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Lorentz Invariance and the Gravitational Field 

T. W. B. KI1lBLE* 
Department of Mathematics, Imperial College, London, England 

(Received August 19, 1960) 

An argument leading from the Lorentz invariance of the 
Lagrangian to the introduction of the gravitational field is pre­
sented. Utiyama's discussion is extended by considering the 
10-parameter group of inhomogeneous Lorentz transformations, 
involving variation of the coordinates as well as the field variables. 
It is then unnecessary to introduce a priori curvilinear coordinates 
or a Riemannian metric, and the new field variables introduced 
as a consequence of the argument include the vierbein components 
hI!' as well as the "local affine connection" Aii •. The extended 
transformations for which the 10 parameters become arbitrary 
functions of position may be interpreted as general coordinate 
transformations and rotations of the vierbein system. The free 
Lagrangian for the new fields is shown to be a function of two 
-covariant quantities analogous to F •• for the electromagnetic 
field, and the simplest possible form is just the usual curvature 

1. INTRODUCTION 

I T has long been realized that the existence of certain 
fields, notably the electromagnetic field, can be 

related to invariance properties of the Lagrangian.1 

Thus, if the Lagrangian is invariant under phase trans­
fonnations 1/!-t eie>;f;, and if we wish to make it in­
variant under the general gauge transfonnations for 
which A is a function of x, then it is necessary to intro­
duce a new field AI' which transfonns according to 
AI' -t AI'- al'A, and to replace aI'1/! in the Lagrangian by 
a "covariant derivative" (al'+ieAI')1/!. A similar argu­
ment has been applied by Yang and Mills2 to isotopic 
spin rotations, and in that case yields a triplet of vector 
fields. It is thus an attractive idea to relate the existence 
of the gravitational field to the Lorentz invariance of 
the Lagrangian. Utiyama3 has proposed a method 
which leads to the introduction of 24 new field variables 
A iiI' by considering the homogeneous Lorentz trans­
fonnations specified by six parameters Eii. However, 
in order to do this it was necessary to introduce a priori 
curvilinear coordinates and a set of 16 parameters hkl'. 
Initially, the hkl' were treated as given functions of x, 
but at a later stage they were regarded as field vari­
ables and interpreted as the components of a vierbein 
system in a Riemannian space. This is a rather unsatis­
factory procedure since it is the purpose of the dis­
~ussion to supply an argument for introducing the 
gravitational field variables, which include the metric 
.as well as the affine connection. The new field variables 
A iiI' were subsequently related to the Christoffel con­
nection rAI'V in the Riemannian space, but this could 
"Only be done uniquely by making the ad hoc assumption 

* NATO Research Fellow. 
1 See, for example, H. Weyl, Gruppentheorie und Quanten­

mec'!anik (8. Hirz~l, Leipzig, 1931), 2nd ed., Chap. 2, p. 89; and 
,earlier references Cited there. 

2 C. N. Yang and R. L. Mills, Phys. Rev. 96, i91 (1954). 
3 Ryoyu Utiyama, Phys. Rev. 101, 1597 (1956). 

scalar density expressed in terms of hk' and A iiI" This Lagrangian 
is of first order in the derivatives, and is the analog for the vierbein 
formalism of Palatini's Lagrangian. In the absence of matter, it 
yields the familiar equations R •• =O for empty space, but when 
matter is present there is a difference from the usual theory (first 
pointed out by Weyl) which arises from the fact that A iiI' appears 
in the matter field Lagrangian, so that the equation of motion 
relating Aii. to hI!' is changed. In particular, this means that, 
although the covariant derivative of the metric vanishes, the 
affine connection rx •• is nonsymmetric. The theory may be reex­
pressed in terms of the Christoffel connection, and in that case 
additional terms quadratic in the "spin density" Skii appear in 
the Lagrangian. These terms are almost certainly too small to 
make any experimentally detectable difference to the predictions 
of the usual metric theory. 

that the quantity r/XI' V calculated from A iiI' was 
symmetric. 

It is the purpose of this paper to show that the 
vierbein components hkl', as well as the "local affine 
connection" A iiI" can be introduced as new field vari­
ables analogous to AI' if one considers the fulllO-param­
eter group of inhomogeneous Lorentz transfonnations 
in place of the restricted six-parameter group. This 
implies that one must consider transfonnations of the 
coordinates as well as the field variables, which will 
necessitate some changes in the argument, but it also 
means that only one system of coordinates is required, 
and that a Riemannian metric need not be introduced 
a priori. The interpretation of the theory in tenns of a 
Riemannian space may be made later if desired. The 
starting point of the discussion is the ordinary fonnu­
lation of Lorentz invariance (including translational 
invariance) in tenns of rectangular coordinates in flat 
space. We shall follow the analogy with gauge trans­
fonnations as far as possible, and for purposes of com­
parison we give in Sec. 2 a brief discussion of linear 
transfonnations of the field variables. This is essentially 
a summary of Utiyama's argument, though the em­
phasis is rather different, particularly with regard to 
the covariant and noncovariant conservation laws. 

In Sec. 3 we discuss the invariance under Lorentz 
transformations, and in Sec. 4 we extend the discussion 
to the corresponding group in which the ten parameters 
become arbitrary functions of position. We show that 
to maintain invariance of the Lagrangian, it is necessary 
to introduce 40 new variables so that a suitable cova­
riant derivative may be constructed. To make the 
action integral invariant, one actually requires the 
Lagrangian to be an invariant density rather than an 
invariant, and one must, therefore, multiply the invariant 
by a suitable (and uniquely detennined) function of the 
new fields. In Sec. 5 we consider the possible fonns of the 
free Lagrangian for the new fields. As in the case of the 
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electromagnetic field, we choose the Lagrangian of 
lowest degree which satisfies the invariance require­
ments. 

