discussion, see Popovic (1996).

2 42 U.S. Code §7409 — National primary and secondary ambient air quality standards.
• Third, how do inter-state rankings based on vertical inequality com-
pare to rankings based on horizontal inequality? Vertical measures
of inequality differentiate the population solely by the variable of in-
terest (here, pollution exposure), whereas horizontal measures parti-
tion the population on the basis of other characteristics. Here we
consider pollution exposure differences by minority status and in-
come, criteria in the environmental justice policies of federal and
state agencies.

Section 2 reviews motivations for measuring environmental in-
equality — why the distribution of environmental harm may matter as
well as its overall magnitude. Section 3 discusses the data used in our
analysis. Section 4 explains the methods used to calculate alternative
measures of exposure inequality, and Section 5 presents the results of
applying these to industrial air pollution exposure in the 50 states.
Section 6 concludes with a discussion of the policy implications of our
findings and potential avenues for further research on environmental
inequality.

2. Welfare Effects of Environmental Inequality

As scholars of income and wealth distribution have pointed out, the
choice of inequality measures is not only a technical question but also
depends on underlying notions of social welfare (Atkinson, 1970). Be-
fore discussing alternative measures, therefore, it is useful to consider
the welfare implications of environmental inequality.

The distribution of environmental quality matters for social welfare
for at least three reasons. The first is intrinsic, founded on the normative
principle that every person has an equal right to a clean and safe envi-
ronment. The second is instrumental: environmental quality can have
important impacts on opportunities to lead a healthy and productive
life, and equality of opportunities is widely accepted as a normative
goal. The third, also instrumental, is that environmental quality can
have important impacts on economic outcomes for individuals and com-
munities, the distribution of which has been the primary concern of
economistswho study inequality. This sectiondiscusses these rationales
with a focus on air pollution,which is characterized by theWorldHealth
Organization (2014) as “theworld's largest single environmental health
risk.”

2.1. Intrinsic Value of Environmental Equity

The normative principle that every person has the right to a clean
and safe environment has been widely affirmed in recent decades in
the most fundamental of legal documents, national constitutions. The
post-apartheid Constitution of the Republic of South Africa, for example,
states: “Every person shall have the right to an environment which is
not detrimental to his or her health or well-being.” The Constitution of
Argentina similarly affirms, “All residents enjoy the right to a healthy,
balanced environment.” The Constitution of Chile guarantees to all per-
sons “the right to live in an environment free from contamination.” The
Constitution of Portugal provides, “Everyone shall have the right to a
healthy and ecologically balanced human environment and the duty
to defend it.”1

The U.S. Constitution does not explicitly guarantee the right to a
clean and safe environment, but implicit endorsement of this principle
is “already contained in the thousands of pages of federal environmental
statutes and regulations now on the books” (Meltz, 1999). The Clean Air
Act, for example, directs the EPA to promulgate and enforce ambient air
quality standards, “the attainment and maintenance of which … are
requisite to protect the public health.”2 Explicit affirmations of the
right to a clean and safe environment were added to a number of U.S.
state constitutions starting in the 1970s. The Massachusetts Constitu-
tion states, “The people shall have the right to clean air and water.”
The Hawaii Constitution provides, “Each person has the right to a
clean and healthful environment, as defined by laws relating to environ-
mental quality, including control of pollution and conservation, protec-
tion and enhancement of natural resources.” The Illinois Constitution
affirms, “Each person has the right to a healthful environment.” The
Pennsylvania Constitution specifies, “The people have a right to clean
air, pure water, and to the preservation of the natural, scenic, historic
and esthetic values of the environment.” The Montana Constitution
states, in language that evokes the U.S. Declaration of Independence,
“All persons are born free and have certain inalienable rights. They in-
clude the right to a healthful environment…”.

By asserting the normative principle that all persons have a right to a
clean environment, these provisions place an intrinsic value on the dis-
tribution of environmental quality. Regardless of how the practical mat-
ter of translating this goal into policies is handled – including the
question of how clean the environment must be in order to qualify as
“clean” – this principle implies that the environmental rights of some
should not take precedence over the environmental rights of others.

Presidential Executive Order 12898, issued by Bill Clinton in 1994,
directs each U.S. government agency to take steps to identify and rectify
“disproportionately high and adverse human health or environmental
effects of its programs, policies, and activities on minority populations
and low-income populations,” explicitly inscribing equity across groups
defined on the basis of race, ethnicity and economic status into federal
environmental policy. Many states have also adopted environmental
justice policies (Bonorris, 2010). In a proclamationmarking the 20th an-
niversary of the executive order on environmental justice, President
Barack Obama reaffirmed “every American's right to breathe freely,
drink clean water, and live on uncontaminated land” (Obama, 2014).

2.2. Equality of Opportunity

A second motivation for concern about environmental inequality is
its impact on equality of opportunity, which is widely accepted as a nor-
mative goal. “Muchmore important than inequality of outcomes among
adults is inequality of opportunity among children,”write the authors of
the World Bank's Human Opportunity Index, noting that “the idea of
giving people equal opportunity early in life, whatever their socioeco-
nomic background, is embraced across the political spectrum” (Barros
et al., 2009, p. xvii).

