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The trace of the heat kernel is expanded in a basis of nonlocal curvature invariants 
of nth order. The coefficients of this expansion (the nonlocal form factors) are 
calculated to third order in the curvature inclusive. The early-time and late-time 
asymptotic behaviors of the trace of the heat kernel are presented with this accu- 
racy. The late-time behavior gives the criterion of analyticity of the effective action 
in quantum field theory. The latter point is exemplified by deriving the effective 
action in two dimensions. 

I. INTRODUCTION 

Heat kernel is a universal tool in theoretical and mathematical physics. One can point out, in 
particular, its applications to quantum theory of gauge fields, quantum gravity,‘-* theory of 
strings,’ and mathematical theory of differential operators on nontrivial manifolds.‘0-‘8 The sig- 
nificance of this object follows from the fact that the vast scope of problems boils down to the 
analysis of the operator quantity 

K(s)=exp sH 

which is associated with some differential operator H and has a kernel 

K(sIx,y)=exp sHS(x,y) 

solving the heat equation 

(1.1) 

0.2) 

g aslx,Y)=H mlx9Y), wslx,Y) Lo= 6 kY). (1.3) 

Here we shall focus on quantum field theory, in which case H coincides with the Hessian of the 
classical action (times a local matrix6). In quantum field theory, the heat kernel (1.1) governs the 
semiclassical loop expansion to all orders, and in the covariant diagrammatic technique2*3’6-8’19-22 
it becomes indispensable. In particular, it generates the main ingredient of this expansion-the 
propagator of the theory, 

1 -=- 
I 

mds K(s), 
H o 
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3544 Barvinsky et a/.: Asymptotic behaviors of the heat kernel 

and at one-loop order leads to the effective action in terms of the functional trace of the heat kernel 
Tr K(s) 

- W=$ 
I 

m ds Tr K(s), 
0 s 

(1.5) 

Tr K(s)= 
I 

d2wx tr K(slx,y)lyEx. 0.6) 

Here tr, as distinct from Tr in (1.5), denotes the matrix trace with respect to the discrete indices of 
K(slx,y) (which arise for any matrix-valued operator H, corresponding to the fields of nonzero 
spin) and 20 is the space-time dimension. 

Apart from special backgrounds (see, e.g., Ref. 16), the heat kernel cannot be calculated 
exactly, and for the effective action in quantum field theory, one needs it as a functional of 
background fields.5’8 For an approximate calculation, two regular schemes23 have thus far been 
used: the technique of asymptotic expansion at early time3*‘0-13V24 (s-+0) and covariant perturba- 
tion theory.‘9-22 

As seen from (1.5), the asymptotic expansion of (1.6) in s-+0 allows one to single out the 
ultraviolet divergences generated by the lower integration limit in s. One can also obtain the local 
effects of vacuum polarization by massive quantum fields25 corresponding to the asymptotic 
expansion of the effective action in inverse powers of large mass parameter m2-+a. In massive 
theories, me integral (1.5) acquires the multiplier ePm2’ exponentially suppressing large scales of 
s and generating the llm2- expansion. The coefficients of this expansion are the space-time 
integrals of local invariants a,(x,x), n = 0,1,2,. . . , of growing power in curvature and its deriva- 
tives, called Dewitt or HAMIDEW coefficients. The local (Schwinger-Dewitt) expansion is, 
therefore, an asymptotic approximation of small and slowly varying background fields. The term 
HAMIDEW, which means Hadamard-Minakshisundaram-Dewitt, has been proposed by 
Gibbons26 to praise the joint efforts of mathematicians and physicists in the pioneering studies of 
the early-time expansion of the heat kemel.3~‘0”’ These studies contained the explicit calculation 
of a,(x,x) for n=O, 1, and 2. The coefficient u3(x,x) has been worked out by Gilkey,” while the 
highest-order coefficient available now for a generic theory, u4(x,x), was obtained by Avramidi24 
(see also Ref. 27). 

