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REVIEW ARTICLE 

atYenty years of the Weyl anomalyt 

M J Duff$ 
Center for Theoretical Physics, Physics Department, Texas A & M University. College Station, 
Texas 77843. USA 

Received 9 December 1993 

Abstract. In 1973 two Salam protegds (Derek Capper and lhe author) discovered that the 
conformal invariance under Weyl reswlings of the metric tensor gu.(x) + S2z(x)g,,(x) 
displayed by classical massless-field systems in interaction with gravity no longer survives 
in the quantum theory. Since then these Weyl anomalies have found a variety of applications 
in black-hole physics. cosmology, string theory and stakistical mechanics. We give a nostalgic 
review. 

PACS numbers: 0460,0465, 1125,9880 

When all else fails, you can always tell the truth. 
Abdus Salam 

1. Trieste and Oxford 

Twenty years ago, Derek Capper and I had embarked on our very first postdocs here in 
Trieste. We were two Salam students fresh from Imperial College filled with ideas about 
quantizing the gravitational field: a subject which at the time was pursued only by mad 
dogs and Englishmen. (My thesis title: Problems in the Classical and Quantum Theories 
of Gravitation was greeted with hoots of derision when I announced it at the Cargese 
Summer School en route to Trieste. The work originated with a bet between Abdus Salam 
and Hermann Bondi about whether you could generate the Schwarzschild solution using 
Feynman diagrams. You can-and I did-but I never found out if Bondi ever paid up.) 

Inspired by Salam, Capper and I decided to use the recently discovered dimensional 
regularization6 to calculate corrections to the graviton propagator from closed loops of 
massless particles: vectors [I]  and spinors [Z], the former in collaboration with Leopold 
Halpern. This involved the self-energy insertion 

n,,&) = d"x eiPx(T,,(X)Tpo(O))Ig~,=Slrv (1) 

t Talk given at the Salmfest. ICTP. Trieste. March 1993. 
$ Research suppolfed in part by NSF Grant PHY-9106593 
5 Dimensional regularization had just been invented by another Salam student and contemporary of ours, Jonathan 
Ashmore 131, and independently by Bollini nnd Giambiagi 141 and by 't Hooft and V e l u m  p], 1 briefly shared a 
London house with Jonathan Ashmore and Fritjof Capra. Both were later to leave physics, as indeed was Derek 
Capper. Ashmore went into biology, Capper into computer science and Capra into eastern mysticism (a decision 
in which, as far as 1 am aware. Abdus Salam played no wt). 

0264-9381/94/061387+17S19.50 @ 1994 IOP Publishing Ltd 1387 
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where n is the spacetime dimension and T,&) the energy-momentum tensor of the massless 
particles. One of our goals was to verify that dimensional regularization correctly preserved 
the Ward identity 

P ~ n p v o m  = 0 (2 )  
that follows as a consequence of general covariance. If we denote by E the deviation from 
the physical spacetime dimension one is interested in, and expand about E = 0, we obtain 

I 

E 
n,,, = -npuov(pole) + n,,,(finW. 

P’ nuup. (pole) = 0 

(3) 

(4) 
and that the infinity could then be removed by a generally covariant counterterm. We 
checked that the finite term also obeyed the identity 

Capper and I were able to verify that the pole term correctly obeyed the Ward identity 

p’llpUog(finite) = 0 (5) 
and hence that there were no diffeomorphism anomaliest. 

under the Weyl transformationst of the metric 
We were also aware that since the massless particle systems in question were invariant 

g,&) + Q2(x)g,,(x) (6) 
together with appropriate rescalings of the matter fields, this implied that the stress tensors 
in (1) should be traceless and hence that the self-energy should also obey the trace identity 

npGoq ( P I  = 0. (7) 

~~ , ,po (po le )  = 0 (8) 

We verified that the pole term was OK: 

consistent with our observation that the counterterms were not only generally covariant 
but Weyl invariant as well. For some reason, however, I did not get around to checking 
the finite term until Christmas of ’73 by which time I was back in England on my second 
postdoc, in Oxford, where Dennis Sciama was gathering together a group of quantum-gravity 
enthusiasts. To my surprise, I found that 

n’,,,(finite) f: 0 .  (9) 
I contacted Derek and he confirmed that we hadn’t goofed. The Weyl invariance (6) 
displayed by classical massless-field systems in interaction with gravity, first proposed by 
Hermann Weyl in 1918 [7-91, no longer survives in the quantum theory! We rushed off a 
paper [IO] to Nuovo Cimento (How times have changed!). 