Children are especially vulnerable to the health impacts of pollution,
and environmental quality can significantly affect a child's life chances
(Currie, 2011). The impacts extend to the odds of survival. For example,
a study of the impact of reduced air pollution in the U.S. during the
1981–82 recession found that for each one percent decrease in total
suspended particulates, infant mortality declined by 0.35% (Chay and
Greenstone, 2003). Emissions controls implemented by the state of Cal-
ifornia are estimated to have prevented approximately 1000 infant
deaths from carbon monoxide exposure in the 1990s (Currie and
Neidell, 2005).



3 We censor pollution exposure at the nationwide population-weighted 97th percentile
(that is, we cap exposure at this value) to reduce the sensitivity of our results to outliers.

4 Census tracts have been used as proxies for neighborhoods in analyzing environmen-
tal disparities (Zwickl and Moser, 2014), housing segregation (Brueckner and Rosenthal,
2009), unemployment (Topa, 2001) and subprime credit markets (Richter and Craig,
2013).
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Air pollution also has adverse impacts on fetal health (Currie et al.,
2009b). Researchers have concluded that “a substantial proportion of
cases of low birthweight at term could be prevented in Europe if
urban air pollution was reduced” (Pedersen et al., 2013). Fetal exposure
to industrial chemicals has been linked to neurodevelopmental disabil-
ities including autism, attention-deficit hyperactivity disorder, dyslexia
and other cognitive impairments (Grandjean and Landrigan, 2014).

Exposure to airborne toxics has been found to have statistically sig-
nificant negative effects on school test scores in metropolitan Los
Angeles (Pastor et al., 2002, 2004). A study in Louisiana found that
proximity to Toxics Release Inventory (TRI) facilities and high-volume
emitters of developmental neurotoxins is significantly related to school
performance (Lucier et al., 2011). Even transitory exposure to high
levels of airborne particulates on exam days has been shown to have
significant adverse impacts on student performance on high-stakes
tests, leading in turn to negative effects on post-secondary education
and adult earnings (Lavy et al., 2014).

A further pathway by which air pollution affects educational oppor-
tunities is by causing school absences due to asthma and other illnesses.
A study of elementary and middle school children in Texas found that
air pollution had significant adverse effects on school attendance
(Currie et al., 2009a). A Michigan study found that schools located in
neighborhoods with the highest industrial air pollution levels had the
lowest attendance rates as well as the highest proportions of students
who failed to meet state educational testing standards, after controlling
for effects of other variables (Mohai et al., 2011).

2.3. Equality of Economic Outcomes

The distribution of pollution also has impacts on the distribution of
economic outcomes, via impacts on property values, days lost from
work and health costs. Air pollution has long been known to reduce
property values (Anderson and Crocker, 1971). Housing values within
a one-mile radius have been found to decrease by 1.5% when a TRI facil-
ity opens and to rise by 1.5% when one closes (Currie et al., 2015). Air
quality improvements following implementation of the Clean Air Act
led to an estimated $45 billion increase in housing values in the 1970s
(Chay and Greenstone, 2005).

Air pollution also results in lost workdays. An analysis by EPA scien-
tists estimated that airborne particulate matter from industrial point
sources is responsible for 1.6 million lost workdays annually in the
U.S. (Fann et al., 2013). Exposure to air pollution has also been shown
to have statistically significant adverse impacts on worker productivity
(Graff Zivin and Neidell, 2012).

The health costs of air pollution are large and unequally distributed.
Announcing its Mercury and Air Toxics Standards for power plants in
December 2014, the EPA estimated that they will yield annual health
benefits valued at between $37 billion and $90 billion, and that these
are “especially important to minority and low income populations
who are disproportionately impacted by asthma and other debilitating
health conditions” (U.S. EPA, 2014).

The well documented inverse relationship between health and so-
cioeconomic statusmay arise in part fromdifferences in pollution expo-
sure (Evans and Kantrowitz, 2002). A study of New York City's Bronx
borough found that poor and minority populations are more likely to
live in proximity to noxious land uses, including TRI facilities, and that
this is associated with a 66% increase in the likelihood of hospitalization
for asthma (Maantay, 2007). Exposure to multiple hazards has cumula-
tive impacts (Brender et al., 2011), and interactions with vulnerabilities
linked to socioeconomic status can exacerbate health effects of environ-
mental hazards (Morello-Frosch et al., 2011).

3. Mapping Exposure to Industrial Air Toxics in the United States

We measure industrial air toxics exposure using geographic
microdata from the U.S. EPA's Risk Screening Environmental Indicators
(RSEI version 2.3.1) model for the year 2010. The RSEI model is based
on TRI data on air releases of more than 400 chemicals from more
than 15,000 facilities. The model maps the dispersion of these releases,
incorporating information on stack heights, exit gas velocities, wind
patterns, and chemical decay rates in order to estimate ambient concen-
trations in grid cells, each 810 m2, within a 50-km radius around each
facility. To measure total exposure aggregated across chemicals RSEI
uses toxicity weights based on chronic human health effects.

The RSEI data provide the best available measure of exposure to in-
dustrial air toxics. The data do not include emissions from mobile
sources and small point sources, which also contribute to overall air
pollution. In the communities that face the most severe air pollution
burdens, however, the industrial point sources included in the RSEI da-
tabase often loom large (Boyce and Pastor, 2012).

