Negation and semantic relatedness in eye-tracking-while-reading

Erika Mayer, Adrian Staub, and Brian Dillon

Semantic operators

- Semantic operators are words like *not*, *even*, *only*, and many more.
- Like nouns and verbs, they alter the meaning of sentences.
- However, unlike many nouns and verbs, their meanings are abstract and often change or add to the sentence's **logical properties**.
- How do comprehenders process and understand these abstract, complex operators during reading and listening?
- How do these operators interact with the semantics of lexical items like nouns?

The semantic operator negation

- What does it mean to change a sentence's logical properties?
- We can look at negation as an example.
- Sentential negation modifies sentences and reverses their truth conditions.

True or false?

A squirrel is a mammal.

A squirrel is a reptile.

False

True or false?

A squirrel is not a mammal.

A squirrel is not a reptile.

True

How is negation processed online?

• The fact that sentential negation has such a drastic effect on the proposition it modifies raises an important question: how and when do comprehenders take negation into account in online processing?

Fischler et al. (1983)

- Event-related potential (ERP) study investigating the online processing of negation
- The N400: an event-related potential associated with semantic anomalies
 - Elicited for sentences like A giraffe is a large **sock**.
 - Reflects semantic processing of a word
 - Occurs 300 500ms after word onset

Fischler et al.: Design

- Factors: Truth value (true or false), Negation (negative or affirmative)
- Participants read sentences word by word. They then judged whether the sentences were true or false.
- ERPs were measured at the object noun critical region.

Subject noun	Negative/ affirmative	Object critical region	True or false
A trout	is a	fish	True
A trout	is a	tree	False
A trout	is not a	fish	False
A trout	is not a	tree	True

ERP Analyses

- For affirmative sentences, the N400 appeared to be related to sentence truth condition: false sentences were associated with a larger N400 (i.e., were more negative) than true sentences.
- For negative sentences, the opposite held: true sentences were associated with a larger N400 than false sentences.

Subject noun	Negative/ affirmative	Object critical region	True or false
A trout	is a	fish	True
A trout	is a	tree	False
A trout	is not a	fish	False
A trout	is not a	tree	True

TRUE FALSE

N400

MSEC

Figure 3. Averaged ERPs for true-versus false-sentence trials, all subjects, location C_z, from 400 msec before to 800 msec following the onset of the sentence object (O frame).

Fischler et al.: Takeaways

- Fischler et al. suggest that these results are consistent with a multistep model of sentence processing.
 - In this model, if comprehenders hear a sentence like A giraffe is not a sock, they first process the core affirmative proposition A giraffe is a sock. Then the negation is incorporated.

Negation and semantic relatedness

- However, Fischler et al.'s results also make sense if semantic relatedness has a greater influence on the N400 than a proposition's truth value.
- Adding sentential negation to a sentence reverses its truth conditions, but does not change how semantically related the words in the proposition are.
- Semantically related = close in meaning or conceptually connected.

A squirrel is a mammal.

squirrel + mammal = semantically related

A squirrel is a reptile.

squirrel + reptile = semantically unrelated

A squirrel is not a mammal.

squirrel + mammal = semantically related

A squirrel is not a reptile.

squirrel + reptile = semantically unrelated

Returning to Fischler et al.

- Instead of looking at truth and falsity, we can look at the **semantic relatedness** of the subject and the noun.
- These results can be explained if we assume that semantic relatedness between the subject and object has the same effect regardless of negation.

Subject noun	Negative/ affirmative	Object critical region	True or false
A trout	is a	fish	True
A trout	is a	tree	False
A trout	is not a	fish	False
A trout	is not a	tree	True

Subject noun	Negative/ affirmative	Object critical region	Related/ unrelated
A trout	is a	fish	Related
A trout	is a	tree	Unrelated
A trout	is not a	fish	Related
A trout	is not a	tree	Unrelated

Semantic relatedness

- A trout is a fish is less negative than A trout is a tree
- A trout is not a fish is also less negative than A trout is not a tree

Subject noun	Negative/ affirmative	Object critical region	Related/ unrelated
A trout	is a	fish	Related
A trout	is a	tree	Unrelated
A trout	is not a	fish	Related
A trout	is not a	tree	Unrelated

TYPE

SENTENCE

Figure 3. Averaged ERPs for true-versus false-sentence trials, all subjects, location C_z, from 400 msec before to 800 msec following the onset of the sentence object (O frame).

The current study: Eye-tracking-while-reading

- Due to the design limitations of ERP analyses, Fischler's analyses were limited to one word the object critical region.
- An eye-tracking-while-reading study gives us the ability to look at the time-course of reading for pre-critical and post-critical regions as well.
- Eye-tracking-while-reading will also allow us to investigate whether eye-tracking measures are consistent with the N400 for negated sentences.