I was also able to announce the result at the first Oxford Quantum Gravity Conference, 
organized by Isham, Penrose and Sciama, and held at the Rutherford Laboratory in February 
’74 [ 1 I]. Unfortunately, the announcement was somewhat overshadowed because Stephen 
Hawking chose the same conference to reveal to an unsuspecting world his result [12] that 
black holes evaporate! Ironically, Christensen and Fulling [ 131 were subsequently to show 
that in two spacetime dimensions the Hawking effect is due entirely to the trace anomaly. 
Two-dimensional black holes, and the effects of the Weyl anomaly in particular [ 14-16], 
are currently enjoying a revival of interest. 

t Had we looked at closed loops of Weyl fermions or self-dual antisymmetric tensors in 2 mod 4 dimensions, and 
had we been clever enough. we would have noticed that this Wad identity breaks down. But we did not and we 
were not, so this had to wait another ten years for the paper by Alvarez-Gam6 and Winen 161. 
3 For fermions this is m e  Vn; for vectors only for n = 4. 
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2. Anomaly? What anomaly? 

1389 

Some cynic once said that in order for physicists to accept a new idea, they must first pass 
through the following three stages: 

(1) it’s wrong, 
(2) it’s trivial, 
(3) I thought of it first. 
In the case of the Weyl anomaly, however, our experience was that (1) and (2) got 

interchanged. Being in Oxford, one of the first people we tried to impress with our new 
anomaly was J C Taylor who merely remarked ‘Isn’t that rather obvious?. In a sense, of 
course, he was absolutely right. He presumably had in mind the well known result that 
theories which are Weyl invariant in n-dimensional curved space are automatically invariant 
under the conformal group SO(2, n )  in the flat-space limit, which implies in particular that 
the dilatation current D h  

(10) 

Moreover, one already knew from the work of Coleman and Jackiw [17] that such flat- 
space symmetries suffered from anomalies. Of course, the Weyl invariance (6), in contrast 
to the conformal group, is a local symmetry for which the dilatation current of (10) is not 
defined. Nevertheless, perhaps one should not be too surprised to discover that there is 
a curved-space generalization in the sense of a non-vanishing trace for the stress tensor. 
Consequently, Capper and I were totally unprepared for the actual response of the rest of 
the physics community: NO-ONE BELIEVED US! To be fair, we may have put some 
people off the scent by making the correct, but largely irrelevant, remark that at one loop 
the anomalies in the two-point function could be removed for n # 2 by adding finite local 
counterterms [lo]. So we wrote another paper [18] stressing that the anomalies were real 
and could not be ignored, but to no avail. To rub salt in the wounds, among those dismissing 
our result as spurious were physicists for whom we youngsters had the greatest respect. First 
the Americans: 

. , . thefnite Wreg that is left behind by SchwingerS method, after the infinities have been 
split OB is both coordinate invariant and conformally invariant, DeWitt (191 

Something is wrong, Christensen [20] 
The form of the conformal anomaly in the trace of the stress tensor proposed by a number 

Thus wefnd no evidence of the conformal trace anomalies reported by a number of other 

xT”, is conserved 

a# = ~ ~ ~ + ~ ~ a ~ f l ,  = T”, =o. 

ofauthors violates axiom 5, Wald [211 

authors, Adler et a1 [E] ,  
then the Europeans: 

1231 

energy-momentum tensors do notpossess a ‘trace anomaly’, Brown and Ottewill [24], 
especially the Russians: 

The main assumption of our work is that a regularization scheme exists which preserves 
all rhe formal symmetry properties (including the Weyl symmetry). . ..Therefore we hope 
dimensional regularization will give no anomalies. . . , Kallosh [25] 

I t  turns out thaf conformal anomalies, discovered in gravitating systems, are not true 
anomalies, since in modifred regularizations they do not arise.. . . The above point of view 
on conformal anomalies is shared by Englert et al ,  Fradkin and Wkovisky 1261 

The presence or absence of the conform51 anomaly depends on the choice made between 

Conformal anomalies in a conformally invariant theory do not arise . . ., Englert et a1 

There are important, physically relevant differences: most noticeable, normalized 
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two existing classes of covariant regularizations, Vilkovisky [27] 
and, to be democratic, let us not forget the Greeks: 
The above method of regularization and renormalization preserves the Ward identities 

There exists a regularization scheme which preserves both general coordinate invariance 

In fact one needs a regularization scheme which presenvs the general coordinate and 

. . . and trace anomalies do not arise, Antoniadis and Tsamis 1281 

and local conformal invariance (Englert et a l )  . . ., Antoniadis et a1 [29] 

Weyl invariance . . . such a scheme exists (Englerq et al), Antoniadis et a1 [30]. 