The geometrical interpretation in terms of a Rieman­
nian space is discussed in Sec. 6, where we show that 
the free Lagrangian we have obtained is just the usual 
curvature scalar density, though expressed in terms of 
an affine connection r'l'u which is not necessarily sym­
metric. In fact, when no matter is present it is sym­
metric as a consequence of the equations of motion, but 
otherwise it has an anti symmetric part expressible in 
terms of the "spin density" @51';j. Thus there is a dif­
ference between this theory and the usual metric 
theory of gravitation. This difference was :first pointed 
out by Weyl,4 and has more recently been discussed by 
Sciama.6 It arises from the fact that our free Lagrangian 
is of first order in the derivatives, with the hkl' and A ijl' 
as independent variables. It is possible to re-express the 
theory in terms of the Christoffel connection Or\u or 
its local analog °A ijl" and this is done in Sec. 7. In that 
case, additional terms quadratic in @5l'ih and multiplied 
by the gravitational constant, appear in the Lagrangian. 

2. LINEAR TRANSFORMATIONS 

We consider a set of field variables XA (x), which we 
regard as the elements of a column matrix x(x), with 
the Lagrangian 

L(x)=L{X(x), X,I'(x)}, 

where X,I'= a"x. We also consider linear transformations 
of the form 

(2.1) 

where the ~a are n constant infinitesimal parameters, 
and the Ta are n given matrices satisfying commutation 
rules appropriate to the generators of a Lie group, 

[Ta,Tb]= /acbTc. 

The Lagrangian is invariant under these transforma­
tions if the n identities 

(2.2) 

are satisfied, and we shall assume that this is so. Note 
that ajax must be regarded as a row matrix. The 
equations of motion imply n conservation laws 

where the "currents" are defined by 6 

J"a= - (aLj ax,,,) TaX. 

4 H. Weyl, Phys. Rev. 77, 699 (1950). 

(2.3) 

5 D. W. Sciama, Festschrift for Infeld (Pergamon Press, New 
York), to be published. 

6 We have defined Jl'a with the opposite sign to that used by 
Utiyama.8 This is because with this choice of sign the analogous 
quantity for translations is Tp u rather than - Tp •. The change may 
be considered as a change of sign of Ea and Ta, and there is a cor­
responding change of sign in (2.6). This convention has the addi­
tional advantage that the "local affine connection" Ai;p defined 
in Sec. 4 specifies covariant derivatives according to the same rule 
as r\;. 

Now, under the more general transformations of the 
form (2.1), but in which the parameters ~a become 
arbitrary functions of position, the Lagrangian is no 
longer invariant, because the derivatives transform 
according to 

(2.4) 

and the terms in ~a ,I' do not cancel. In fact, one finds 

oL= _~a,,,J"a. 

However, one can obtain a modified Lagrangian which 
is invariant by replacing x," in L by a quantity x;" 
which transforms according to 

(2.5) 

To do this7 it is necessary to introduce 4n new field 
variables Aa" whose transformation properties involve 
ea,,,. In fact, if one takes 

(2.6) 

then the condition (2.5) determines the transformation 
properties of the new fields uniquely. They are 

(2.7) 

In this way one obtains the invariant Lagrangian 

L'{X,X,,,,Aa,,}=L{X,X;,,}. 

The expression X;" may be called the covariant deriva­
tive of X with respect to the transformations (2.1). One 
may define covariant currents by 

(2.8) 

where L is regarded as a function of X and X;". They 
transform linearly according to 

and their covariant divergences vanish in virtue of the 
equations of motion and the identities (2.2): 

=0. 

Two covariant differentiations do not in general 
commute. From (2.6) one finds 

where 
(2.9) 

Unlike Aal" the expression Fa"u is a covariant quantity 
transforming according to 

and one may, therefore, define its covariant derivative 
in an obvious manner. It satisfies the cyclic identity 

Fal'u;p+Faup;,,+Fapl';u=O. 

7 For a full discussion, see footnote 3. 
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214 T. W. B. KIBBLE 

It remains to find a free Lagrangian Lo for the new 
fields. Clearly Lo must be separately invariant, and it 
is easy to see3 that this implies that it must contain 
A"" only through the covariant combination pa" •. The 
simplest such Lagrangian iss 

(2.10) 

where the tensor indices are raised with the :flat-space 
metric 'TIP. with diagonal elements (1, -1, -1, -1), 
and the index a is lowered with the metricSa 

gabS: facdfcdb 

associated with the Lie group (except of course for a 
one-parameter group). It is clear that this Lagrangian 
is not unique. All that is required is that it should be 
a scalar both in coordinate space and in the Lie-group 
space, and one could add to it terms of higher degree 
in Fap •• However, it seems reasonable to choose the 
Lagrangian of lowest degree which satisfies the in-
variance requirements. . 

With the choice (2.10) of L o, the equations of motion 
for the new fields are 

Because of the antisymmetry of FaP• one can define 
another current which is conserved in the strict sense: 

(2.11) 
where 

This extra current jP" may be regarded as the current 
of the new field A ap itself, since it is expressible in the 
form 

jP,,= - (aLo/Map)= - (aLo/aA b •• p)NcA c., (2.12) 

which should be compared with (2.8). Note, however, 
that it is not a covariant quantity. To obtain a strict 
conservation law one must sacrifice the covariance of 
the current. 