Median household exposure to industrial air toxics varies widely
across the states, as shown in Fig. 1a. The highest median exposure (in
Utah) is roughly one thousand times more than the lowest (in Ver-
mont). To examine intra-state variations, we first calculate toxicity-
weighted exposures for each of the state's RSEI grid cells, aggregated
across all facilities whose releases impact that cell. We use a crosswalk
to map the grid-cells to census blocks, which are the finest level of spa-
tial resolution in theU.S. Census.We then compute exposure at the level
of census tracts, calculated as the area-weighted average of exposure in
the tract's constituent blocks.3 We find that exposure is distributed
quite unevenly within states, as well as across them, as shown in
Fig. 1b. For example, the same state may include census tracts that
rank both in the highest and lowest national exposure quintiles.

Whenmeasuring inequality in the distribution of income andwealth,
the unit of observation typically is the individual or the household. In the
case of spatial variables, such as pollution exposure, the choice of the unit
of observation for measuring inequality is less straightforward. To guard
against the “ecological fallacy” – where conclusions drawn from aggre-
gate data do not apply at finer levels of disaggregation – it is desirable
to base calculations on the smaller units of observation. It the present
case, the smallest unit is the 810 m × 810 m RSEI grid cell. There are
roughly 15 million grid cells nationwide, 9.7 million of which are ex-
posed to industrial air pollution according to the RSEI model. Although
grid cells have a fixed area, their population density can vary greatly.

Alternatively, we can compute inequalitymeasures using the 74,002
census tracts as the unit of observation. Census tracts often correspond
towhat residents consider to be their “neighborhoods,” and for this rea-
son inequality measures constructed on this basis are of intrinsic
interest.4 Tracts are constructed by the Census Bureau to include rough-
ly 4000 persons each; hence they vary in area due to differences in pop-
ulation density. Although grid cells generally provide finer spatial
resolution, tracts are smaller than grid cells in densely populated
urban areas. The number of grid cells per census tract ranges from
0.06 in densely populated neighborhoods of New York City and Boston
to tens of thousands in parts of western states such as Nevada and
Alaska.

The choice of whether to define spatial units on the basis of equal
area or equal population is important from a policy standpoint as well
for inequality measurement. Disparities across units of equal area
could be reduced by prioritizing the most polluted areas, regardless of
how many people live there. Such a policy approach could be justified
on the normative premise that each individual should have equal access
to environmental quality, regardless of the population density in the
place they reside. Disparities across units of equal population could be
reduced by prioritizing areas that are more densely populated, even if



Fig. 1. a: Industrial air toxic exposure by state. b: Industrial air toxic exposure by census tract.
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they are not the most polluted. Such an approach could be justified on
the normative premise that environmental policy should maximize
the sum total of human health benefits.

Here our focus is the distribution of pollution exposure across the
population. For this reason we use population weights in calculating
our inequality measures. Because grid cells generally are smaller than
census tracts, a comparison between population-weighted inequality
measures calculated on these two spatial bases can shed light on how
much inequality arises from within-tract variations. In the case of
income inequality, comparisons of measures calculated on the basis of
tract-level versus household-level data show that a substantial compo-
nent of overall inequality in the U.S. is attributable towithin-tract differ-
ences (Galbraith and Hale, 2008). In the case of exposure inequality,
within-tract variation is likely to be less important, an expectation con-
firmed in our results.

To measure horizontal inequality, we partition households on the
basis of income and demographic variables obtained from the
American Community Survey (ACS), using five-year averages for the



5 Some authors have suggested that peoplemay voluntarily choose to trade off environ-
mental quality for higher incomes, such that those who live in more polluted locations
(where they can earn higher incomes) are not worse off in terms of net welfare
(Millimet and Slottje, 2002). Others maintain that income and environmental quality
are incommensurable, so the gains in the former cannot compensate for losses of the latter
(Heinzerling and Ackerman, 2005; Khaw et al., 2015). If horizontal inequality measure-
ment shows that peoplewith lower incomes generally facemore pollution exposure, rath-
er than less, the question of whether the two variables can offset each other becomes less
relevant for welfare comparisons.

Fig. 2. Horizontal inequality ratios by exposure percentile.
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years 2006–2010. The census tract is the finest level of disaggregation
available for these variables.

4. Environmental Inequality Measures

In this study we compare seven alternative measures of environ-
mental inequality, calculated using the methods described in this
section.

4.1. Vertical Inequality

Measures of vertical inequality rank individuals on the basis of the
variable of concern (here, pollution exposure) and then summarize
the extent of differences among them.

4.1.1. Gini Coefficient
The Gini coefficient is widely used to measure inequality in the dis-

tribution of income, expenditure and wealth (Dorfman, 1979; Cowell,
1995). We calculate the Gini coefficient for exposure by means of the
following formula (using Stata's ineqdeco package):

Gini ¼ 1þ 1
n

� �
−

2
MEANEXP � n2

� �Xn
i¼1

n−iþ 1ð Þ � EXPOSUREi½ �

where EXPOSUREi is industrial air toxics exposure in census tract (or grid
cell) i; n = the number of tracts (or cells), indexed in non-decreasing
order; and MEANEXP is the mean exposure for all tracts (or cells). The
Gini coefficient lies in the interval between zero and one, with higher
values denoting greater inequality.