3. London 

As chance would have it, my third postdoc brought me to King's College, London. at the 
same time as Steve Christensen, Paul Davies, Stanley Deser, Chris Isham and Steve Fulling. 
Bill Unruh was also a visitor. It was destined therefore to become a hot-bed of controversy 
and activity in Weyl anomalies. Provoked by Christensen and Fulling, who had not yet 
been converted, Deser, Isham and I decided to write down the most general form of the 
trace of the energy-momentum tensor in  various dimensions [31]. By general covariance 
and dimensional analysis, it must take the following form: For n = 2, 

where a is a constant. For n = 4, 

g"o(Tee) = O ~ R ~  + BR,,R" + ~R,,,,R""P~ + SUR + (12) 

where 01, p ,  y ,  6 and c are constants. (In (12) we have allowed for the possibility of an 
an external gauge field [32] in addition to the gravitational field.) For n = 6, ga8(Tmo) 
would have to be cubic in curvature and so on. (At one-loop, and ignoring boundary terms, 
there is no anomaly for n odd). I showed these expressions to Steve Christensen, with 
whom I was sharing an office, and asked him if he had seen anything like this before. He 
immediately became very excited and told me that these were precisely the Schwinger- 
Dewitt b, coefficients. These are the t-independent terms that appear in the asymptotic 
expansion of the heat kernel of the appropriate differential operators A: 

(13) 

where 

Bt = / d " x b t .  

For example, if A is the conformal Laplacian 
R A=-O+- 6 

t If one starts with a classically non-Weyl invariant theory (e.g. pure Einstein gravity) and attificially makes it 
Weyl invariant by inhoducing via a change of variables g;,(x) = e*@)g,.(x) an unphysical scalar spurion 
a ( x ) ,  then unitarity g u m t e e s  that no anomalies can arise b e "  this artificial Weyl invariance of the quantum 
theory, g;,(x) + n2(x)g;,(x) with e*@) + SL'(x)e*@). is needed to undo the field redefinition and remove 
the spurious degree of freedom. Professor Englen informed me in Tnate that this is what the authors of [231 
had in mind when they said lhat anomalies do not arise. Let us all agree therefore that many of the apparent 
contradictions are due to this misunderstanding. To s u d z e :  real Weyl invariance has anomalies; pseudo-Weyl 
invariance (i.e. that involving B spurion) does not. This is a regulari~tiation-scheme-independent statement. 
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then ba is given by 
1 

180(4~r)~ b4 = [- R p  R” + R,,, R’ypo + OR] 

This was the road to Damascus for Steve as far as Weyl anomalies were concerned an4 like 
many a recent convert, he went on to become their most ardent advocatet. This was also 
the beginning of a very fruitful collaboration between the two of us. The significance of my 
paper with Deser and Isham was that, with the exception of the OR term in (la), none of the 
above anomalies could be removed by the addition of finite local counterterms (hence the 
title non-local conformal anomalies) and thus this laid to rest any lingering doubts about 
the inevitability of Weyl anomalies (or, at least, it should have done). By this time, or 
shortly afterwards, the Hawking radiation experts at King’s and elsewhere were arriving at 
the same conclusion [13, 34-37] as in fact was Hawking himself [38]. ‘There followed a 
series of papers calculating the numerical coefficients in (1 1) and (12) and confirming that 
these were indeed just the b,, coefficients 139-431. These results were further seneralized 
to self-interacting theories [UP.]. 

One day about this time I answered the phone in my office only to hear those five 
words most designed to instill fear and trembling into the heart of B ‘young postdoc: ‘Hi. 
This is Steven Weinberg’. Pondering on the non-renormalizability problem, Weinberg had 
become interested in quantum gravity in 2+ E dimensions [49, SO]. Inspired by workers in 
statistical mechanics, who frequently work with non-renormalizable field theories ‘but who 
nevertheless manage to extract sensible predictions, Weinberg wondered whether this might 
be true for gravity: was the theory ‘asymptotically safe’? The answer seemed to rely on 
the sign of the two-dimensional trace anomaly, i.e. on the constant a in (1 1). Accordingly, 
Weinberg set n = ‘2 in the n-dimensional calculations of [2] and concluded that fermions 
had the wrong sign: 

1 
24n 

a = - .  