3. LORENTZ TRANSFORMATIONS 

We now wish to consider infinitesimal variations of 
both the coordinates and the field variables, 

xp.~x'P.=xP.+l5xP., 

x(x) ~ x' (x') = x (x) +l5x (x). 
(3.1) 

It will be convenient to allow for the possibility that 
the Lagrangian may depend on x explicitly. Then, 
under a variation (3.1), the change in L is 

8 There could of course be a constant factor multiplying (2.10), 
but this can be absorbed by a trivial change of definition of A a ~ 
and Ta. 

Sa The discussion here applies only to semisimple groups since 
otherwise gab is singular. (I am indebted to the referee for this 
remark.) 

where aLI axP. denotes the partial derivative with fixed 
x. It is sometimes useful to consider also the variation 
at a fixed value of x, 

l5oX= X'(x)-x(x) =I5X-l5xP.X,p.. (3.2) 

In particular, it is obvious that 150 commutes with ap', 
whence 

ax.p= (ax),p.- (ax"),p.x, •. (3.3) 

The action integral 

over a space-time region 12 is transformed under (3.1) 
into 

1'(12)= f L'(x')lIa-x'p.lla4X. 
o 

Thus the action integral over an arbitrary region is 
invariant if9 

oL+ L(l5xp.) ,1>=l5oL+ (lixp) ,1'=0. (3.4) 

This is of course the typical transformation law of an 
invariant density. 

We now consider the specific case of Lorentz trans­
formations, 

I5xp.= IOP.-X·+IO", I5X= !1O"·Sp.X, (3.5) 

where lOP. and 101'·= -10·" are 10 real infinitesimal param­
eters, and the S". are matrices satisfying 

Sp.+Svp=O, 
[S"v,Sp .. ] = 'TIvpSp .. +'TI" .. Svp-'TIv..spp-'TI"pSv .. = !f"v"Ap.S ••. 

From (3.3) one has 

ax,I'=!€P"SpuX,,,-€PI'X,p. (3.6) 

Moreover, since (l5x"L,=lO pp=O, the condition (3.4) 
for invariance of the action integral again reduces to 
I5L=O, and yields the 10 identitieslO 

aL/axp=L,p- (aL/ax)x,p- (aLjax,,,)x,,,p=O, (3.7) 

(aLj ax)Sp.x+ (aLj ax ,p)(Sp .. x ,I' 
+'TIl'pX,u-'TI" .. X) =0. (3.8) 

These are evidently the analogs of the identities (2.2), 
and we shall assume that they are satisfied. Note that 
(3.7), which express the conditions for translational 
invariance, are equivalent to the requirement that L 
be explicitly independent of x, as might be expected. 

As before, the equations of motion may be used to 
obtain 10 conservation laws which follow from these 
identities, namely, 

Tp.p.p=O, (S"pu-xpTP. .. +x .. T"p),,,=O, 
----

v See L. Rosenfeld, Ann. Physik 5, 113 (1930). 
)0 Compare L. Rosenfeld, Ann. inst. Henri Poincare 2,25 (i931). 
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where 

Tl'p= (aLjax,l')x,p-ol'pL, Sl'pa= - (aLjax,,,)Spax. 

These are the conservation laws of energy, momentum, 
and angular momentum. 

It is instructive to examine these transformations in 
terms of the variation oox also, which in this case is 

oox= -EPapx+!ea(Spa+xpaa-Xaap)x. 

On comparing this with (2.1), one sees that the role of 
the matrices Ta is played by the differential operators 
-al' and Spa+xpaa-xaap. Thus, by analogy with the 
definition (2.3) of the currents J"a, one might expect 
the currents in this case to be 

Jl'p= (aLlax,,,)x,p, Jl'pa=Sl'pa-X~l'a+XaJl'p, 

corresponding to the parameters e, Epa, respectively. 
However, in terms of 00, the condition for invariance 
(3.4) is not simply ooL=O, and the additional term 
oxpL,p is responsible for the appearance of the term L,p 
in the identities (3.7), and hence for the term ol'pL in T"p. 

4. GENERALIZED LORENTZ TRANSFORMATIONS 

We now turn to a consideration of the generalized 
transformations (3.5) in which the parameters EI' and 
E"V become arbitrary functions of position. It is more 
convenient, and clearly equivalent, to regard as inde­
pendent functions EI'V and 

since this avoids the explicit appearance of x. Moreover, 
one could consider generalized transformations with 
~I'= 0 but nonzero E"v, so that the coordinate and field 
transformations can be completely separated. In view 
of this fact, it is convenient to use Latin indices for Eij 

(and for the matrices Sii), retaining the Greek ones for 
~I' and x!'. Thus the transformations under considera-
tion are 

or 
(4.1) 

(4.2) 

This notation emphasizes the similarity of the Eij 

transformations to the linear transformations discussed 
in Sec. 2. These transformations alone were considered 
by Utiyama.3 Evidently, the four functions ~I' specify 
a general coordinate transformation. The geometrical 
significance of the Eij will be discussed in Sec. 6. 

According to our convention, the differential operator 
a" must have a Greek index. However, in the Lagrangian 
function L it would be inconvenient to have two kinds 
of indices, and we shall, therefore, regard L as a given 
function of X and Xk (no comma),ll satisfying the iden­
tities (3.7) and (3.8). The original Lagrangian is then 

11 Note that since we are using Latin indices for So; the various 
tensor components of X must also have Latin indices, and for 
spinor components the Dirac matrices must be ')'k. 

obtained by setting 
Xk=Ok"X,I" 

It is of course not invariant under the generalized 
transformations (4.1), but we shall later obtain an 
invariant expression by replacing Xk by a suitable 
quantity x; k. 

