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The traditional statistical treatment of inference over surveys concentrates on reducing sampling bias
and nonresponse [7, 8, 16]. The rise in popularity of web surveys introduces a new threat to validity:
respondents are much more likely to provide low-integrity responses. With the scale and ease of
crowd-sourced survey responses, threats to validity from the population of respondents expand to
include bots and automated survey answering assistants [4].

Crowdsourcing platforms have responded to these threats with some internal controls: Amazon
maintains worker statistics and permits job requesters to require qualification tests for jobs. Survey-
Monkey manages worker recruitment through email. While curation on the part of the crowdsourc-
ing platform helps prevent bot responses, it also restricts the pool of workers to those who actively
participate in the forum. As Ipierotis and others have shown [11]], active workers on Mechanical
Turk come from specific subpopulations. Restricting the survey sample to the population of workers
who possess stellar Mechanical Turk work histories limits the pool of respondents in the same way
as conducting a psychological experiment on college freshman.

Many external quality control mechanisms have arisen in response to this need for greater quality
control. Frameworks such as AUTOMAN [3]] ensure quality automatically for tasks the user expects
will have high agreement on correct answers. Other frameworks such as MACE [9] model annotator
reliability and task difficulty explicitly.

When it comes to survey responses, where ground truth is much more difficult to obtain, there are
far fewer options available. One approach is to seed the data with “attention-check questions” [[1]]
that have known responses. However, these questions are easy to spot for malicious respondents,
and easy to miss for fatigued honest respondents [10} [12]. Approaches such as Welinder et al. [14]
model individual variation more forgivingly than in Hovy et al. [9], but still rely upon the existence
of task-specific ground truth.

Extant methods for quality control in survey responses are very ad hoc. They frequently rely on
domain-specific knowledge and labor-intensive curation on the part of the survey writer. We believe
that this does not need to be the case, and that a researcher can spend less time curating data and
more time doing experiments when they write survey instruments that better lend themselves to
catching bad actors. The SURVEYMAN system comes equipped with a simulator that can be used to
generate data. Our hope is that a researcher can use this system to explore the survey’s robustness
to various bad actors, and adjust the survey accordingly.

We view data collection as an iterative process; conducting a pilot study and modifying the survey
instrument can be represented as a debug-loop.

Framework

A survey can be thought of as a collection of random variables. The joint probability for a survey
having n questions where each question is denoted as Q;,1 < i < nis P(Q1,...,Q,). The joint
distribution is exchangeable, but not necessarily independent.

For this project, we treat the survey as completely flat — there is no branching, and no grouping
of questions. Therefore, the set of questions the respondents see may appear in any order. The
possible answers to questions are all unordered and exclusive — they would appear to the respondent



as radio buttons in a web survey, and may appear in any order. Therefore, all questions are nominal
measurements, modeled as categorical variables. We let all questions have equal number of response
options, which we denote m. The parameter ¢;; represents the population probability of seeing
answer j for question ¢, where j 0;; = 1. However, the population is composed of some unknown
number of K subpopulations, each of which we denote by 7. The parameters ©; for each (); may
differ between subpopulations.

We define the following respondent profiles:

Lexicographic Chooses the response option with the lexicographically first surface string. Although this
respondent is typically seen as an adversa in the context of this project, we use the
Lexicographic respondent as a proxy for a subpopulation that has 0 variance in its response
set.

NoisyLexicographic Same as Lexicographic respondent, except that this respondent chooses an option randomly
for a small, tunable e percentage of the time. This respondent would typically be seen as
our strongest adversary — unlike the Lexicographic respondent, the small variation between
responses makes detection more difficult.

Profiled This respondent most closely models the problems we see in real data. Each response is
drawn by a “profile,” represented as a table of preferences. SURVEYMAN generates the
profile according to the following procedure:

Result: The response profile
Data: n-dimensional preference vector (P), n-dimensional answer vector (A)

fori <— 1tondo
Ali] < SelectRandom (Q;)

. 1 !
Plil g + (Random (0, 1) x 1357

end

This ensures that the respondents have some preference for a particular answer between
uniform and 1. When we generate a response for a survey, we chose the preferred answer

for @; with probability P[i] and the remaining answers with probability ‘1 5 Ilj_[q . It may be
the case that some respondents have preferences not appreciably stronger than random. We

believe that this models many real-world surveys.