The current study: Eye-tracking-while-reading

- 47 participants
- 20 test items
- 65 fillers and other items
- Occasional comprehension questions

Design

Matrix/carrier sentence	Embedded sentence				Continuation
	Subject noun	Negative/ affirmative	Critical region	Spillover	
The professor told the student that	a squirrel	is a	mammal	on Saturday	during office hours.
The professor told the student that	a squirrel	is a	reptile	on Saturday	during office hours.
The professor told the student that	a squirrel	is not a	mammal	on Saturday	during office hours.
The professor told the student that	a squirrel	is not a	reptile	on Saturday	during office hours.

A proposition is embedded within a matrix proposition

Matrix/carrier sentence	Embedded sentence			Continuation of matrix sentence		
	Subject noun	Negative/ affirmative	Critical region	Spillover		
The professor told the student that	a squirrel	is a	mammal	on Saturday	during office hours.	
The professor told the student that	a squirrel	is a	reptile	on Saturday	during office hours.	
The professor told the student that	a squirrel	is not a	mammal	on Saturday	during office hours.	
The professor told the student that	a squirrel	is not a	reptile	on Saturday	during office hours.	

Embedded proposition

- The embedding proposition provides multiple benefits:
 - The sentence is less pragmatically odd when it is a report of something that someone else has said.
 - The matrix sentence allows for a longer spillover region.
- One key difference between this study and Fischler et al. was the use of an embedding sentence.
- The overall sentence, then, is not obviously true or false in the real world.
- It is the embedded proposition that is true or false.

Factor 1: Affirmative vs. negative

Matrix/carrier sentence	Embedded sentence			Continuation of matrix sentence	
	Subject noun	Negative/ affirmative	Critical region	Spillover	
The professor told the student that	a squirrel	is a	mammal	on Saturday	during office hours.
The professor told the student that	a squirrel	is a	reptile	on Saturday	during office hours.
The professor told the student that	a squirrel	is not a	mammal	on Saturday	during office hours.
The professor told the student that	a squirrel	is not a	reptile	on Saturday	during office hours.

Factor 2: Semantically related or unrelated object noun

- Roughly matched in length
- Lexical features were controlled

Matrix/carrier sentence	Embedded sentence			Continuation of matrix sentence		
	Subject noun	Negative/ affirmative	Critical region	Spillover		
The professor told the student that	a squirrel	is a	mammal	on Saturday	during office hours.	
The professor told the student that	a squirrel	is a	reptile	on Saturday	during office hours.	
The professor told the student that	a squirrel	is not a	mammal	on Saturday	during office hours.	
The professor told the student that	a squirrel	is not a	reptile	on Saturday	during office hours.	

Predictions

If only semantic relatedness matters

- For a replication of Fischler et al.:
 - We should see main effects of semantic relatedness.
 - Unrelated object nouns should be read more slowly than related object nouns.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

If only truth condition matters

- If truth conditions matter more than semantic relatedness:
 - We should see an interaction between semantic relatedness and negative/affirmative conditions.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

If both truth condition and semantic relatedness matter

- If both semantic relatedness and truth conditions matter:
 - We should see an interaction between semantic relatedness and negative/affirmative conditions and a main effect of semantic relatedness.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Results

Early reading time measures

First fixation

- Main effect of semantic relatedness: semantically related words were read faster than semantically unrelated words.
- There was no main effect of negation.
- Crucially, there was no interaction: in other words, there was no significant penalty for false embedded propositions.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

First pass

- First pass RTs had the same results as first fixation.
- Main effect of semantic relatedness
- No main effect of negation.
- No interaction

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Skipping

 There was only a main effect of semantic relatedness: semantically related words were skipped more often than semantically unrelated words.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Later reading time measures

Go past

- Again, a main effect of semantic relatedness in the expected direction.
- Again, no interaction there was no penalty for **false** sentences in the negation condition.
- There was a main effect of negation: the critical regions of negative sentences were read **faster** than those of affirmative sentences.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Total time

- Again, a main effect of semantic relatedness in the expected direction.
- No main effect of negation
- No interaction

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Spillover region

First fixation and first pass

- First fixation: no significant effects
- First pass: significant effect of negation

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Go past and total time

 Main effects of semantic relatedness and negation

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Regressions: Critical region

- Regressions out of the critical region
 - Main effect of negation
 - More regressions for affirmative condition
- Regressions into the critical region
 - All effects n.s.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Regressions: Spillover region

- Regressions out of the spillover region
 - Main effect of semantic relatedness
- Regressions into the spillover region
 - All effects n.s.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Discussion: why was there a main effect of negation?

- Participants spent **much** longer on the previous region when it included negation.
- Perhaps this slowdown led them to speed up later on.
 - "Catching up"
 - Parafoveal preview
- Perhaps negation was more natural in an embedded context.