The transformation of X,,, is given by 

(4.3) 

and so the original Lagrangian transforms according to 

oL= -~p'I'Jl'p-!Eij,I'Sl'ii' 

Note that it is Jl'p rather than Tl'p which appears here. 
The reason for this is that we have not included the 
extra term L(ox"),1' in (3.4). The left-hand side of (3.4) 
actually has the value 

oL+ L(oxl') ,,,== - ~P'I'TI'p-tEij'I'S"ij. 

We now look for a modified Lagrangian which makes 
the action integral invariant. The additional term just 
mentioned is of a different kind to those previously 
encountered, in that it involves L and not aLI aXk. In 
particular, it includes contributions from terms in L 
which do not contain derivatives. Thus it is clear that 
we cannot remove it by replacing the derivative by a 
suitable covariant derivative. For this reason, we shall 
consider the problem in two stages. We first eliminate 
the noninvariance arising from the fact that x.!' is not 
a covariant quantity, and thus obtain an expression L' 
satisfying 

oL'=O. (4.4) 

Then, because the condition (3.4) for invariance of the 
action integral requires the Lagrangian to be an in­
variant density rather than an invariant, we make a 
further modification, replacing L' by ~', which satisfies 

(4.5) 

The first part of this program can be accomplished 
by replacing Xk in L by a "covariant derivative" x; k 

which transforms according to 

(4.6) 

The condition (4.4) then follows from the identities 
(3.8). To do this it is necessary to introduce forty new 
field variables. We consider first the Eij transformations, 
and eliminate the Eii,1' term in (4.3) by setting12 

(4.7) 

where the A ii,,= -A jil' are 24 new field variables. We 
can then impose the condition 

(4.8) 

which determines the transformation properties of A ii" 

12 Our A;; I' differs in sign from that of Utiyama.3 Compare 
footnote 6. 
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216 T. W. B. KIBBLE 

uniquely. They are 

OA iiI' = ~iAA kil'+~iAA ikl'_ ~v.,A iiv-~ij.I" (4.9) 

The position with regard to the last term in (4.3) is 
rather differ,ent. The term involving ~ii.1' is inhomo­
geneous in the sense that it contains X rather than X,I" 
just like the second term of (2.4), but this is not true 
of the last term.13 Correspondingly, the transformation 
law (4.8) of XII' is already homogeneous. This means 
that to obtain an expression X;k transforming according 
to (4.6) we should add to XII' not a term in X but rather 
a term in XII' itself. In other words, we can merely 
multiply by a new field: 

(4.10) 

Here the hkl' are 16 new field variables with transforma­
tion properties determined by (4.6) to be 

(4.11) 

It should be noted that the fields hkl' and A iiI' are quite 
independent and unrelated at this stage, though of 
course they will be related by equations of motion. 

We have now found an invariant L'. We can easily 
obtain an invariant density 2' by multiplying by a 
suitable function of the fields already introduced: 

)!;'=S)L'. 

Then (4.5) is satisfied provided that S) is itself an 
invariant density, 

oS)+~I'.I'S)=O. 

It is easy to see that the only function of the new fields 
which obeys this transformation law, and does not 
involve derivatives, is 

S)= [det(hkl')]-l, 

where the arbitrary constant factor has been chosen so 
that S) reduces to 1 when hkl' is set equal to Okl',14 

The final form of our modified Lagrangian is 

)!;{X,x,l',hkl',A iiI'} =S)L{X,X; k}. 

(We can drop the prime without risk of confusion.) It 
may be asked whether this Lagrangian is unique in the 
same sense as the modified Lagrangian L' of Sec. 2, and 
in fact it is easy to see that it is not. The reason for this 
is that if one starts with two Lagrangians Ll and L2 
which differ by an explicit divergence, and are therefore 

13 The reason for this may be seen in terms of the variation 
ooX given by (4.2). The analogs of the matrices Ta are clearly -ill' 
and Sih so that the presence of the derivative 'X. " in the last term 
of (4.3) is to be expected. By analogy with (2.6) we should expect 
the covariant derivative to have the form 

X; k=Ok"'X. "+!A ij kSijX-A"kO.x. 

Because of the appearance of derivatives, the first and last terms 
can be combined in the form hk"'X.", where hk"=lh"-A"k. If we 
then set Ai; k=hk"A iiI" we arrive at the same form for X;k as that 
obtained in the text. 

U Multiplication of the entire Lagrangian by a constant factor 
is of course unimportant. 

equivalent, then the modified Lagrangians 21 and 22 
are not necessarily equivalent. Consider for example the 
Lagrangian for a real scalar field written in its first-order 
form 

Ll = 7r k cP ,k- i7rk7rk- im2cp2. (4.12) 

This is equivalent to 

(4.13) 

but the corresponding modified Lagrangians differ by 

21- 22=S)(7r k CP);k 

(4.14) 

which is not an explicit divergence. Thus in order to 
define the modified Lagrangian 2 completely it would 
be necessary to specify which of the possible equivalent 
forms of the original Lagrangian is to be chosen. The 
reasons for this situation and the problem of choosing 
the correct form are discussed in the Appendix. 

As in Sec. 2, one may define modified "currents" in 
terms of L=L{X,X;k} by 

~kl'=a2jahkl'=S)bil'{ (aLjax;k)x;;-ok;L}, (4.15) 

@5!';;=-2(a2jaAii,,)=-S)hk"(aLjOX:k)SiiX, (4.16) 

where bil' is the inverse of hi", satisfying 

To express the "conservation laws" which these currents 
satisfy in a simple form, it is convenient to extend the 
definition of the covariant derivative XI" (not X:k). 
Originally, it is defined for X and, therefore, by a trivial 
extension for any other quantity which is invariant 
under ~I' transformations, and transforms linearly under 
~ii transformations. We wish to extend it to any quantity 
which transforms linearly under Eii transformations, by 
simply ignoring the ~" transformation properties alto­
gether. Thus, for example, we would have 

(4.17) 

according to the ~ij transformation law of hi". We shall 
call this the E covariant derivative. Later we shall define 
another covariant derivative which takes account of ~I' 
transformations also. 