While the Gini coefficient satisfies key properties of inequality mea-
sures (mean independence, population size independence, symmetry,
and Pigou-Dalton transfer sensitivity; see Haughton and Khandker,
2009), it is more sensitive to changes in the middle of the distribution
than to changes at the tails (Atkinson, 1970; Duro, 2012).

4.1.2. Theil Index and Generalized Entropy Measure
The Generalized Entropy (GE) family of inequality measures vary in

their sensitivity to changes at different ranges of the distribution. The
GE(1)measure, more commonly known as the Theil index, is most sen-
sitive to themiddle range, like theGini coefficient. The Theil index is cal-
culated as follows:

Theil ¼
Xn
i¼1

wi

N

� � EXPOSUREi
MEANEXP

� �
log

EXPOSUREi
MEANEXP

� �

where wi is the population weight for census tract i; and N ¼ ∑n
i¼1wi.

We also calculate a secondGEmeasure, GE(2), that is more sensitive
to changes in the upper range of the distribution:

GE 2ð Þ ¼ 1
2
�

Xn
i¼1

wi

N

� � EXPOSUREi
MEANEXP

� �2
 !

−1

" #
:

The values of GE measures in principle can range between zero and
infinity, with a higher value again reflecting greater inequality.

4.2. Horizontal Inequality

Measures of horizontal inequality partition the population into
groups based on characteristics other than the variable of distributional
concern, and then calculate between-group differences in the variable.
Here we define groups on the basis of (i) race and ethnicity,
distinguishing between Anglo whites and “minorities”; and (ii) income,
distinguishing between households with incomes above and below
the federal poverty line. Horizontal inequality along these axes is an
explicit policy concern in U.S. federal and state environmental justice
mandates.5
4.2.1. Ratios of Medians
To compare exposures of racial and ethnic minorities to those of

non-Hispanic whites (hereafter, simply “whites”), and to compare ex-
posures of the poor to those of the nonpoor, we first calculate exposure
levels for each population group:

EXPOSURE j ¼
Xn
i¼1

EXPOSUREi � TOTALPOPi � Xij
� 	

=
Xn
i¼1

TOTALPOPi � Xij
� 	

where subscript j indexes the population group; and Xij is the share of
group j in the population of census tract i. This yields separate exposure
distributions for each group.

Our first horizontal inequality measure is the ratio at themedians of
the group exposure distributions: the minority/white median exposure
ratio and the poor/nonpoor median exposure ratio.
4.2.2. Ratios of 90th Percentiles
Between-group exposure ratiosmay vary across the distributions, as

illustrated in Fig. 2. At the national level, the minority/white exposure
ratio is fairly constant: across the two distributions, the exposures ofmi-
norities are roughly 50% above those of whites. The poor/nonpoor ratio,
however, rises with the exposure percentiles. At the lower end of the
distributions, the poor face less exposure than the nonpoor, perhaps
reflecting their residence in locations with very low levels of industrial
activity; but at the upper end, the exposures of the poor are roughly
50% higher than those of the nonpoor.

Because the distribution of industrial air pollution exposure is highly
skewed – the top quintile of census tracts nationwide accounts formore
than 80% of the total pollution load – horizontal inequality at the upper
end of the distributions is of particular interest. To assess between-
group inequalities in this range, we report the minority/white and
poor/nonpoor ratios at the 90th percentiles of exposure.



Table 1
Gini coefficients: Spearman rank correlations.

Between-tract
exposure Gini

Between-cell exposure Gini
(unweighted)

Between-cell exposure Gini
(population-weighted)

Between-tract
income Gini

Individual
income Gini

Between-tract exposure Gini 1.00
Between-cell exposure Gini (unweighted) 0.58 1.00
Between-cell exposure Gini (population weighted) 1.00 0.59 1.00
Between-tract income Gini −0.26 −0.24 −0.29 1.00
Individual income Gini −0.21 −0.43 −0.23 0.78 1.00

Table 2
Three measures of vertical inequality: Spearman rank correlations.

Gini Theil index GE(2)

Gini 1.00
Theil index 0.98 1.00
GE(2) 0.82 0.92 1.00
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5. Results

This section applies the inequality measures described above to in-
dustrial air pollution exposure for U.S. states. In calculating Gini coeffi-
cients, we examine the effects of taking census tracts versus RSEI grid
cells as the units of observation, and the impact of population weights
on grid cell-based Ginis. We also compare Gini coefficients for exposure
inequality to those for income inequality. We then present the Theil
index and the GE(2) measures to examine how sensitivity to different
ranges of the distribution affects vertical inequality measures. Turning
to horizontal inequality, we present themedian and p90 exposure ratios
to examine disparities between minorities and whites and between the
poor and nonpoor. We then examine correlations between vertical and
horizontal exposure inequality. Finallywe examine correlation between
exposure inequality and inter-state variations in exposure levels.

5.1. Gini Coefficients

Three variants of the environmental Gini coefficient are reported in
Table A.1. Those in the first column are based on tract-level data;
those on the second column are based on unweighted grid cells; those
in the third column are based on grid cells with population weights.6

For comparison, we also report Gini coefficients for income calculated
from tract-level data and household-level data in the last two columns.