This expansion, very efficient for obtaining covariant renormalizations and anomalies, be- 
comes, however, unreliable for large and/or rapidly varying fields and completely fails in massless 
theories, because, in the absence of a damping factor eem2’, the early-time expansion of Tr K(s) 
in (1.5) is nonintegrable at the upper limit ~-+a. The calculational technique which solves this 
problem in the case of rapidly varying fields is covariant perturbation theory.‘9-22 It corresponds to 
a partial summation of the Schwinger-Dewitt series by summing all terms with a given power of 
the curvature and any number of derivatives.28 This is still an expansion of Tr K(s) in powers of 
the curvature but the coefficients of this expansion are nonlocal. In contrast to the Schwinger- 
Dewitt expansion, in this technique the convergence of the integral (1.5) at s--t” for massless 
theories is controlled by the late-time behavior of these nonlocal coefficients, which altogether 
comprise the late-time behavior of the heat kernel. 

Covariant perturbation theory is already capable of reproducing the effects of nonlocal 
vacuum polarization and particle creation by rapidly varying fields. It should, therefore, contain 
the Hawking radiation effectz9 and its backreaction on the metric in the gravitational collapse 
problem.30-32 This was in fact the original motivation for studying this theory. This motivation 
has recently been strengthened in the work33 where it is shown that loop expansion of field theory 
can be trusted in the spacetime domain near null infinity where the massless vacuum particles 
are radiated. 
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Covariant perturbation theory was proposed in Ref. 19 and then applied for the calculation of 
the heat kernel and effective action to second order in the curvature.20 However, as pointed, out in 
papers 32, 8, and 33, one has to go as far as third order in the curvature (in the action) to obtain 
the component of radiation that remains stable after the black hole is formed. The third-order 
calculation has recently been completed22 for both the heat kernel and one-loop effective action. 
The basis of third-order curvature invariants was built,22,34 and all nonlocal coefficients of these 
invariants both in the heat kernel and effective action were calculated as functions of three 
commuting operator arguments. Several integral representations for these functions were obtained. 
The results for the effective action checked by deriving the trace anomaly in two and four dimen- 
sions. Here we focus on the results for the heat kernel. 

The structure of nonlocal coefficients in the heat kernel is discussed below but the full results 
for these coefficients22 are usable only in the format of the computer algebra program 
Muthematica.35 Therefore, they will not be presented here. Below we present only the asymptotic 
behaviors of the heat kernel at early and late times, which are most important, in view of the 
discussion above, for the theory of massless quantum fields, and for the spectral analysis on 
Riemann manifolds. 

For a technical discussion of covariant perturbation theory and relevant physical problems we 
refer the reader to papers’9-21 and the recent pape?2*34 where this theory along with some of its 
applications is reviewed. Although we consider only the trace of the heat kernel, the knowledge of 
the functional trace (1.6) is sufficient, owing to the variational method in Ref. 36, for obtaining 
also the coincidence limit of the heat kernel tr K(s(x,y)l,,, and coincidence limits of its deriva- 
tives with respect to one of the space-time arguments. Finally, by using the method in Refs. 15 
and 37, covariant perturbation theory can be extended to the calculation of heat kernel with 
separated points-the object very important for multiloop diagrams7 and for field theory at finite 
temperature.38 To second order in the curvature, this object was calculated in Ref. 39. 

Like the Schwinger-Dewitt technique, covariant perturbation theory fails in the case of large 
fields. Apart from some special cases,4o the problem of large fields remains unsolved but one may 
think of an approximation scheme complimentary to covariant perturbation theory, where one 
starts with large and slowly varying fields. The lowest-order approximation of such a scheme 
would be the case of covariantly constant background fields. This approximation has recently been 
considered (for the vanishing Riemann curvature, however) in Ref. 41 with a result generalizing 
the old Schwinger’s result2 to the non-Abelian vector fields. In a rather nontrivial way, the result 
in Ref. 41 can also be extended to the case of nonvanishing, covariantly constant, Riemann 
curvature.42 