One can easily calculate the commutator of two 
~ covariant differentiations.1• This gives 

(4.18) 
where 

This quantity is covariant under ~ii transformations, 
and satisfies the cyclic identity 

Rijl'vlp+Rijvpll'+RijpI'IV=O. 

16 Note that this could not be done without extending the 
definition, since one must know how to treat the index on Xl". 
Here, as in Sec. 2, we simply ignore it. 
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It is thus closely analogous to FBl'v, Note that Riil'v is 
antisymmetric in both pairs of indices. 

In terms of the E covariant· derivative, the "con­
servation laws" can be expressed in the form6 

(';tk"hkl') 11'+ ';t kl'hkl'l v= !@:il'ijRi3~v, 

@:il'iill'=';tip.hjp.- ';t jp.h i iJo • 

5. FREE GRAVITATIONAL LAGRANGIAN 

(4.19) 

(4.20) 

We now wish to examine the quantity X;k' rather 
than XII" As before, the covariant derivative of any 
quantity which transforms in a similar way to X may 
be defined analogously. Now in particular X;k itself 
(unlike XI,,) is such a quantity, and therefore without 
extending the definition of covariant derivative one can 
evaluate the commutator X;kl-X;lk. However, this 
quantity is not simply obtained by multiplying 
XI"v-Xlv" by hk"h1

v, as one might expect. The reason for 
this is that in evaluating x; kl one differentiates the hk" 

in X; k, and moreover adds an extra A i k" term on account 
of the index k. Thus one finds 

X;kl-X;lk=!RiikzS'iX-CikIX;i, (5.1) 
where 

Riikl=hk"hlvRii"v, (5.2) 

Cikl= (hk"hlv- hl"hkv)bil'l v. (5.3) 

Note that (5.1) is not simply proportional to X, but 
involves X;i also.18 

We now look for a free Lagrangian ~o for the new 
fields. Clearly ~o must be an invariant density, and if 
we set 

~o=,pLo, 

then it is easy to see, as in the case of linear transfor­
mations, that the invariant Lo must be a function only 
of the covariant quantities Riikl and Cikl. As before, 
there are many possible forms for ~o, but there is a 
difference between this case and the previous one in 
that all the indices on these expressions are of the same 
type (unlike Fa"v), and one can, therefore, contract the 
upper indices with the lower. In fact, the condition that 
Lo be a scalar in two separate spaces is now reduced to 
the condition that it be a scalar in one space. In par­
ticular, this means that there exists a linear invariant 
which has no analog in the previous case, namely, 

R=Riiij. 

There are in addition several quadratic invariants. 
However, if we again choose for Lo the form of lowest 
possible degree, then we are led to the free Lagrangianl7 

(5.4) 

which differs from (2.10) in being only linear in the 
derivatives. 

16 This is another example of the fact that for ~p. transformations 
derivatives play the role of the matrices Ta. Compare footnote 13. 

17 We choose units in which K= 1 (as well as c=li= 1). 

With this choice of Lagrangian, the equations of 
motion for the new fields are 

,p(Rikjk-!OiiR )= _';tipki'" (5.5) 

- [,p(hi"h/-hi"hiv)]lv 
=S)(hk"Ckij-h/Ckik-hi"Ckki) = @:i"ij. (5.6) 

From Eq. (5.6) one can immediately obtain a strict 
conservation law 

(5.7) 
where 

~""j=,pA kiv(hj"hkV-hk"h/)-,pA kjv(h .. "h"v-hlr."h,u). 

This quantity is expressible in the form 

~"ii= -2(a~o/aA iiI') = -Ha~o;aA mnv,p.)ji,-mnkiA k1v, 

which is closely analogous to (2.12), and should be 
compared with (4.16). Equation (5.7) is a rather sur­
prising result, since @:ip.;j may very reasonably be inter­
preted as the spin density of the matter field/ 8 so that 
it appears to be a law of conservation of spin with no 
reference to the orbital angular momentum. In fact, 
however, the orbital angular momentum appears in the 
corresponding "covariant conservation law" (4.20), and 
therefore part of the "spin" of the gravitational field, 
~"ij, may be regarded as arising from this source. 
Nevertheless, Eq. (5.7) differs from other statements 
of· angular momentum conservation in that the coor­
dinates do not appear explicitly. 

It would also be possible to deduce from Eq. (5.5) a 
strict conservation law 

(5.8) 

but there is a considerable amount of freedom in 
choosing tk". The most natural definition, by analogy 
with (4.15) would be 

tA'p.= a~o/ ahk", 

and this quantity does indeed satisfy (5.8). However, 
in this case the expression within the parentheses itself 
vanishes, so that (5.8) is rather trivial. We shall not 
discuss the question of the correct choice of P" further, 
as this lies beyond the scope of the present paper.19 

It should be noted that Eq. (5.6) can be solved, at 
least in principle, for A iiI" In the simple case when @:i"ii 
vanishes, one finds20 

A iiI' = °A ij" =!bkp.(Ckij- Cijk- C iki), 

Ckii= (h,p.hiv- h/hiv)bk",v. 
(5.9) 

18 See H. J. Belinfante, Physica 6, 887 (1939), and footnote 5. 
19 It is well known in the case of the ordinary metric theory of 

gravitation that many definitions of the energy pseudotensor are 
possible. See, for example, P. G. Bergmann, Phys. Rev. 112, 287 
(1958). 