The results show high degrees of environmental inequality. The
between-tract Gini is 0.76 at the national level, and it is 0.70 or higher
in more than half of the states. The unweighted between-cell Gini is
0.93 at the national level, and it is higher than the between-tract Gini
in almost all states. When we apply population weights to the calcula-
tion of between-cell Ginis, the results are nearly identical to the
between-tract Ginis. This implies that intra-tract variations in exposure
are minor compared to between-tract variation. The choice between
census tracts and grid cells as a basis for computing exposure Ginis is
therefore of little consequence if we are interested in inequality across
the population rather than across areal units.

The situation is quite different in the case of income Ginis. Compar-
ing Ginis that we calculated on the basis ofmedian tract income to Ginis
calculated from household-level data by the U.S. Census Bureau (both
based on 2010 ACS data), we find a marked difference between the
two: the between-tract income Gini is 0.25 at the national level, com-
pared to the household incomeGini of 0.47, and at the state level thedif-
ferences between them often are larger. This reflects the existence of
substantial intra-tract variations in incomes, consistent with the earlier
findings of Galbraith and Hale (2008).

The Gini coefficient for exposure inequality is considerably higher
than that for income inequality at the national level, and higher in all
but two states. We can safely conclude on the basis of this evidence
that exposure to industrial air toxics in the U.S. is more unequally dis-
tributed than income.

Table 1 presents Spearman rank correlations among the Gini coeffi-
cients. The between-tract exposure Gini and the population-weighted
between-cell Gini are correlated almost perfectly, so hereafter we
6 Although each census tract contains approximately the same number of individuals,
they do not contain precisely the same number. For this reason, we also apply population
weights in calculating the tract-level Ginis reported here.
simply use tracts as the unit of analysis. The weak negative correlations
between the Gini coefficients for exposure and income suggest that nei-
ther type of inequality can serve as a suitable proxy for the other.
5.2. Theil Index and Generalized Entropy Measures

Table A.2 presents the Theil index and the GE(2)measures of vertical
inequality, again calculated taking census tracts as the unit of analysis.
In most cases the GE(2) measure is higher than the Theil index, indicat-
ing that greater sensitivity to exposure differences at the upper range of
the distribution increases measured inequality.

Table 2 presents Spearman rank correlations for the tract-level Gini
coefficient, the Theil index and the GE(2) measure. All three measures
of vertical inequality are positively correlated. The correlation between
the Gini coefficient and the Theil index is close to one, consistent with
their sensitivity to differences in the middle range of the distribution.
5.3. Horizontal Inequality: Median Exposure Ratios

Table A.3 presents our horizontal inequality measures. Nationwide,
theminority/whitemedian exposure ratio is 1.46. Horizontal income in-
equality between whites and minorities is roughly comparable in mag-
nitude: the ratio of their median household incomes in 2010 was 1.4.7

The median exposure ratio is less than one in only ten states, and less
than 0.67 only in the Dakotas and Montana, where Native Americans,
many of whom reside far from industrial facilities, comprise the largest
minority. In six states – Arkansas, California, Kentucky, Michigan, Min-
nesota and Wisconsin – median minority exposure is more than three
times greater than median white exposure.

The poor/nonpoormedian exposure ratio nationwide is 1.11. Among
the states it ranges from0.35 in Idaho to 3.59 inWyoming. Thismeasure
reflects the balance between two opposing effects. On the one hand, in-
sofar as the presence of industry is correlated with higher incomes as
well as higher pollution, the exposure of the poor would be expected
to be less than that of the nonpoor, yielding a ratio smaller than one.
On the other hand, insofar asmore polluting facilities tend to be located
in greater proximity to the lower-income neighborhoods within indus-
trialized areas, this would yield a ratio greater than one. Their net effect
appears to vary considerably from state to state. The ratio is less than 0.8
in nine states. It is above one in 26 states – and above three in Virginia
and Wyoming – again indicating that higher pollution exposure often
is not compensated by higher incomes.
7 Calculated fromDeNavas-Walt et al. (2011), Table A.1, “Income and Earnings Summa-
ry Measures by Selected Characteristics: 2007 and 2010.”



Table 3
Horizontal and vertical inequality: Spearman rank correlations.

Gini GE(2) Minority/white median Minority/white p90 Poor/nonpoor median Poor/nonpoor p90

Gini 1.00
GE(2) 0.82 1.00
Minority/white median −0.32 −0.37 1.00
Minority/white p90 −0.15 −0.28 0.54 1.00
Poor/nonpoor median −0.24 −0.13 0.42 0.06 1.00
Poor/nonpoor p90 0.13 0.03 0.31 0.49 0.33 1.00

Fig. 3.Minority and white exposure by percentile: Ohio and Virginia.

Table 4
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5.4. Horizontal Inequality: 90th Percentile Exposure Ratios

Comparisons at the 90th percentiles for each group yield aminority/
white exposure ratio of 1.41 and a poor/nonpoor exposure ratio of 1.33
at the national level. The range of variation among states in the 90th
percentile ratios is somewhat narrower than in the median ratios.
Four states (Arkansas, Georgia, Illinois and Kentucky) have minority/
white p90 ratios above 2.0, two (Virginia andMissouri) have poor/non-
poor p90 ratios above 2.0.

