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cross-sectional area and the amount of material lumped on
the end depends only on the maximum value of @ allowed.
ASs @, is allowed to increase material is taken from the
lump and placed in the supporting rod, and the maximum
energy that can be stored also increases asymptotically ap-
proaching the limit E,.,, = 5,7, as the lump is depleted.

This problem has several relevant aspects, summarized
by the following:

(1) By using simple calculus a student can deduce the
four physical constraints on 4.

(2) After obtaining the four mathematical relations that
describe what is demanded of 4, simple reasoning will lead
a student in the proper direction to obtain a solution.

(3) The introduction of the Dirac delta function in me-
chanics to describe the simple physical fact of wanting to
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put a finite amount of material at one location will make it
easier to introduce and use the delta function in other areas
of physics.

(4) After simple reasoning suggests that the stress
should be constant in order to produce the maximum ener-
gy it can be proved to be correct with simple calculus that a
junior physics major has had.

(5) Investigating the effect that can be produced by us-
ing a discontinuous function to describe something phys-
ical in mechanics will make the idea easier when it is en-
countered in other areas of physics.

(6) The problem is very timely/current in that energy
storage devices are being researched extensively.

'R. Post and S. Post, Sci. Am. 229 (6), 17-23 (1973).

Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003
(Received 28 March 1985; accepted for publication 24 September 1985)

The quantum mechanical wave equation for a particle in a Schwarzschild metric is derived using
general relativity in the linearized approximation. The significance of the various terms in the
effective Hamiltonian is discussed and shown to be associated with the post-Newtonian terms for

the corresponding classical motion.

L INTRODUCTION

Although general relativity is nearly a decade older than
quantum mechanics, only the latter is a staple of the under-
graduate curriculum. One of the reasons for this is the
mathematical sophistication required to handle the full
general relativistic formalism. However, in most applica-
tions the full machinery is unnecessary. Since general rela-
tivistic corrections depend upon’

6.7 GM 107°% surface of the Earth,
- == = 10~%, surface of the Sun, (D
¢ re 1074, surface of a white dwarf,

where ¢, (r) is the usual gravitational potential, correc-

tions to Newtonian mechanics are in most situations very
small and can be treated perturbatively via the simple lin-
earized version of the general relativistic equations.?

Many articles in this Journal have dealt with classical
aspects of general relativity,” but only a few have been con-
cerned with the result of merging general relativity and
quantum mechanics.® Nevertheless, some fascinating
physics arises when the two subjects are married, and this
could provide stimulating supplementary material in a
quantum mechanics course,

In this paper we discuss the quantum mechanics of a
particle moving in a weak gravitational field—g, /c*<1—
including kinematics which go beyond the simple nonrela-
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tivistic limit. The relativistic effects reveal interesting
aspects of general relativity and allow a derivation of the
bending of starlight by the sun from a wave mechanical
viewpoint.

For simplicity and relevance to a realistic situation, we
consider the case of the Schwarzschild metric, which de-
scribes space-time in the vicinity of a spherically symmetric
mass distribution, say the Earth or the Sun. In “isotropic”
coordinates, the proper time interval can be written as’

_ 2\2 4
7_2=(1 GM/2rc) dtz_(1+ GM) L gea
1 + GM /2rc? 2rc?]) c?
=g, dx* dx" . (2)

In the linearized approximation referred to above, wherein
only terms up to first order in ¢, /c” are retained we have
then

g/.L‘V = npv +hp.v ’ (3)
where
1 0 0 0
0O -1 0 0
=lo 0 —1 o0 @
0 0 0 -1
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is the usual Minkowski metric and
h, = (2¢g/c2)5,w

24,/ 0 0 0

{0 20,/ 0 0
0 0 2,/* 0 (5)
0 0 0 20,/

is the linearized correction term.

Our plan for the paper is as follows. In Sec. II we review
the classical motion arising in the linearized Schwarzschild
approximation, while in Sec. III we present the parallel
quantum mechanical discussion. Our results are summar-
ized in Sec. IV.