20 The OA ii p. are Ricci's coefficients of rotation. See for instance 
V. Fock, Z. Physik 57, 261 (1929). 
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In general, if we write 

!f5"ii=S)hk,.Skii, 
then 

A ii,.= OAii,.-tbk,.(Skii-Siik- S jki 
-71kS1lj-71kiS1iz). (5.10) 

If the original Lagrangian L is of first order in the 
derivatives, then Skij is independent of A iip. so that 
(5.10) is an explicit solution. Otherwise, however, A iip. 

also appears on the right-hand side of this equation. 
We conclude this section with a discussion of the 

Lagrangian for the fields Aap. introduced in Sec. 2 when 
the "gravitational" fields hk" and A iJ~ are also intro­
duced. The fields A a" should not be regarded merely as 
components of X when dealing with Lorentz trans­
formations, since one must preserve the invariance 
under the linear transformations. To find the correct 
form of the Lagrangian, one should consider simul­
taneously Lorentz transformations and these linear 
transformations. This can be done provided that the 
matrices Ta commute with the Sij, a condition which 
is always fulfilled in practice. Then one finds that Xk in 
L should be replaced by a derivative which is covariant 
under both (2.1) and (4.1), namely, 

X;k=hk"(X.,.+tA ii"SijX+Aa,.Tax). 

The commutator X;kl-X;lk then contains the extra term 

where 

with Fa,," given by (2.9). It is important to notice that 
the derivatives of Aa" in Fa,." are ordinary derivatives, 
not covariant ones. (We shall see in the next section 
that the ordinary and covariant curls are not equal, be­
cause the affine connection is in general nonsymmetric.) 
As before, one can see that any invariant function of A a" 
must be a function of Fakl only, and the simplest free 
Lagrangian for Aa" is, therefore, 

(5.11) 

6. GEOMETRICAL INTERPRETATION 

Up to this point, we have not given any geometrical 
significance to the transformations (4.1), or to the new 
fields hk" and A ii", but it is useful to do so in order to 
be able to compare the theory with the more familiar 
metric theory of gravitation. 

Now the ~,. transformations are general coordinate 
transformations, and according to (4.11) hk" transforms 
like a contravariant vector under these transformations, 
while bk

" and A ii,. transform like covariant vectors. 
Thus the quantity 

(6.1) 

is a symmetric covariant tensor, and may therefore be 

interpreted as the metric tensor of a Riemannian space. 
It is moreover invariant under the foii transformations. 
Evidently, the Greek indices may be regarded as world 
tensor indices, and we must of course abandon for them 
the convention that all indices are to be raised or 
lowered with the flat-space metric 71,,", and use g,.u 
instead. It is easy to see that the scalar density S) is 
equal to (- g)!, where g= det(g"u). 

Now, in view of the relation (6.1), hk" and bk,. are 
the contravariant and covariant components, respec­
tively, of a vierbein system in the Riemannian space.21 

Thus the foii transformations should be interpreted as 
vierbein rotations, and the Latin indices as local tensor 
indices with respect to this vierbein system. The 
original field X may be decomposed into local tensors 
and spinors,22 and from the tensors one can form corre­
sponding world tensors by multiplying by hk" or bk

". 

For example, from a local vector Vi one can form 

(6.2) 

No confusion can be caused by using the same symbol 
v for the local and world vectors, since they are dis­
tinguished by the type of index, and indeed we have 
already used this convention in (5.2). Note that 
v" = g"uvU, so that (6.2) is consistent with the choice of 
metric (6.1). We shall frequently use this convention 
of associating world tensors with given local tensors 
without explicit mention on each occasion. 

The field A i j ,. may reasonably be called a "local affine 
connection" with respect to the vierbein system, .since 
it specifies the covariant derivatives of local tensors or 
spinors.23 For a local vector, this takes the form 

It may be noticed that the relation (4.10) between 
XI,. and X;k is of the same type as (6.2) and could be 
written simply as 

(6.4) 

according to our convention. However, we shall retain 
the use of two separate symbols because we wish to 
extend the definition of covariant derivative in a differ­
ent way to that of Sec. 4. It seems natural to define the 
covariant derivative of a world tensor in terms of the 
covariant derivative of the associated local tensor. 
Thus, for instance, to define the covariant derivatives 
of the world vectors (6.2) one would form the world 
tensors corresponding to (6.3). This gives 

where 

vA;u=h/'vil u= vA.u+ rx,.uv,., 

v,.; u= bi"Vil u= v".u- rA,.uv\ 

(6.5) 

Note that this definition of r\.u is equivalent to the 

21 See for instance H. Weyl, Z. Physik 56, 330 (1929). 
22 H. ]. Belinfante, Physica 7, 305 (1940). 
23 Compare J. A. Schouten, J. Math. and Phys. 10, 239 (1931). 
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requirement that the covariant derivatives of the 
vierbein components should vanish, 

(6.6) 

For a generic quantity a transforming according to 

oa= !l:iiSija+ e' ,~~,1'a, 
the covariant derivative is defined by21 

(6.7) 

a;v=a,v+!A iivSiia+ r>.""l:A"a, (6.8) 

whereas the I: covariant derivative defined in Sec. 4 is 
obtained by simply omitting the last term of (6.8). 
Note that the two derivatives are equal for purely local 
tensors or spinors, but not otherwise. One easily finds 
that the commutator of two covariant differentiations 
is given by 

a;"v-a; v,,= !Rii"vSiia+ Rp""v'f,/a-CA"vCY;A, 

where Rp""v and CA"v are defined in the usual way in 
terms of Rii"v and Cikl. They are both world tensors, 
and can easily be expressed in terms of rA"v, in the form24 

Rp"" v = rp"",v- rp"v,,,- rPA"rA"V+ rPAVr\v, (6.9) 

CA"v= rA"v- r\". (6.10) 

Thus one sees that Rp ""V is just the Riemann tensor 
formed from the affine connection rA"v. 