He repeated our calculation for scalars himself and found the same sign and magnitude 
(consistent with the observation that in two dimensions there is a Bose-Fermi equivalence, 
and consistent with the black-hole calculations [13, 341). In the case of vector bosons, 
however, he found from [ I ]  that there was a sign flip. His question was simple but crucial: 
did I agree with him or could there be an overall sign error? Not wanting to be the 
victim of Weinberg’s wrath should I get it wrong, I spent several frantic days and sleepless 
nights checking and rechecking the calculations. Those who have ever chased a .minus 
sign and those who know Steve Weinberg will appreciate my discomfort! In fact I agreed. 
Unfortunately, asymptotic safety became asymptotically unpopular but my contact with 
Weinberg later led to a very fruitful semester in Austin, and to my continuing affection for 
the state of Texas. 

The scalar terms of order n / 2  in the curvature which appear,in the n-dimensional 
gravitational trace anomaly are reminiscent of the pseudoscalar terms of order n / 2  in the 
curvature which appear in the n-dimensional gravitational axial anomaly, as calculated by 
Delbourgo and Salam [51]. I was musing on this shortly after moving across town to 
Queen Mary College, when I saw a paper by Eguchi and Freud [52] on the then new and 

t A delightful set of reminiscences on the Weyl anomaly by Steve Christensen wn also be found in Bryce DeWtn’s 
fesuekriflf331. During their stay at King’s, he and Fulling shared a Rat in the London borough of Ealing (home 
of the famous Ed& Comedy movies). According to Christensen, the connection betwween trace anomalies and the 
Hawking effect occurred. Archimedes-like, to Fulling while taldng a bath. He did not N” thmugh the streets of 
W g  shouting ‘Eureka’, but did run upstain to the payphone to tell Bill Umh. 



1392 Review article 

exciting topic of gravitational instantons. They considered the two topological invariants, 
the Pontryagin number, P, and the Euler number, x ,  and posed the question: to what 
anomalies do P and x contribute? In the case of the Pontryagin number, they were able to 
answer this question by relating P to the integrated axial anomaly; in the case of the Euler 
number, however, they found no anomaly. I therefore wrote a short note [53] relating x 
to the integrated trace anomaly. As described in section 6, this result was later to prove 
important in the two-dimensional context of string theory, where 

X=- /d2xf iR  1 
4 n  

and hence from (1 1) 

Unfortunately, the referee’s vision did not extend that far and the paper was rejected. 
Rather than resubmit it, I decided to incorporate the results into a larger paper [54] which 
re-examined the Weyl anomaly in the light of its applications to the Hawking effect, to 
gravitational instantons, to asymptotic freedom and Weinberg’s asymptotic safety. In the 
process, I discovered that the constants a, p, y and 6 are not all independent but obey the 
constraints 

4 o l + p = o l - y  = -6. (20) 
In other words, the gravitational contribution to the anomaly depends on only two constants 
(call them b and b’) so that (12) may be written as 

(21) 

(22) 

(23) 

gaB(Tep) = b(F + $OR) + b‘G + CH 

F = R,,,R’”pa - 2R PU R” + I R z  3 

where 

G = RPvpp. RPVp6 - 4R PV R”” t R2 

and 

H = FKUaF””‘, (24) 
In four (but only four) dimensions 

F = C’upp.C~vp, (25) 

(26) 
where * denotes the dual. Note the absence of an RZ term in (21). This result was 
later rederived using the Wess-Zumino consistency conditions [55-591. Furthermore, the 
constants a, b, b’ and c are those which determine the counterterms 

where CFvpo is the Weyl tensor, and G is proportional to the Euler number density 
*RPUPU G * R N v p c  

a 
E 

AL=-&R n = 2  (27) 

A L  = ;&(bF+b‘G+cH) n = 4  (28) 

(and hence the renormalization group functions) at the one-loop level. The Euler number 
counterterms are frequently ignored on the grounds that they are total divergences, but 
will nevertheless contribute in spacetimes of non-trivial topology. We emphasize that the 
above results are valid only for theories which are classically conformally invariant (e.g. 

1 
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Maxwellr(ang-Mills for n = 4 only, and conformal scalars and massless fermions for both 
n = 2 and n = 4). For other theories (e.g. MaxwelVYang-Mills for n = 2, pure quantum 
gravity for n = 4, or any theory with mass terms) the 'anomalies' will still survive, but 
will be accompanied by conhibutions to g@(T*p) expected anyway through the lack of 
conformal invariance. Since the anomaly arises because the operations of regularizing and 
taking the trace do not commute, the anomaly in a theory which is not classically Weyl 
invariant may be defined as 

(29) Anomaly = g"B(Gp)reg - (g%p),. 