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Results: Early RT measures for negative or affirmative region (region 4)

- Region 4:
 - is a
 - is not a

	Critical region	Spillover	
The professor told the student that		on Saturday	during office hours.
a squirrel is {not} a	{mammal/reptile}		

Discussion

- There was **no evidence** for an interaction between semantic relatedness and negation in any reading time measure.
- The truth or falsity of the embedded proposition did not significantly affect reading times.
- This pattern replicates the ERP findings of Fischler et al. in eyetracking-while-reading.

Discussion

- There are many components of semantic processing:
 - Truth and falsity
 - Pragmatic acceptability
 - Predictability
 - Semantic relatedness
- In this study, reliable effects of semantic relatedness, but not truth or falsity, were found.

Offline cloze norms

Negation and offline cloze norms

- After asking whether negation influences **online** processing, it is important to check whether (and to what extent) it influences **offline** judgments in an experimental setting.
- To do this, we can use an offline cloze norm task.
- In this task, 40 participants were presented with 20 sentence fragments and asked to fill in a word.
- Some of the sentences were affirmative, while some were negative.

The professor told the student that a squirrel is a _____

The professor told the student that a squirrel is not a ____

Responses amphibian mammal mammal rodent mammal animal rodent toy carnivore animal pet mammal excuse pet animal bird dog large rodent predator nut

Count

mammal (4) rodent (3) animal (2) pet (2) amphibian (1) bird (1) carnivore (1) dog (1) excuse (1) large animal (1) nut (1) predator (1) toy (1)

Cloze probability Modal response

Cloze norm analysis

- How can we tell whether readers are sensitive to negation in a cloze norm task?
- We explore three ways:
 - Entropy
 - Modal responses
 - Truth values of the response

The professor told the student that a squirrel is {not} a _____

By truth condition

By truth condition

- Responses were coded based on whether they made the embedded proposition true or false.
- Only the affirmative version of the sentence preamble was considered during coding.
 - Sample response: The supervisor said that a penny is not a **coin**.
 - Affirmative version: A penny is a coin
 - Coded as true
- Items were randomized and conditions were hidden to avoid bias.
- Responses could be coded as *True, False,* or *Other*.

The professor told the student that a squirrel is {not} a _____

By truth condition: Predictions

• We predict that there should be more false responses for negative embedded sentences than for affirmative ones (when judging based on a core affirmative proposition).

Truth condition analysis: results

Shannon entropy

Shannon entropy

• Shannon entropy provides a way to quantify the amount of uncertainty in the probability distribution of a variable.

$$H(X) = -\sum_{i=0}^{N-1} p_i \log_2 p_i$$

Where p_i is the cloze probability of response i.

- Entropy is calculated for each item/condition pairing.
- The more variable the responses, the higher the entropy.

Entropy quantifies variation

- Prediction: Responses to the negative condition should have a higher entropy than responses to the affirmative condition.
 - A sparrow is a _____ (bird, small bird, animal)
 - A sparrow is not a ____ (reptile, mammal, large bird, squirrel, lemonade, planet, dog, snail, armchair, etc.)

Entropy results

A paired t-test revealed that, as predicted, the negative condition had significantly more entropy in its responses than the affirmative condition.

Modal responses

Modal responses

- A given item's **modal response** is the response given by the most number of participants.
- If participants are sensitive to negation, they should give different modal responses for negative conditions than for affirmative ones.
- Furthermore, the **cloze probability** of a given modal response should be lower for negative conditions.

Modal responses

- 10 of 20 items had the same modal response for affirmative & negative conditions (or, for multi-modal items, at least one response matched)
- In general, the cloze probability of modal responses was higher for affirmative preambles than negative ones.

Cloze probability of modal response

Cloze probability of modal response for items with the same modal response in each condition

Takeaway: Readers are sensitive to negation in an offline cloze norm task.

Discussion

- The online results are a bit of a puzzle.
- Readers are sensitive to negation in offline responses. In other words, they notice negation and take it into account.
- Yet there is no evidence that they consider the semantic contribution of negation online.

Possible reasons for this pattern

Semantic relatedness

• A large role of semantic relatedness could drown out any hint of an interaction.

The role of context

- The role of the matrix/carrier sentence
 - More pragmatically neutral environment
 - The overall truth conditions of the sentence are unknown
 - However, this matrix sentence did **not** prevent negation from having an effect in offline measures, so it isn't the whole story
- Nieuwland & Kuperberg (2008): When negation is particularly informative in a given context, false critical words elicit a greater N400 than true critical words for both affirmative and negative sentences.
- In short, context is extremely important in semantics and for negation, and diverse experimental designs are important.

A delay in processing and "operator blindness"

- There may simply be a delay in the integration of negation with other material in the sentence.
- Negation is not the only semantic operator that appears to not significantly influence early reading time measures (Mayer, Dillon, and Staub, 2019)
- There may be key differences in the effects or timing of more abstract semantic operators in online processing measures such as eyetracking-while-reading or ERPs.

Thank you!

This research was supported by NSF BCS 1732008 to Adrian Staub.