From (6.6) it follows that 

(6.11) 

so that it is consistent to interpret r>.,.v as an affine con­
nection in the Riemannian space. However, the de­
finition (6.5) evidently does not guarantee that it is 
symmetric, so that in general it is not the Christoffel 
connection. The curvature scalar R has the usual form 

so that the free gravitational Lagrangian 1S Just the 
usual one except for the nonsymmetry of rA"v. It should 
be remarked that it would be incorrect to treat the 64 
components of rA"v as independent variables, since 
there are only 24 components of A ii". In fact the rA"v 
are restricted by the 40 identities (6.11). Thus there is 
no contradiction with the well-known fact that the 
first-order Palatini Lagrangian with nonsymmetric rA"v 
does not yield (6.11) as equations of motion.26 

The equations of motion (5.5) and (5.6) can be 
rewritten in the form 

Sj(R"v-!g"vR )= -~"v, 

SjCA"v= @)A"v-!oA"@)ppv-!o\@)p"p. 

(6.12) 

(6.13) 

From Eqs. (6.10) and (6.13) one sees that in the absence 
of matter the affine connection rA"v is symmetric, and 

24 This is a generalization to nonsymmetric affinities of the 
result proved in the appendix to footnote 3. See also footnotes 4 
and 5. 

25 See for instance E. Schrodinger, Space-time Structure (Cam­
bridge University Press, New York, 1950). 

therefore equal to the Christoffel connection Or >.,. v. 

(This is the analog for world tensors of °A ii"') Then R,.v 
is symmetric, and Eq. (6.12) yields Einstein's familiar 
equations for empty space, 

R"v=O. 

However, when matter is present, rA"v is no longer 
symmetric, and its antisymmetric part is given by 
(6.13). Then the tensor R"v is also nonsymmetric, and 
correspondingly the energy tensor density ~'"v is in 
general nonsymmetric, because hk" does not appear in 
~ only through the symmetric combination g"v. Thus 
the theory differs slightly from the usual one, in a way 
first no~ed by Weyl. 4 In the following section, we shall 
investigate this difference in more detai1.6 

Finally, we can rewrite the covariant conservation 
laws in terms of world tensors. It is convenient to define 
the contraction 

C"=CA,,A, 
since the covariant divergence of a vector density f" 
is then 

f";,,= fl',,,+Cl'f". (6.14) 

The conservation laws become 

~V";V-CV~V"+CA"V~VA=!Rp""v@)vPtT' 

@)"PtT;,,-C"@)"PIT= ~PIT- ~ITP' 

It may be noticed that these are slightly more com­
plicated than the expressions in terms of the I: covariant 
derivative. 

7. COMPARISON WITH METRIC THEORY 

For simplicity, we shall assume in this section that L 
is only of first order in the derivatives, so that (5.10) 
is an explicit solution for A ii". The difference between 
the theory presented here and the usual one arises 
because we are using a Lagrangian ~o of first order, in 
which hkl' and A i3~ are independent variables. The situ­
ation is entirely analogous to that which obtains for 
any theory with "derivative" interaction. In first-order 
form, the "momenta" A ii" are not just equal to deri­
vatives of the "coordinates" hk", or in other words to 
°A ii". Thus an interaction which appears simple in 
first-order form will be more complicated if a second­
order Lagrangian is used, and vice versa. 

The second-order form of the Lagrangian may be 
obtained by substituting for A ii" the expression (5.10). 
This gives 

~/=~+O~O+l~, 

where o~ and o~o are obtained from ~ and ~o by replacing 
A ii" by 0A iiI' (or equivalently rA"v by °rAJAv), and 1~ is 
an additional term quadratic in Ski;' namely, 

1~= iSj(2SiikSikLS;jkSijk+2SiitS/k). (7.1) 

In this Lagrangian, only hk" and X are treated as inde-
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pendent variables. The equations of motion are equi­
valent to those previously obtained if the variables A iiI' 
are eliminated from the latter by using (5.10). 

The usual metric theory, on the other hand, is given 
by the Lagrangian 

~"=O~+O~o, 

without the extra terms (7.1). If this Lagrangian were 
written in a first-order form by introducing additional 
independent variables A iiI" then one would arrive at a 
form identical to the one given here except for the 
appearance of extra terms equal to (7.1) with a negative 
sign. 

Thus we see that the only difference between ,the two 
theories is the presence or absence of these "direct­
interaction" terms. Now if we had not set K= 1, then ~o 
would have a factor K-l, whereas the terms (7.1) would 
appear with the factor K. They are, therefore, extremely 
small in comparison to other interaction terms. In par­
ticular, for a Dirac field, they would be proportional to 
(see Appendix) 

Kif;'Yk'Y611h k'Y611. 

Thus they are similar in form to the Fermi interaction 
terms, but much smaller in magnitude, so that it seems 
impossible that they would lead to any observable 
difference between the predictions of the two theories. 
Hence we must conclude that for all practical purposes 
the theory presented here is equivalent to the usual one. 
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APPENDIX 

In this appendix we shall discuss the remammg 
ambiguity in the modified Lagrangian. It was pointed 
out in Sec. 4 that the generally covariant Lagrangians 
obtained from two equivalent Lagrangians Ll and L2 
are in general inequivalent. One can now see that in fact 
they differ by a covariant divergence. Thus (4.14) can 
be written in the form 

~1-~2= (Sjhkl'7r ktp);I" 

but in view of (6.14) this is not equal to the ordinary 
divergence. It is clear that quite generally changing L 
by a divergence must change ~ by the covariant di­
vergence of a quantity which is a vector density under 
coordinate transformations, and invariant under all 
other transformations. This is the reason for the dif­
ference between this case and that of the linear trans­
formations of Sec. 2. 