Of course, the second term happens to vanish when the classical invariance is present. This 
formula, in the context of Pauli-Villars regularization of flat-space dilatation anomalies, 
may also be found in [60]. 

Note that in an expansion about flat space with g,, = 8," + h,,, R is O(h),  so it is 
sufficient to calculate the two-point function as in [IO] to fix the a coefficient of R in (11). 
For n = 4, OR is O(h) while F and G are O(h2). Nevertheless, because of the constraint 
(ZO) ,  a calculation of the two-point function is again sufficient to fix the b coefficient of 
C~"~"C,,,, in (21), notwithstanding the ability to remove the OR piece by a finite local 
counterterm, and notwithstanding some contrary claims in the literature. Indeed, this is how 
the coefficients of the Weyl invariant C ~ " ~ " C p u p n  counterterms were first calculated [ 1, IO]. 

Explicit calculations [ I ,  10, 2, 61, 13, 39, 37, 42, 40, 541 yield 

I 
120(4~)2 

[ N s  + 61% + 12NvI b =  

where Ns, N F  and NV are respectively the numbers of scalars, spin-; Dirac fermions and 
vectors in the theory. Note that the contributions to the b coefficient are all positive, as 
they must be by spectral representation positivity arguments [2, 61, 591 on the vacuum 
polarization proper self-energy part in four dimensions. 

I also noted that the non-local effective action responsible for the anomalies would 
contain a term 

- 1 d"x&R U("4)'2R . (32) 

By setting n = 2 one obtains what what later to be known as the Polyakov action, discussed 
in section 6. 

4. Cosmology 

The role of the Weyl anomaly in cosmology seems to fall into the following categories: 
inflation in the early universe, the vanishing of the cosmological constant in the present era, 
particle production and wormholes. 

The first is reviewed in papers by Grischuk and Zeldovitch [62] and Olive [63]. Consider 
the semiclassical Einstein equations 

(33) 

where (T,") is the effective stress-tensor induced by quantum loops. In the inflationary 
phase, the geometry will be that of de Sitter space. But the trace anomaly for De Sitter 

R g u  - ig,,R = gnc(Tp) 
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completely determines the energy-momentum because it must be a multiple of the metric 
by the symmetryt: 

V p d  = ~sMYg"~(r,B) (34) 
The idea that the trace anomaly might also have a bearing on the vanishing of the 

cosmological constant is a recurring theme [64,28,65-691 According to Tomboulis [66], 
models where the cosmological constant relaxes dynamically to zero via some dilaton-like 
scalar field suffer from an unnatural fine-tuning of the parameters. This problem can be 
cured, he claims, if the Wess-Zumino functional induced by the conformal anomaly is 
included. A similar approach has been taken by Antoniadis, Mazur and Mottola [67- 
691, who argue that four-dimensional gravity is drastically modifed at distances larger 
than the horizon scale, due to the large infrared quantum fluctuations of the conformal 
part of the metric, whose dynamics are governed by an effective action induced by the 
trace anomaly [70], analogous to the Polykov action in two dimensions. Apparently, this 
leads to a conformally invariant phase in which the effective cosmological term necessarily 
vanishes. See also [71,64,72,73] for a discussion of the cosmological constanUtrace 
anomaly connection in the context of spacetime foam [71]. 

With regard to particle production, Parker 1741 has used the trace anomaly to argue that 
there is no particte production by a gravitational field if spacetime is conformally flat and 
quantum fields are conformally coupled, but this has recently been challenged by Massacand 
and Schmid [75]. 

Finally, Grinstein and Hill [76] and also Ellis er al 1771 have claimed that in Coleman's 
wormhole scenario 1781, it  is the trace anomaly that controls the behaviour of fundamental 
coupling constants, particle masses, mixing angles, etc. 

5. Supersymmetry 

The Weyl anomaly acquires a new significance when placed in the context of supersymmetry. 
In particular, Ferrara and Zumino [79] showed that the trace of the stress tensor To ,, the 
divergence of the axial current a , J p S 5 ,  and the gamma trace of the spinor current y@S, 
form a scalar supermultiplet. There followed a good deal of activity in calculating the 
corresponding anomalies in global supersymmetry. 