5.5. Correlations Among Exposure Inequality Measures

Table 3 presents Spearman rank correlation coefficients for the four
horizontal inequalitymeasures and the Gini and GE(2)measures of ver-
tical inequality. In general, the correlations amongst them are fairly low,
implying that inter-state rankings of environmental inequality can be
quite sensitive to the choice of a measure. The strongest positive corre-
lations are between the two measures of vertical inequality (0.82) and
between the twomeasures ofminority/white inequality (0.54). Correla-
tions across measures of the two dimensions of horizontal inequality –
the minority/white and poor/nonpoor ratios – are also positive, but
not as strong.

The correlations between vertical and horizontal inequality mea-
sures are weak, and in many cases they are negative. One might have
expected, a priori, that states with greater vertical inequality – that is,
a wider range of exposure across the entire population – would also
tend to show greater horizontal inequalities between groups defined
on the basis of minority status or income. To illustrate that this is not
necessarily true, in Fig. 3 we compare the percentile-wise exposures
forminorities andwhites in two states, Ohio andVirginia. Ohio has a rel-
atively lowGini and relatively highminority/whitemedian ratios, while
Virginia has the opposite. The contrast implies that multiple measures
of exposure inequality are necessary to capture its different
dimensions.8

5.6. Correlations Between Levels and Inequality

Table 4 presents correlations between our exposure inequalitymea-
sures and exposure levels at the median and the 90th percentile of the
state's distribution.9 The negative correlations between exposure levels
and vertical inequalitymean that industrial air pollution exposure tends
to be distributedmore unequally in stateswith less of it. This reflects the
fact that some states (for example, Alaska and Vermont) have very low
exposure levels in most tracts but substantial exposure levels in a few.

Minority/white exposure ratios, on the other hand, are positively
correlated with exposure levels; that is, pollution exposure tends to be
higher in states where it is more strongly concentrated in minority
8 Two further features of Fig. 3 deserve comment. First, more than 15% of Ohio'sminor-
ity population lives in census tracts with exposure at or above the 97th national percentile
(the level atwhich our exposure data are censored,flattening the curve). Second, themost
exposed decile of whites in Virginia faces considerably higher exposure than the most ex-
posed decile ofminorities. As noted above, Virginia's poor/nonpoormedian and p90 expo-
sure ratios are above 3.0; taken together, these observations indicate disproportionately
high exposures among poor whites in the state.

9 Median and 90th percentile exposure levels are reported in the supplementary mate-
rial that accompanies this paper.
communities. This is consistent with the previous finding that in U.S.
metropolitan areaswith greater minority/white pollution exposure dis-
crepancies, whites as well as minorities have higher exposures than in
metropolitan areas with smaller discrepancies (Ash et al., 2013). Causal
explanations for this relationship could run in either or both directions:
environmental regulationmay tend to be weaker in states where pollu-
tion burdens fall more heavily onminorities, and theremay be a greater
tendency to shift pollution burdens ontominority communities in states
with more pollution. Both explanations suggest that racial and ethnic
disparities in political power can have important consequences for
state environmental policies.
6. Policy Implications and Avenues for Future Research

This analysis of the distribution of industrial air pollution exposure
in the U.S. demonstrates the multi-dimensionality of environmental in-
equality. Comparing a number of alternative measures of vertical and
horizontal (between-group) inequality we find that these can often
yield quite different inter-state rankings of environmental inequalities.

Comparing vertical inequality in the distribution of exposure to that
in the distribution of income, we find much greater inequality in expo-
sure. At the national level, the Gini coefficient for exposure in 2010 was
0.76, well above the Gini coefficient for income. Vertical inequality in
Exposure levels and exposure inequality: Spearman rank correlations.

Median exposure p90 exposure

Gini −0.65 −0.29
GE(2) −0.77 −0.60
Minority/white median 0.47 0.38
Minority/white p90 0.36 0.38
Poor/nonpoor median 0.07 −0.07
Poor/nonpoor p90 0.18 0.23
Median exposure 1.00 0.86
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the distribution of exposure is a matter of concern if one accepts the
normative principle that every person has an equal right to a clean
and safe environment. Of course, the extent to which pollution expo-
sures exceed levels judged to be “safe” is also important. Even in those
states where the median exposure is relatively low, however, measures
of vertical inequality can be of interest to assess the possibility that av-
erage measures may mask serious environmental risks in specific
communities.

Environmental inequalities may be considered especially objection-
able when those who face disproportionate harms are also disadvan-
taged in other respects. Environmental justice policies in the U.S. seek
to remedy and prevent disproportionately environmental health im-
pacts on minorities and low-income communities. For such policies,
measures of horizontal inequality are of particular relevance.

When the distribution of environmental harm is highly skewed, as in
the case of exposure to industrial air pollution, it is important to employ
inequality measures that are sensitive to differences in the upper range
of the distribution. To measure vertical inequality, the GE(2) measure
may be preferable in this respect to the Gini coefficient or Theil index.
Tomeasure horizontal inequality, exposure ratios at the 90th percentile
of the distributionsmay be preferable to exposure ratios at themedians.