Random This respondent chooses an answer for question (); uniformly at random.

We also have implementations for choosing with strong positional preference (e.g., always the first
option, always the last option, “Christmas Tree” style), but under the restrictions of this project (i.e.,
all unordered, exclusive questions), these are equivalent to the random respondent.

1 Experiments

We describe a series of experiments to assess different approaches to classifying bad actors. The
experiments increase in difficulty and decrease in expected accuracy.

Baseline data To start with, we have treated each question as if it were independent. The purpose
of this project is to improve upon this approach.

Under our independence assumption, we compute P(Ql, Q) =TT, I:’(Qi), where P(Q;)
is estimated by the bootstrap method [5]. We classify responses that have likelihood scores that are
too low as bad actors. This is, of course, an imperfect approach — it only works when we expect
honest respondents of interest to cluster together and bad actors to behave randomly. It is slightly
better than a naive baseline, which would guess the label with the highest frequency.

"We generally assume no collusion between bad actors. Since we are looking for agreement, our strongest
adversaries under this model are those that identify a policy a priori that can lead to agreement. Lexicographic
choice is one such policy that not only leads to agreement, but can be automated. Another policy it is to choose
the most controversial responses. See [13]] for an example of this policy as a case study in threats to validity.



As can be seen in Figure[I] accuracy is bounded by the percentage of bad actors, as we might expect;
if we have a prior on the percentage of bad actors and a weak classifier, in the worst case we should
always guess the most common class. Once more than 50% of the respondents are bad actors, the
classification reduces to bias coin flips. Not evident from the graphs presented is that this classifier
is very conservative — it never returns any false positives for this data.

It’s clear that this classifier is not robust to an absence of bad actors. In the plot of percent bad actors
vs. accuracy for the response mixture of NoisyLexicographic and Profiled, the accuracy increases
once more than 50% of the respondents are NoisyLexicographic. For this respondent, accuracy
decreases as entropy increases. For all remaining respondents, accuracy dips when the respondent
composition is split 50/50 between honest respondents and bad actors.

Figure 1: Baseline accuracy data.
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Supervised Approaches Since we have synthesized the data and know the labels, we should be
able to predict classes using standard supervised methods.

We are comparing results using 4 different methods learned in class: Naive Bayes, Average Per-
ceptron, Kernelized Average Perceptron, and Decision trees. The data was drawn from a pool of
Lexicographic, Profiled and Random respondents, each described in Section . Random respondents
are always the bad actors, whereas we can combine Lexicographic and Profiled in the same training
set, or not, as the good actors. We consider that each question of the survey as a features, and we
have 2 sets of data: surveys with 10 questions and 5 response options each; and surveys with 36
questions and 10 response options each. For the decision tree, we expanded the features in order to
have boolean variables, giving a total of 50 features in the first set of data, and 360 on the second set
of data.

Table [T]displays the accuracy on test and validation data, showing the constant proportion of good
and bad actors, 80% and 20% respectively. In most of the case, the accuracy is higher than 80%, in
particular, naive Bayes performs very well with Lexicographic vs. Random, with 100% accuracy.

At 20% random respondents, averaged perceptron fails to do as well as the baseline for the Lexi-
cographic respondent, whereas the naive Bayes classifier performs as well a the baseline approach
(and indeed could not do better!). The supervised approaches perform much better for the Profiled
vs. Random respondents — the baseline always returns that all results are invalid, whereas both naive
Bayes and averaged perceptron do much better. In fact, they ought to be compared against a less
conservative baseline — one that simply returns the most common label. In that case, we would
expect both Lexicographic and Profiled respondents vs. Random to return 80% accuracy, since they
should always predict that the response is valid. Since the accuracy is better than this, they must be
detecting bad actors.

Overall we can see that the classifiers are more successful when comparing Lexicographic and Ran-
dom respondents, being followed by Profiled and Random respondents. Most of the methods had
better performance when given more features. For decision trees, we can see that the accuracy de-
creases when we increase the maxdepth for Lexicographic vs. Random and Profiled vs. Random,
what suggests that the model does not need to be complicated on those case. However, when using



the mixture, it could perform slightly better by increasing the maxdepth, indicating the model we
need to learn is more complex, as expected.