The plan of the paper is as follows. In Sec. II we introduce the notation, and review the 
general setting of covariant perturbation theory for the heat kernel in the case of a generic second- 
order Hamiltonian. Next we comment on the full results obtainede for the trace of the heat kernel 
to third order in the curvature. Section III presents the early-time asymptotic behavior of the trace 
of the heat kernel as obtained from these results. We carry out a comparison with the Schwinger- 
Dewitt series and, as a by-product, obtain a workable expression for the cubic terms of the 
HAMIDEW coefficient a4. Finally, Sec. IV contains the main result of the present paper: the 
late-time asymptotic behavior of the trace of the heat kernel to third order in the curvature. As 
mentioned above, the capability of covariant perturbation theory of producing this behavior is the 
principal advantage of the method. 

II. COVARIANT PERTURBATION THEORY FOR THE TRACE OF THE HEAT KERNEL 

The subject of calculation in covariant perturbation theory of’9-22 is the heat kernel (1.1) 
where H is the generic second-order operator 

H=g~‘“V,V,i+(@-: Ri), g?‘,V,d (2.1) 
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acting in a linear space of fields (pA(x). Here A stands for any set of discrete indices, and the hat 
indicates that the quantity is a matrix acting on a vector cpA: i = tiB, F = PAB , etc. We have 
tr i=84,, tr@=PAA, etc. In (2.1), g,, is a positive-definite metric characterized by its Riemann 
curvature43 Rap&‘, V, is a covariant derivative (with respect to an arbitrary connection) charac- 
terized by its commutator curvature 

and i is an arbitrary matrix. The redefinition of the potential in (2.1) by inclusion of the term in 
the Ricci scalar R is a matter of convenience, while the absence of the term linear in V, can be 
always achieved by a redefinition of the connection entering the covariant derivative. The only 
important limitation in the operator (2.1) is the structure of its second-order derivatives which 
form a covariant Laplacian Cl. There exist, however, efficient methods6 by which a more general 
problem can be reduced to the case of (2.1) (see also Ref. 17). 

The present paper, like the preceding ones, 19-22 deals only with the version of covariant 
perturbation theory appropriate for noncompact asymptotically flat and empty manifolds. The 
interest in this setting follows from the fact that it results in the Euclidean effective action which, 
for certain quantum states, is sufficient for obtaining the scattering amplitudes and expectation- 

value equations of Lorentzian field theory.” Under the assumed conditions, the covariant Laplac- 
ian Cl has a unique Green’s function corresponding to zero boundary conditions at infinity. The 
masslessness of the operator (2.1) means that, like the Riemann and commutator curvatures, the 
potential i! falls off at infinity. For the precise conditions of this fall off see Ref. 20. 

For the set of the field strengths (curvatures) 

RdP”, & 
CLV’ 

3 (2.3) 

characterizing the background we use the collective notation 9% The calculations in covariant 
perturbation theory are carried out with accuracy O[?XN], i.e., up to terms of Nth and higher power 
in the curvatures (2.3). It is worth noting that, since the calculations are covariant, any term 
containing the metric is in fact of infinite power in the curvature, and O[f@] means terms 
containing N or more curvatures explicitly. 

The trace of the heat kernel is an invariant functional of background fields which belongs to 
the class of invariants considered in Ref. 34. It is, therefore, expandable in the basis of nonlocal 
invariants of Nth order built in Ref. 34. To third order, the expansion is of the form 

1 

I 

5 
Tr K(s)=(~~~)~ dx g”2 tr f+sb+s2C fit-~0,) %~R2(i) 

i=l 
11 

+s3C Fi(-sn,,-SD2,-SD3) tRl!R2rJt3(i) 
i=l 

+s4 C Fi(-s0,,-sO2,-SU3) 911912!X3(i) 
i=12 

28 

+s5 C Fi(-su* ,-SO2,-SO3) !X,?X2?X3(i) 
i=26 

+S6 F29(-SO*,-SO,,- S173) *,82%3(29) +o[ R4 ] . 