However it is measured, inequality is only one of several relevant
criteria for assessing environmental policy outcomes. No one would
claim that social welfarewould be improved by increasing pollution ex-
posure in all census tracts until it equals that in the most exposed one,
notwithstanding the fact that this would be oneway to eliminate expo-
sure inequality. But in decidingwhere to allow new pollution sources to
be sited, or where to prioritize abatement and enforcement efforts
among existing sources, impacts on environmental inequality may be
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a relevant policy criterion. The development of inequality measures to
assist in the pursuit and evaluation of this objective can help to counter
complacency about the existence of “sacrifice zones,” communities bur-
dened by exceptionally high pollution loads, and can help to catalyze
greater attention among researchers and the public to the distribution
of environmental quality.

Further research is needed to develop comparable measures for
other types of environmental inequality, including exposure to
mobile-source air pollution and to water pollution. Among other things,
this will allow researchers to investigate whether variations in these as-
pects of environmental inequality are correlated with the variations in
exposure inequality reported here. There is also scope for measuring
and analyzing environmental inequality at other spatial scales, such as
within metropolitan areas. Finally, measurement of environmental in-
equality creates possibilities for researchers to analyze its relationship
to other variables of interest to social scientists and policy makers,
such as residential segregation, voting behavior and state environmen-
tal policies.
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Appendix A
Table A.1

Gini coefficients for exposure and income.
Exposure
 Income
Between-tract
 Between-cell, unweighted
 Between-cell, population-weighted
 Between-tract
 Individual
labama
 0.73
 0.80
 0.73
 0.21
 0.47

laska
 0.91
 1.00
 0.92
 0.17
 0.42

rizona
 0.76
 0.96
 0.75
 0.26
 0.46

rkansas
 0.81
 0.87
 0.81
 0.18
 0.46

alifornia
 0.80
 0.96
 0.79
 0.29
 0.47

olorado
 0.71
 0.95
 0.71
 0.22
 0.46

onnecticut
 0.61
 0.60
 0.60
 0.25
 0.49

elaware
 0.48
 0.70
 0.49
 0.20
 0.44

C
 0.34
 0.38
 0.35
 0.33
 0.53

orida
 0.72
 0.78
 0.71
 0.24
 0.47

eorgia
 0.70
 0.76
 0.69
 0.23
 0.47

awaii
 0.53
 0.92
 0.55
 0.18
 0.43

aho
 0.81
 0.97
 0.81
 0.16
 0.43

linois
 0.60
 0.81
 0.59
 0.25
 0.47

diana
 0.65
 0.73
 0.65
 0.18
 0.44

wa
 0.82
 0.77
 0.82
 0.15
 0.43

ansas
 0.74
 0.91
 0.73
 0.21
 0.45

entucky
 0.71
 0.77
 0.70
 0.20
 0.47

uisiana
 0.65
 0.83
 0.64
 0.21
 0.48

aine
 0.77
 0.86
 0.77
 0.14
 0.44

aryland
 0.69
 0.75
 0.69
 0.22
 0.44

assachusetts
 0.63
 0.70
 0.63
 0.21
 0.48

ichigan
 0.68
 0.90
 0.68
 0.21
 0.45

innesota
 0.69
 0.92
 0.68
 0.19
 0.44

ississippi
 0.82
 0.85
 0.81
 0.19
 0.47

issouri
 0.77
 0.90
 0.76
 0.20
 0.46

ontana
 0.83
 0.96
 0.85
 0.14
 0.44

ebraska
 0.67
 0.85
 0.66
 0.18
 0.43

evada
 0.85
 0.97
 0.85
 0.22
 0.45

ew Hampshire
 0.63
 0.85
 0.61
 0.14
 0.43

ew Jersey
 0.61
 0.73
 0.60
 0.23
 0.46

ew Mexico
 0.80
 0.97
 0.81
 0.23
 0.46

ew York
 0.59
 0.82
 0.58
 0.29
 0.50

orth Carolina
 0.79
 0.81
 0.78
 0.21
 0.46
(continued on next page)
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able A.1 (continued)
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able A.2
eneralized entropy measures

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
DC
Florida
Georgia
Hawaii
Idaho
Illinois
Indiana
Iowa
Kansas
Kentucky
Louisiana
Maine
Maryland
Massachusetts
Michigan
Minnesota
Mississippi
Missouri
Montana
Nebraska
Nevada
New Hampshire
New Jersey
New Mexico
New York
North Carolina
North Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota
Tennessee
Texas
Utah
Vermont
Virginia
Washington
West Virginia
Wisconsin
Wyoming
National
Exposure
of exposure inequality.

Theil index GE(2)

1.05 1.80
2.34 9.84
1.27 3.37
1.43 3.29
1.30 2.25
0.98 1.85
0.73 1.23
0.43 0.62
0.33 0.85
1.18 3.77
1.09 2.80
0.53 0.76
1.52 4.05
0.62 0.74
0.80 1.24
1.48 3.19
1.06 1.36
0.94 1.33
0.75 0.84
1.40 5.91
1.14 4.51
0.93 2.69
0.89 1.42
0.92 1.48
1.53 3.79
1.29 2.50
1.54 3.42
1.02 2.82
2.03 10.50
0.95 3.29
0.70 1.08
1.61 11.12
0.73 1.54
1.58 5.83
1.21 2.11
0.61 0.76
1.21 2.60
0.75 0.83
0.63 0.85
0.17 0.20
0.98 1.64
1.83 5.79
0.90 1.67
1.11 1.61
0.61 0.65
1.68 4.53
1.78 5.26
1.17 3.39
1.11 1.53
0.77 1.11
1.24 2.03
1.16 1.98

Table A.3
Horizontal measures of exposure inequality.