We now wish to investigate the possibility of choosing 
a criterion which will select a particular form of L, and 
thus specify ~ completely. There does not seem to be 
any really compelling reason for one choice rather than 

another, but there are plausible arguments for a par­
ticular choice. 

The most obvious criterion would be to require that 
the Lagrangian should be written in the symmetrized 
first-order form suggested by Schwinger,26 which in the 
case of the scalar field discussed in Sec. 4 is 

This corresponds to treating tp and 7r k on a symmetrical 
footing. However, this may not in fact be the correct 
choice, because for some purposes tp and 7r k should not 
be treated in this way. In fact, the two Lagrangians 
differ in one important respect: ~l is independent of 
A iiI" whereas ~2 is not. Correspondingly, for Ll the 
quantity Skij vanishes, whereas for L2 one finds 

Sk,j= (Olci7rj- OIc,"7ri)tp. 

The conservation laws in the two cases are of course the 
same, because the quantities Tic, also differ. Now the 
tensor Skij has often been interpreted as the spin 
density,18 so that the two cases differ with regard to the 
separation of the total angular momentum into orbital 
and spin terms. The scalar field is normally regarded as 
a field of spinless particles, so that one would naturally 
expect Sic ij to vanish. This, therefore, furnishes a possible 
criterion, which would select Ll rather than L2. With 
this choice, a preferred position is assigned to the 
"wave function" tp rather than the "momenta" 7I'k, and 
the derivatives are written on tp only. In this way one 
achieves a vanishing spin tensor, because the matrices 
Si; are zero for the scalar field tp, but not for the vector 
7r k • It may be noticed that Ll is automatically selected 
if one writes the Lagrangian in its second-order form 
in terms of tp only: 

L/=!tp.ktp·k-!m2~, 

which yields the modified Lagrangian 

~l' =!Sj (gl'vtp.l'tp.v-m2~), 

equivalent to ~1.27 This should be contrasted with the 
second-order form of ~2' which is 

~2' = !Sj-l(Sjhil'tp );I'(Sjh iVtp); v- !Sjm2~, 

and clearly differs from ~/ by a covariant divergence. 
This seems to be a resonable criterion, but the argu­

ments for it cannot be regarded as conclusive. For, 
although it is true that the spin tensor obtained from 
L2 is nonzero, it is still true that the three space-space 
components of the total spin 

are zero. Thus Ll and L2 differ only in the values of the 

Z6 J. Schwinger, Phys. Rev. 91, 713 (1953). 
17 Here ~1 is a "linearization" of ~1' in the sense of T,I:W. B. 

Kibble and J. C. Polkinghorne, Nuovo cimento 8, 74 (1958), 
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spin part of the (Oi) components of angular momentum. 
Indeed, one easily sees that it is true in general that 
adding a divergence to L will change only the (Oi) 
components of Sij. Since it is not at all clear what sig­
nificance should be attached to the separation of these 
components into "orbital" and "spin" terms, it might 
be questioned whether one should expect the spin 
terms to vanish even for a spinless particle. Even so, 
the choice of Ll seems in this case to be the most reason­
able. 

For a field of spin 1, the corresponding choice would be 

Ll = -Hij(ai,j-aj,i)+t!ijjij+!m2aiai, 

which is again equivalent to the choice of the second­
order Lagrangian in terms of ai only. It yields 

Skij=adl-a;j.k, 

which is a reasonable definition of the spin density.28 
The modified Lagrangian may be expressed in terms of 
the world vector a" as 

2= -H:;>g"pgVU(a,,;v-av;,,) (ap;a-aa;p) 
+!-Pm2gl'va"av. (A.l) 

It should be noticed that the electromagnetic Lagrangian 
is not obtained simply by putting m=O in (A.l). The 
difference is that the derivatives in (A.l) are covariant 
derivatives, and since rA"v is nonsymmetric the covari­
ant curl is not equal to the ordinary curl (though both 

28 Compare footnote 18. 

are of course tensors). In fact, (A.1) with m=O would 
not be gauge invariant. The reason for the difference 
is that ai is here treated simply as a component of x, 
whereas A" is introduced along with the gravitational 
variables to ensure gauge invariance.29 

For a spinor field 1/;, symmetry between I/; and {t 
appears to demand that· one should choose the sym­
metrized Lagrangian 

L=!( {ti-ykif; ,k-{t,ki-ykif;) -m#, 
which yields the spin density 

S kij= !Ekijl{ti-y 1-Y61/;. 

Since the Lagrangian 2 must be Hermitian, one could 
not write the derivative on I/; alone. There remains, 
however, another possible choice: We could introduce 
a distinction between the left- and right-handed com­
ponents, 1/;±=!(1±i-Y6)1/;, treating one of them line fp 
and the other like 1rk. This gives the Lagrangian 

L= !{ti-yk(1 +i-Y6)I/;,k-!{t,ki-yk(1-i-Y6)1/;-m#. 
This form of Lagrangian may seem rather unnatural, 
but it should be mentioned because there are other 
grounds for treating 1/;+ and 1/;- on a nonsymmetrical 
footing.30 

29 This has the rather strange consequence that for the electro­
magnetic field the "spin" tensor Ski; vanishes, since the Lagran­
gian is independent of A;; p' 

ao See R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 
(1958). 
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