In the period 1977-9, Christensen and I found ourselves in Boston: he at Harvard; I at 
Brandeis. We decided to look at these anomalies in supergravity. Since the supermultiplets 
involve fields 8, ", q,,, A,, x,q5 with spins 2, ;, 1, $,O we first determined the axial and 
trace anomalies for fields of arbitary spin 180, 811. See also [82-861. One of our main 
motivations was to calculate the gravitational spin-; axial anomaly$ which was at the time 
unknown. Shortly afterwards (by which time I had come full circle and was back at 
Imperial College) van Nieuwenhuizen and I noted [87] that the gravitational eace anomaly 
for a field of given spin could depend on the field representation. Thus a rank two gauge 
field yielded a different result from a scalar 4, even though they are dual to one 
another. Similarly, a rank three gauge field yielded a non-zero result, even though 
it is dual to nothing. However, these differences showed up only in the coefficient of the 
topological Euler number term, essentially because the combination of gauge field and ghost 
field differential operators A contributing to the 84 coefficients of (14) differed only in their 

The trace anomilly also determines the energy-momen" mmplebly for a two-dimensional blaok hole and in 
the four-dimensional case it determines it up to one function of position 1131. 
$ Our result, that the RaritlSchwinger anomaly was -21 times the D k ,  generated almost as much incredulity 
as did the Capper-Duff Weyl anomaly, but lhat's another feslschrift. 
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zero modes. The difference between the integrated trace anomalies must therefore be an 
integer. 

At one loop in supergravity after going on-shell, we may write the anomaly as 

so that when (21) applies, A = 32irz(b+b'). The contributions to the A coefficient from the 
various fields are shown in table 1. Note that the fermions are Majorana. The significance 
of these results lies in their application to the D = 4, N = 8 supergravity obtained by 
dimensional reduction from type I1 supergravity in D = 10 and the D = 4, N = 4 
supergravity-Yang-Mills supermultiplets which arise from dimensional reduction from 
N = 1 supergravity-Yang-Mills in D = 10. As we can see from the field content given in 
the last three columns of table 1, the combined anomaly exactly cancelst. I have singled 
out these supermultiplets because these are precisely the field-theory limits of the toroidally 
compactified type Il and heterotic superstrings. Indeed, these results have recently been 
confirmed in a direct string calculation by Antoniadis etal [116]. 

Table 1. Vanishing anomaly in N = 8 and N = 4 supmultiplets 

Field 360A N = 8 N = 4  N = 4  
supermavity supergmvitv YanK-Mills 

______~ 

a, 848 I 1 0 
qfi -233 8 4 0 
A, -52 28 6 1 
x I 56 4 4 
9 4 63 I 6 
9fi" 364 7 I 0 
9fiW -720 1 0 0 

A = O  A = O  A = O  

Another application of the trace anomaly in the context of supersymmetry concerned 
the gauged N-extended supergravities which exhibit a cosmological constant proportional 
to the gauge coupling e.  By calculating the Weyl anomaly in the presence of a cosmological 
constant 164,731, therefore, one can determine the renormalization group beta function @ ( e ) .  
One finds, remarkably, that the one-loop @ function vanishes for N > 4 [721. 

See [90] for a review of Weyl anomalies in supergravity, and 1911 for those in conformal 
supergravity. 

6. The string era 

The history of the Weyl anomaly took a new turn with the advent of string theory. The 
emphasis shifted away from four-dimensional spacetime to the two dimensions of the string 
worldsheet. In particular, in two very influential 1981 papers, Polyakov [92, 931 showed 
that the critical dimensions of the saing correspond to the absence of the two-dimensional 
Weyl anomaly. In the first quantized theory of the bosonic string, one starts with a Euclidean 

t Curiously enough, before the gravitiino contribution to the anomaly w a  calculated explicitly. DAdda and Di 
Vecchia [88] attempted to deduce it by assuming that the total anomaly cancels in N = 4 supergravity. This was a 
good idea but they reached the wrong conclusion by working with the dual formulation with two c$ fields instead 
of the stringy version with one c$ and one obtained by dimensional reduction. 
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functional integral over the worldsheet metric y l j [ t ] ,  i, j = 1,2. and spacetime coordinates 
X'[e], & = 0, I ,  . . . , D - I ,  where t i  are the worldsheet coordinates. Thus 

where 

S[Y, XI = - 4ZE' jd2tfiyijaixrajxu,,fl, .  (37) 

As showed by Polyakov, the Weyl anomaly in the worldsheet stress tensor is given by 
I 

y ' j (T . . )  - -(D - 26)R(y) .  (38) 

The contribution of the D scalars follows from (17) while the -26 arises from the 
diffeomorphism ghosts that must be introduced into the functional integral. In the case 
of the fermionic string, the result is 

" --%IC 

(39) 
.. 1 

Y"(T j )  = =(D - 10)Rfy). 