Minority/white
median
exposure ratio

Minority/
p90 expo
ratio

Alabama 0.94 1.38
Alaska 1.00 0.73
Arizona 1.10 1.03
Arkansas 3.24 3.34
California 3.48 1.79
Colorado 1.76 1.35
Connecticut 1.06 1.36
Delaware 1.36 1.26
DC 1.13 1.07
Florida 1.88 1.81
Georgia 1.89 2.05
Hawaii 2.02 1.41
Idaho 1.05 1.77
Illinois 2.92 2.33
Indiana 2.01 1.35
Iowa 1.22 1.30
Kansas 2.20 1.29
Kentucky 3.66 2.72
Louisiana 1.76 1.24
Maine 1.45 1.23
Maryland 0.67 0.55
Massachusetts 1.05 1.13
Michigan 3.10 1.60
Minnesota 4.59 1.28
Mississippi 0.85 1.13
Missouri 2.48 0.84
Montana 0.46 0.67
Nebraska 2.07 1.29
Nevada 0.78 0.66
New Hampshire 2.15 0.94
New Jersey 2.05 1.56
NewMexico 1.03 1.90
New York 2.41 0.95
North Carolina 1.06 1.23
North Dakota 0.03 0.85
Ohio 2.20 1.71
Oklahoma 1.81 1.73
Oregon 1.61 0.94
Pennsylvania 0.98 1.32
Rhode Island 0.97 0.94
South Carolina 1.03 0.95
South Dakota 0.23 0.99
Tennessee 2.56 1.53
Texas 1.19 1.76
Utah 1.42 1.28
Vermont 1.14 1.00
Virginia 1.11 0.68
Washington 1.15 0.78
West Virginia 0.80 1.32
Income
Between-tract
 Between-cell, unweighted
 Between-cell, population-weighted
 Between-tract
white
sure

Poor/nonpoor
median
exposure ratio

Po
p9
rat

0.86 1.2
0.89 0.7
1.07 1.2
1.02 1.7
1.25 0.9
1.32 1.3
1.17 1.6
1.07 0.8
0.96 0.9
1.19 1.2
0.94 1.4
1.12 0.9
0.35 1.4
1.73 1.6
1.36 1.5
1.19 1.4
0.57 1.2
0.50 1.7
0.84 1.0
0.95 1.0
1.80 1.2
1.10 1.1
1.28 1.2
1.12 1.1
0.76 1.1
1.52 2.0
0.92 1.0
1.16 1.0
0.95 0.8
0.95 0.9
1.25 1.3
0.81 1.7
1.54 1.0
0.93 1.1
0.94 1.1
1.48 1.6
0.58 1.3
0.72 0.8
0.91 1.5
1.06 0.9
0.78 0.7
0.43 1.1
1.17 1.2
0.82 1.2
0.73 1.2
1.00 1.5
3.17 3.0
1.00 1.2
0.74 0.9
Individual
orth Dakota
 0.77
 0.94
 0.79
 0.13
 0.43

hio
 0.59
 0.68
 0.58
 0.20
 0.45

klahoma
 0.76
 0.88
 0.75
 0.20
 0.45

regon
 0.64
 0.95
 0.64
 0.18
 0.45

ennsylvania
 0.59
 0.70
 0.58
 0.22
 0.46

hode Island
 0.32
 0.38
 0.34
 0.20
 0.47

outh Carolina
 0.71
 0.72
 0.70
 0.21
 0.46

outh Dakota
 0.86
 0.92
 0.87
 0.17
 0.44

ennessee
 0.67
 0.75
 0.66
 0.22
 0.47

exas
 0.75
 0.93
 0.75
 0.28
 0.47

tah
 0.58
 0.97
 0.57
 0.17
 0.42

ermont
 0.84
 0.87
 0.86
 0.13
 0.44

irginia
 0.85
 0.88
 0.85
 0.24
 0.46

ashington
 0.72
 0.91
 0.73
 0.21
 0.44

est Virginia
 0.76
 0.83
 0.75
 0.15
 0.45

isconsin
 0.65
 0.80
 0.65
 0.17
 0.43

yoming
 0.78
 0.93
 0.82
 0.13
 0.42

ational
 0.76
 0.93
 0.76
 0.25
 0.47
N
or/nonpoor
0 exposure
io

8
7
6
7
6
4
2
9
4
2
8
4
5
7
9
7
5
4
6
7
6
6
9
8
4
8
7
0
7
3
0
3
8
9
6
8
3
1
5
7
4
8
6
4
5
0
6
7
6



Table A.3 (continued)

Minority/white
median
exposure ratio

Minority/white
p90 exposure
ratio

Poor/nonpoor
median
exposure ratio

Poor/nonpoor
p90 exposure
ratio

Wisconsin 4.79 1.97 1.55 1.51
Wyoming 2.09 1.75 3.59 1.75
National 1.46 1.41 1.11 1.33
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Haughton, J.H., Khandker, S.R., 2009. Handbook on Poverty and Inequality. World Bank
Publications.
Appendix B. Supplementary data.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecolecon.2016.01.014.
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