Classifier Validation Accuracy Test Accuracy
Lexicographic (80%) vs. Random Respondents (20%)
Naive Bayes (10 features) 100.00% 100.00%
Naive Bayes (36 features) 100.00% 100.00%
Averaged Perceptron(10 features) 97.20% 95.20%
Averaged Perceptron (36 features) 91.60% 90.40%
Kernelized Averaged Perceptron (10 features) 99.80% 99.80%
Kernelized Averaged Perceptron (36 features) 100.00% 100.00%
Decision Tree (10 feat, 5 maxdepth) 99.80% 99.60%
Decision Tree (36 feat, 5 maxdepth) 99.80% 99.60%
Decision Tree (36 feat, 10 maxdepth) 98.60% 97.60%
Profiled (80%) vs. Random Respondents (20%)

Naive Bayes (10 features) 93.60% 93.20%
Naive Bayes (36 features) 95.40% 95.20%
Averaged Perceptron(10 features) 87.80% 87.80%
Averaged Perceptron (36 features) 95.00% 94.40%
Kernelized Averaged Perceptron (10 features) 90.00% 87.60%
Kernelized Averaged Perceptron (36 features) 97.40% 95.60%
Decision Tree (10 feat, 5 maxdepth) 98.60% 99.00%
Decision Tree (36 feat, 5 maxdepth) 98.60% 98.40%
Decision Tree (36 feat, 10 maxdepth) 90.60% 92.60%

Profiled (40%) vs. Lexicographic Respondents (40%) vs. Random Respondents (20%)
Naive Bayes (10 features) 89.00% 90.00%
Naive Bayes (36 features) 87.60% 86.40%
Averaged Perceptron(10 features) 77.20% 73.60%
Averaged Perceptron (36 features) 95.40% 94.20%
Kernelized Averaged Perceptron (10 features) 92.00% 92.00%
Kernelized Averaged Perceptron (36 features) 96.60% 95.80%
Decision Tree (10 feat, 5 maxdepth) 91.00% 92.80%
Decision Tree (36 feat, 5 maxdepth) 81.60% 84.60%
Decision Tree (36 feat, 10 maxdepth) 81.80% 85.40%

Table 1: Classification accuracy using supervised techniques.

Unsupervised Approaches In practice, we do not have access to the underlying distribution of
the data. Typically the most supervision we have available is to inject known bad actors and then
separate the data.

Social scientists handle this problem by augmenting their surveys with “attention check questions”
and “catch trials.” Both serve as kinds of control questions — attention check questions are meant to
be very basic and simply verify that the respondent is paying attention. An example might be :

Please read the following paragraph. In the next section you will be reading
about the rise of pottery in Ancient Greece. Please pay careful attention to the
reading selections. For example, to answer this question, do not click next, but
instead click on the image in the far right. Instructions such as these allow us to
determine the best course of action when evaluation a response.

Conversely, catch trials are meant to be covert; they allow the researcher to determine if the respon-
dent is actually part of the population of interest.

Although control questions are a tempting solution, at least one study has shown that they are too
easily recognizable by bad actors and can be easily overlooked by fatigued honest respondents [].



n ki m; 0 o

90 1 3 n/3 0.5 0.05
70 1 3 n/3 0.5 0.10
34 9 10 (9n)/10 0.5 0.05
26 9 10 (9n)/10 0.5 0.10
m/k k- m 1 1 0.72
@em)/k kK m 2 1 0.51
(tm)/k k m 7 1 0.10

Table 2: Some sample values for n, p, J, and a. We assume for simplicity that the k; and m; are
the same for every question.

For our baseline in the unsupervised framework, we propose using low-frequency answers as a
means to reject bad actors. In order for low-frequency answers to “stand out” sufficiently, the fol-
lowing must be true: Catch trial, attention check, and related control questions have non-uniform
distributions in the underlying population.

We expect bots and random respondents to have a different distribution of responses from honest
respondents. If a bot’s choice of response is on the basis of position, we consider the bot a ran-
dom respondent even if the bot is choosing position on the basis of a pattern. Since the position
of unordered options are randomized, choosing a pattern of positions (e.g. always the first option,
alternating options, the “Christmas Tree” pattern), is indistinguishable from choosing random posi-
tions.