II. CLASSICAL MECHANICS IN THE
SCHWARZSCHILD FIELD

Before undertaking our discussion of quantum mechan-
ics in curved space-time, we first review the more familiar
classical situation. Recall that in flat space the relativistic
action may be taken to be®

st =[LmEEi, g, (6)
where 7 is the proper time. Maklng a variation

x*(s)—x"(s) + Sx“(s) (7N
and the demanding that the action be an extremum,

68=0, (8)

subject to the boundary conditions 6x* (0) = éx* (1) =
we find the Euler-Lagrange equation corresponding to the
motion of a freely moving particle

(2o )1, it
ds d(dx*/ds) ot ¥ ds ds
—md P (9)
ds ds

Here s is a parameter which for massive particles can be
identified with the proper time 7. However we will use the
symbol s to simplify later discussion of massless particles.
In curved space the only change is that the flat space
metric tensor 7),,, is replaced by the curved space metric’

8uv =My + 1yo - (10)
Working to first order in 4,,, we find
(i a _i)mg/1 de”
ds d(dx*/dsy ax*) 2°7 ds ds
=4 ( é‘_)_ﬂi dx" dx” (11)
a8 ) T2 5 8 Tas as
oo L L, S
odst AT ds ds
1o, atdn)
2 0x#"" ds ds
Then
gMLxA=.l_ . dx' dx” A dx* dx” 2 a2
ds* 2 7 ds ds “ ds ds

which is the equation of motion for a classical particle. If
we now specialize to the Schwarzschild metric in isotropic
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coordinates
8,,(28,/¢%) , (13)
we find
d 2J\:" gk dx* dx dx* dx°
paia Y, — g
d Sz ¢g ds ds Av T A¢g ds ds ( 14)

Finally, one can calculate the ordinary acceleration,

d*x* /dt?, yielding
4 (dt d)dtﬂ
ds? dsdt)ds dt
dx* dx”
=Jd*#
% (ds) dt dt
dx* dx® _,,
20,9, (ds) dr dr "
=(_d_s)‘2 d *x* (ds)”d sdx“ (15)
dt dt? dt dt? dr
Then
dv; 2
-d—t—=—-v¢g(1+v/c)+(4/c )veVéu,,  (16)

which is the equation of motion of a particle moving in
curved space described by the Schwarzschild metric.®
To lowest order in v/c, we have

dv

= Ve, 17)

dt V0 (
which is Newton’s law for a particle moving in a gravita-
tional field described by potential #,. At large velocities
one must use the full post-Newtonian form given in Eq.
(16). Thus for a photon, one has

du;
dt

This factor of 2 multiplying the gradient of the potential is
well known. For a photon passing near the rim of the Sun
(see Fig. 1) we calculate the deflection angle to be

A
Yy ~AO= zf

Uy

= —2V.4, +40-Vg,i, . (18)

—————bdt

r’()
_26M, (" di_____4GM o

- (b2+c2t2)3/2 czb

Fig. 1. Deflection of starlight as it passes the rim of
the Sun. N

3
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which differs by this factor of 2 from the simple nonrelati-
vistic result obtained by use of Eq. (17).

In order to see how corresponding results arise quantum
mechanically, one must study how space-time curvature
modifies usual wave equations. This is done in the succed-
ing section.

HI. QUANTUM MECHANICS IN THE
SCHWARZSCHILD FIELD

The wave equation for a quantum mechanical particle in
curved space-time has been the subject of previous articles
in this Journal.* However, these works have by and large
been devoted to formal discussions of relativistic aspects
and have not concentrated on the physics contained there-
in, as shall be our purpose here. We shall consider the more
familiar (spin 1) case first. As shown by Leiter the Dirac
equation becomes

[iv@el(d, — Jo*e}e,,,) —m]yP=0, (20)

where ¥* and *® = (i/2)[¢#,Y"] are the conventional
Dirac matrices.® Here ¢“ (x), which satisfies

8 (X) = g€l (X)e} (x) (21)
is called the vierbein, and
€hvy = 0,84, — Fﬁueb/l ) (22)
where
= %g;n,(gzlv,y + &y — 8uva) (23)

is the usual affine connection. This is a rather complex
equation in general. However, if we simplify to the linear-
ized Schwarzschild approximation, we find

e (x) =& + 1hi(x) (24)
and the wave equation becomes (note from hereon we shall
take ¢ = 1 in order to simplify the equations)

0= [iwa” —m+§;ﬂh¢;a,‘

— P By, — By |0

=[P’ +¢,)3 +iv: (1—¢)V—m]yp. (25)
Rewriting this result in Schrédinger formalism, we have
. d -
i—y=Hy, 26
E Yy=Hy (26)
where
1

l¢g P + i— YoY* v¢g

H= —iyey(1—¢,)V+my,— 2

— VoY (1 = 28,)V + yom(1 — ¢,) + —;—m-wg .