Thus the critical dimensions D = 26 and D = 10 correspond to the preservation of the two- 
dimensional Weyl invariance yi, + Q2(.$)ytj. One may wonder how Polyakov addressed 
the controversy of the previous eight years described in section 3. Well he didn't, but 
merely remarked 'This is the well known trace anomaly'. 

Previously, the critical dimensions had been understood from the central charge c of the 
Virasoro algebra [94] 

(40) 
C 

[L,, Lml = (n - m)L.+, + --n(nZ - l)8",-m 12 
where the L, are the cffifficents in a Laurent expansion of the stress tensor, namely 

T ( z )  = L,z-"-Z (41) 
"€2  

where T = Tu and z = exp(to + it ') .  Thus this established a connection between the two- 
dimensional Weyl anomaly and the central charge of the Viasoro algebra (to be precise, 
c = 24na in (11)); a result which spawned the whole industry of conformalfield theory 
in the context of strings. See, for example, Alvarez-Gaume [95]. In fact, when writing 
(41). one usually assumes that Cj is traceless, which forces the anomaly to show up as a 
diffeomorphism anomaly, but the results are entirely equivalent [96]. 

Polyakov went on to describe what happens in non-critical string theory when the 
Weyl invariance is lost, and the metric conformal mode propagates. In this case, the two- 
dimensional effective action is given by 

Scf f - /dz t f i [RU- 'R+@l (42) 

where we have allowed for a worldsheet cosmological term produced by quantum 
corrections. If we now separate out the conformal mode U and let fij + e"yij, we obtain 
the Liouville action 

S ~ [ U T ]  = d2tfi(4yija,uajo + RU +@eo).  (43) s 
This is the starting point for much of non-critical string theory. 

The role of the Weyl anomaly becomes even more interesting when we allow for the 
presence of the spacetime background fields, as shown by Callan etal [97] and Fradkin and 



Review article 1397 

Tseytlin [98]. In the case of the bosonic string, for example, the worldsheet action takes 
the form 

[ f i y ' j a i  X'ajX"G,,(X) + <"ai X ~ ~ ~ X ~ B , ~ ( X ) ]  

corresponding to background fields G,,(X), Bpu(X) and @(X). Now the anomaly may be 
written as 

(45) 

The absence of the Weyl anomaly thus means the vanishing of the p functions, which to 
lowest order turn out to be [97] 

0 = p,", = R,, - ~ H w A " H u i o  + 2VpVv4 + O(d)  (46) 

(47) 

1 
=yij(zj)  = , P f i ~ ( y )  + pcp, f iy i /a ix~ajxy  + prv&aixcajxu. 

0 = B E  = VAHqu i - 2vA@HAp, + O ( d )  
WJ 

0 - 2 6  
3ff' 

0 = 16zz@* = - + [4(V@)' - 4V% - R - AH'] + O(run) 

But these are nothing but the Einstein-matter field equations that result from the action 

R -4(V@)2 - &HZ + . . . . (49) 

The common factor eC2" reveals that these terms are treelevel in a string loop perturbation 
expansion. If we denote the dilaton vacuum expectation value by @o, then from (18) the 
classical action (44) yields a term 

1 rea - / d D x G e - ' @ [  - D - 26 - 
3cf' 

(50) e-x"o = e-2(1-L)@o 

in the functional integral, where L counts the number of holes in the two-dimensional 
Riemann surface, i.e. the number of loops. 

That the Einstein equations in spacetime should originate from the vanishing of the 
worldsheet Weyl anomaly is perhaps the most remarkable result in our story. 

7. Current problems 

New techniques for calculating Weyl anomalies continue to appear. Fujikawa 199, 1001 has 
pioneered the functional-integral approach where the origin of the lack of quantum Weyl 
invariance in a classically-invariant theory may be attributed to a non-invariant measure 
in the functional integral. Ceresole et al [ 1011 have reproduced these results using flat- 
space plane waves. Bastianelli and van Nieuwenhuizen [102, 1031 have applied to Weyl 
anomalies the quantum mechanical approach, first used by Alvarez-Gaud and Witten [6] 
in the context of axial anomalies. 