If we expect an equal distribution of responses in the target population, there will be no way to tell
the difference between bad actors and honest respondents. If however there exists a least popular
answer to some subset of questions, we can catch bad actors.

Suppose we have n unordered questions, each having k least popular elements. We say that k;/m;;
is the probability that a random respondent will choose the least popular element of question ¢. Let
X; denote the event that a respondent chooses a least popular option for question j and let X be the
total number of questions that are answered with a least popular option. Then the expected number
of questions answered with the least popular option for bots will be

IE(X):M:E m—J (1)
j=1 "

We want to be able to say that a respondent who differs from p by more than a certain amount is, with
high probability, an honest respondent. Since least popular answers are, by design, bad-actor-heavy,
we only care about the case where a respondent answers significantly fewer of the control questions
with the least popular answer. The marginalizing effect of randomization allows us to treat each
X as a Bernoulli trial with probability k;/m ;. Since each question is answered independently and
responding with a least popular answer is a Bernoulli trial, we can use Chernoff bounds to describe
the relationship between the expected number of least-popular responses to catch trials, deviation
from that expectation, and our confidence that a response that deviates is indeed a human and not a
bot.

Let 0 be the tolerance for deviation from p and let a be our significance level. By the Chernoff
bound, we have

M

P(X < (1—-0)u) <e2+s. 2)

If a respondent answers fewer than (1 — §)u control questions, we would like to classify them as a
2

bad actor. The probability of this event is at most e =", If we would like our rejection region « to
be less than 0.05, we should pick an appropriate § and design the survey to have a p such that

e < 0.05. 3)



Table 2] gives some examples of possible values for each of our parameters. While the parameters are
listed for a survey of all unordered questions, the settings will detect respondents that are behaving
uniformly randomly.

An important detail to note is that p is tunable, since any question can have response options added
to it to turn it into a control question. Different applications will require different types of control
questions. For example, if the application is an annotation task for a large number of examples,
it would make the most sense to interleave known annotations throughout the survey. It may also
happen that most annotations are unambiguous and so there may be a large number of catch trials
already in the survey instrument. If the application is a short psychological experiment, it may be
necessary to introduce catch trials. This could be done by introducing a handful of questions with
many options, where honest human respondents are sure to answer in a particular way.

Table 3: Meaning of variables used in establishing bounds.
the number of control questions
the expected number of control questions a Random Respondent will answer with the least popular element
the acceptable deviation from
area under the curve corresponding to the rejection region

o &= 3

Baseline Unsupervised In order to implement the least popular option classifier, we need to define
what it means for a response to be “least popular.” In simulation, we tested by hand a number of pa-
rameters and picked an increase of 0.5 as the cutoff for whether an option was in our discriminating
set.

Figure ?? shows the baseline’s performance against various populations. As with the baseline for
the supervised classifiers, LPO is conservative and rarely selects false positives. However, unlike
the supervised baseline, it does incorrectly classify a bad actor as an honest respondent from time to
time.

kmeans++ Unsupervised Clustering As an alternative, we consider the kmeans++ algorithm for
clustering [2]]. Since the surveys contain nominal data and thus do not sit in Euclidean space, we
need to consider another way of measuring the distance between two surveys. We encode question
responses with numbers corresponding to differentiate individual response options and then use
Hamming distance to compute the distance between two vectors.

We use the most common label for the cluster as its label. Table [I] holds plots of the clustering
algorithm’s accuracy for varying mixtures of respondents. We ran the simulation over two surveys,
to get a sense of how survey size impacted the quality of the classification. We ran the classifier for
2- and 3-clusters.

We also implemented a version that added a small amount of noise to the n-dimensional bitvectors
of differences, but were sufficiently satisfied with our results that we did not use this version.

Discussion: Additional Features and Classifiers This project only used survey questions as part
of its feature set. However, one could also use features particular to the web environment, such time
to answer questions and mouse clicks.

If we had the time, we would like to have completed a GMM classifier for the data, to see if rep-
resenting mixtures helped with classification. Since any given respondent could belong to multiple
mixtures, LDA may provide some insight into the population of interest.
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10-question surveys, each having 5 options.
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