(27)

This Hamiltonian is Hermitian when the requisite spatial
integrations are carried out using the correct measure'®

(H) =fd3rJ¢TH1//, (28)
where the Jacobian J is given by
detg, = (1—3¢,). (29)

However, it is more convenient to write the wavefunction
so that H is Hermitian with respect to the usual measure
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§d 3r. We do this by means of a unitary transformation
U—P= (134, )9=Uy, (30)
HH=UHU "= —iysy(1~28,) -V +iyoy

*Vé, +vom(1—¢,)

In order to understand the significance of this Hamiltonian
we write

H=ym+ve+0, (31
where
€E=4g,,

0= —iyo‘y-[(l—2¢g)V—§V¢g], (32)
and apply a Foldy-Wouthuysen transformation as out-
lined by Bjorken and Drell, ? yielding the effective Schro-
dinger Hamiltonian

H =m +y0's+——02—7/—°2 [0,[0,€]]
8m

2m
2 4
)4 )4 3
=m+m A £
¢g+2m 8m> 2

x( ¢gp + 2 v¢ p—2t oo V¢gxp)
2m
(33)

Let us now see if we can understand the origin of these
terms. The piece of the Hamiltonian independent of the
potential is simply the relativistic energy

VmZ 4 pF =m + p*/2m — p*/8m> + - . (34)
In the case of ¢, -dependent terms, the component
VO m¢g ( 35 )

is obviously the usual gravitational potential energy. How-
ever, the other contributions are less familiar. The term

= (3/2m)¢ p* (36)

is simply the post-Newtonian correction to the potential
required by general relativity. We can see this by calculat-
ing the quantum mechanical acceleration via

d
zE = [H, 37
which yields the usual Newtonian result
— [Ho[Horl] = — V4, , (38)
if we employ the simple form
Hy=m+p*/2m + m¢, . (39)
However, if we now append the next-order terms

2 4
H=m+2 2 —isﬁgpz, (40)
2m

2m  8m?
we determine
— [H,[H,r]]

= —Vé, — (1/m*)p*Vé, + (4/m*)Vé, -pp, (41)

in agreement with the classical expression, Eq. (16).
The origin of the remaining contributions

V,= (3/2m) (ifiV¢, + p — iz« Vo, Xp) (42)

is more subtle. That these are quantum mechanical in ori-
gin can be inferred from the factors of #. They arise from
the problem of writing the quantum mechanical Hamilto-
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nian when both momentum and position dependence is in-
volved. Thus, the correct quantum mechanical form of the
classical term

Vi=(3/2m)¢,c-po-p, (42)

required by general relativity must be obtained using so-
called Weyl ordering!!

V}Veyl _— (3/2m)(‘l‘0--po--p¢g + icamgo-p
+ 14,0 po-p)
= — (3/2m)($,p* — iV, * p

+ (#i/2)0 - Vo, Xp) (43)

in agreement with the Foldy-Wouthuysen result, Eq.
(33). The “physical” origin of these additional terms can
be understood from the feature that, quantum mechanical-
ly, the position and momentum of a particle are uncertain
by amounts 8x and 8p, respectively. Of course, the Heisen-
berg uncertainty relation requires that

Thus, if we write the post-Newtonian term [Eq. (42)] and
take account of this “Zitterbewegung” motion we find!?

V~(3/2m) (g, (r) + Vg, - r) (p; + 8p,) (p; + &p;)
~(3/2m) (¢, (r)p* 4 24V, - p) . (45)

The post-Newtonian potential ¥;, of course, can be “ob-
served” via the classical motion of the particle. It is inter-
esting to ask whether there is any way to observe the corre-
sponding “Zitterbewegung” terms. The answer is yes, in
principle. The point is that such terms are parity violating.
Thus in a hydrogen atom they will produce an interaction
potential of the form

Ve (3/2m )V, + (V — (i/2)a, XV) . (46)

This term, which is P and CP violating will lead to a mixing
between say S and P states and can be detected, for exam-
ple, by measuring a circular polarization in the radiative
decay of a hydrogen atom. This effect would be negligible
(P, ~107°) on the surface of the earth but could approach
unity near a neutron star. Other possible methods of detec-
tion have been catalogued by Fischbach, Freedman, and
Cheng."