Much of the current interest in the Weyl anomaly resides not only in high-energy 
physics and general relativity but in statistical mechanics. See, for example [95, 104-1091. 
A particularly powerful result is Zamolodchikov's c-theorem [IIO], which states that there 
exists a function defined on the space of two-dimensional conformal field theories which is 
decreasing along renormalization group (RG) trajectories, and is stationary only at RG fixed 
points, where its value equals the Virasom cenwal charge c. Recently, there has been a good 
deal of activity by Cardy [Ill],  Osborn [112], Jack and Osborn [113], Cappelli eta1 [59], 
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Shore 11 14,1151, Antoniadis etol [891 and Osborn and Petkos [117] attempting to generalize 
this theorem to higher dimensions. Whereas from (1 1) the two-dimensional gravitational 
anomaly depends on only one number, however, from (12) the four-dimensional one depends 
on two: the Euler term and the Weyl term. In higher dimensions, there will always be one 
Euler term, but the number of Weyl invariants grows with dimension [ I  181. Consequently, 
it is not c1ea.r whether there is a unique way to generalize the theorem nor how useful such 
a generalization might be. Cardy and Jack and Osborn focused on the Euler number term, 
whereas CappeIli et ol pointed to the positivity of the Weyl tensor term (30) as a more likely 
guide, but the analysis is stilt inconclusive. 

On the subject of the Euler term, the results of section 5 are, in fact, still controversial 
because the anomaly inequivalence between different field representations, discussed by van 
Nieuwenhuizen and myself, was challenged at the time by Siege1 [ 1191 and by Grisaru et nl 
[120]. They found that the traces of the two stress tensors were equivalent. Yet the recent 
string results of Antoniadis et al [89] would seem to support our interpretation. Moreover, 
if it were incorrect, the vanishing of the anomalies for the N = 4 and N = 8 multiplets 
would seem to be a gigantic coincidence. 

Nevertheless, to tell the truth (in accordance wpith Salam's maxim), I am still uneasy 
about the whole thing. The numerical coefficients quoted in table 1 were calculated using 
the b4 coefficients discussed in section 3. The claim that these correctly describe the trace 
anomaly is in turn based on an identity which everyone used to take for granted. See, for 
example, Hawking [38]. The identity says that if S[g] is a functional of the metric gpu, 
then 

where 1 is a constant. If true, it would mean that the integrated trace of the stress tensor 
arises exclusively from the non-invariance of the action under constant rescalings of the 
metric. However, the Potyakov action provides an obvious counterexample: 

Sea - 1 dZx.&R O-IR.  (52) 

This action is scale invariant, but gives rise to an anomaly proportional to R! Of course, 
the integrated anomaly is a purely topological Euler number term, and it is the topological 
nature of the action which provides the exception to the rule. However, since the entire 
debate over equivalence versus inequivalence devolved precisely on Euler number terms, 
the use of the identity (51) in this context makes me feel very uneasyt. 

The whole question of whether the dual formulations of supergravity yield the same 
Weyl anomalies has recently been thrust into the limelight with the string/fivebrane duality 
conjecture [122, 1231 which states that in their critical spacetime dimension D = IO, 
superstrings (extended objects with one spatial dimension) are dual to superfivebranes 
(extended objects with five spatial dimensions [124]). Whereas the two-dimensional 
worldsheet of the string couples to the rank-2 field &, the six-dimensional world-volume of 
the fivebrane couples to the rank-6 field &p~or. The usual rank-2 formulation of D = IO 
supergravity dimensionally reduces to the N = 4 field content of table 1, but the dual 
rank-6 formulation reduces to a different field content with 2@bP, and with 14@ replaced 

t Of course, there is no real mnlndiction provided one is sufIicently careful about handling the zero modes of 
the Laplacian. I am grateful IO Stuart Dowker, Arkady Tseytlin and Ed Wilten for correspondence on this point. 
A rigomus treatment of this problem may be found in Dowker's recent paper [IZI]. It was precisely this issue of 
how to handle the zem modes which separaled [871 from [I191 and [IZO]. Unfonunately, merely knowing that 
one must be careful about zero modes has not yet enabled me to decide who has k e n  the more careful! 
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by 141&. If table 1 is to be believed, A(&”) - A(@)  = 1 and A(&vp) = -2. Therefore 
the dual version has non-vanishing coefficent A = 14 - 40 = -26. This increases my 
uneasiness. 

A possible resolution of this problem may perhaps be found in the recent paper by Deser 
and Schwimmer [118] who have re-examined the different origins of the topological versus 
Weyl tensor contributions to the anomaly (which they call type A and type B, respectively). 

I certainly believe that the final word on this subject has still not been written. 
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