The universality of these effects can be seen by consider-
ing the case of a spin zero particle. In flat space the particle
will obey the Klein-Gordon equation’*

(78,3, + m*)$=0. (47)

However, in curved space the derivatives must be replaced
by co-variant derivatives and the equation becomes

[8(3,d, —T;.3:) + m*]¢=0. (48)
Specializing now to the linearized Schwarzschild case we
find

[(14+26,)33 — (1 —2,)V2+ m*|$=0.  (49)

In order to understand the physics of this equation we
again follow Bjorken and Drell in writing the Klein—Gor-
don equation in first-order form'?

i%e_po, (50)
ar
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¢=%(¢+m¢),
i .
2

l .
=—\$———<9¢). 51
X (¢ m(1+¢g)¢) Gb
— 1 1 1) v?
1 0
+m(1+¢g)(0 _1).
Defining the two by two matrices
1 0 0 1
’7=<o —1) and "’:(—1 o)’ (32)
we can write
H=m(l+¢,7+€+0), (53)
where
e= —(1=3¢,)(V?/2m)y,
0= —p(1—134,)(V/2m), (54)

and may now use the Foldy—Wouthuysen transformation
as before to yield the effective Schrodinger equation

Hy=m(1+¢,) +n€+0°/2m + -
2
=mtmpy+ L — L =g p .. (55)
m m m

Finally, we transform the Hamiltonian in terms of the mea-
sure d 3r as before yielding

Hy=(1+3¢,)Hs(1—3¢,)

2 4
= pr_pr 3
Mot T  am
X (¢p° — iV, *p) , (56)

which is identical to that in the spin | case except for the
absence of spin dependence. Obviously the physics is the
same. '

An interesting feature arises if we consider the massless
case. Instead of seeking an effective Hamiltonian (which is
only valid nonrelativistically ) we instead attempt to solve
the equation

[(1+26,)35 — (1 —24,)V*]¢=0 (57)
directly. This can also be written as

[(1+44,)35 —V*]¢=0. (58)
Now assume a plane waveform

é(r,t) =f(r,r)e™ . (59)
Then an approximate solution is

Fi(X3) = e ikl ~2¢, (O]t (60)

That is, it is as if there exists a position-dependent index of
refraction!®

o= k|[1/n(r)], (61)
where
n(r)=1+424,(r). (62)

In order to understand the significance of this suppose

J. F. Donoghue and B. R. Holstein 830



we consider the region about a particular point R in space.
The wavefunction can then be written as

¢(r,t) = Cexplik+r —ilk |t [1 — 24, (R)

—2(r—R) V¢, (R)]}. (63)
Choosing R as our origin of coordinates and
x=r—R, (64)
we have then
#(x,t) = C’" exp i{[k + 2|k |1V, (R)]
ex —ilk|[1—2¢,(R)]1e}, (65)

so that the effective wavenumber is space and time-depen-
dent. As the wave propagates its effective wavenumber var-
ies with
dk=2|k|dtVé,(R) . (66)
If we consider a wave moving in the x direction at time
= — & along a trajectory with impact parameter b with
respect to the gravitational source, then we find

“ G bM
k=2l a0
= 4GM |k |/b. (67)
Thus the angle of deflection is
A= ?:| - Y, (68)

as before, but now derived from a wavefunction point of
: 17
view.

IV. SUMMARY

We have discussed the quantum mechanical wave equa-
tion relevant to the situation that a particle finds itself in
the vicinity of a spherically symmetric mass distribution.
To lowest order, of course, one finds the simple gravita-
tional potential

Vo=md, . (69)

However, additional terms are also present, of two types.
One term

Vi= —(32m)¢.p*, (70)

represents the post-Newtonian correction to the classical
motion. A second type

V,=(3/2m)itiV¢, *p (1)
is quantum mechanical in origin and results from the fact

that the position and momentum of a quantum mechanical
particle are indefinite. Although effects of this term are

small, it may be detectable through characteristic parity
violating effects which can become sizeable near large gra-
vitational sources.

In addition, we examined the wavefunction of a massless
quantum mechanical particle and demonstrated how the
Einstein deflection of starlight can be derived via a wave
picture.

The presentation of these features by means of a general
relativistic framework is unusual and yet elementary
enough to be presented as supplementary material in an
advanced undergraduate or a graduate quantum mechan-
ics course.
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PROBLEM: OSCILLATING BUOYANT SPHERE

In a familiar problem in elementary physics textbooks
one shows that a floating vertical cylinder executes simple
harmonic motion when it is displaced from its equilibrium
position. This result is exact even if the oscillations have a
large amplitude, as long as part of the cylinder remains
submerged. If the cylinder is replaced by a sphere the prob-
lem is more complicated; the motion of the sphere is not
simple harmonic.
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Consider a sphere with radius R and specific gravity
p < 1 which is held under water so that its entire volume is
just submerged. An alternate choice of the initial state of
the sphere will yield a somewhat different solution. If fric-
tion and the motion of the water are neglected, what is the
motion of the sphere after it is released? (Solution is on p.
848.)
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