I 

(2.4) 
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The full list of quadratic %i9?2( i), i= 1 to 5, and cubic iRlR2%3( i), i = 1 to 29, curvature 
invariants here, as well as the conventions concerning the action of box operator arguments 
(Cl t , Cl*, Cl 3) on the curvatures (%t ,!X2 ,%,) labeled by the corresponding numbers, are pre- 
sented and discussed in much detail in Ref. 34. The form factors of this expansion fi( 5)) i = 1 to 
5, and Fi( tt , t2, t3), i = 1 to 29, all express through the basic second-order and third-order form 
factors 

d2n 6( 1 -at - cu2)exp( - aia2t)= 
I 

‘da ema(lma)t, 
0 

(2.5) 

F(t, d2vb)=JaBo d3a S(1--1-~2-~3)exp(--ala2~3-a2a3&-a,a3~2). (2.6) 

The structure of these expressions is as follows: 

fi(5>=ri(5) f(5)+vi(E), (2.7) 

Fi(51,52,53)=Ri(51,~2,53) F(61,c2v63)+C Ul(51r52,53)f(5n)f+Vi(51,52,53), 
n=l 

(2.8) 

where ri(O, vi(E), Ri(51,62rt3), ul(t* vt2r&)v and vi(51 ,62,t3) at! cerhh rational functions 
of their arguments. The functions Ti and ui have in the denominator the powers of 5, while the 
denominators of Ri, Ul, and Vi are formed by the powers of the universal quantity (1&253A, 
A’5:+5~+5:-25152-25253-2~351, and also contain the factors (cj - &), j # k (in the de- 
nominators of Ul). Despite this fact, all the form factors are analytic in their arguments at 
tj = 0, A = 0 and tj = & , and the mechanism of maintaining this analyticity is based on linear 
differential equations which the functions (2.5)-(2.6) satisfy.22 Here we present some of these 
equations in the form which will be used in Sec. IV for the derivation of the effective action for 
massless conformal field in two dimensions: 

, 

(2.9) 

(2.10) 

d 

s~F(-S0,,-su2,-s03)=- s 
( 

•*02~3 

D +1 ~(-sn,,-s172,-~~3) 
1 

•11(03+n2-~1) •2(n3+~1-~2) - 
20 f(-sol)- 2D 

xf(-so2)- 
•3(01+~2-~3) 

20 f(--SO3), (2.11) 

D~O~+O~+O~-20102-20,03-2020,. (2.12) 

The explicit results for the second-order form factors are given in Ref. 20 (see also Ref. 44). 
The explicit results for the third-order form factors are given in Ref. 22 and take pages. They are, 
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however, manageable in the format of the computer algebra program Muthematicu. This program 
was used for a number of derivations in Ref. 22, and for obtaining the asymptotic behaviors 
presented below. 

Ill. THE EARLY-TIME BEHAVIOR OF THE TRACE OF THE HEAT KERNEL AND THE 
SCHWINGER-DEWITT EXPANSION 

The early-time behavior of the heat kernel follows from the tables of the paper in Ref. 22 and 
the behavior of the basic form factors (2.5) and (2.6) 

f(-sO)=l+~sO+~s202+O(S3), s-to, (3.1) 

F(-sU,,-SO*, -Sn3)=~+~S(01+02+03)+O(s2), s+o. (3.2) 

It is striking that, in the resulting early-time expansion, the third-order form factors are nonlocal 
and, for some of them, the expansion starts with a negative power of s.22 One can also see that 
such a behavior is inherent only in the gravitational form factors, and, moreover, the nonlocal 
operators l/c1 in their asymptotic expressions act only on the gravitational curvatures. As dis- 
cussed in Refs. 20 and 34, these features will persist at all higher orders in 9X, and the cause is that 
the basis set of curvatures for the heat kernel does not contain the Riemann tensor which gets 
excluded via the Bianchi identitites in terms of the Ricci tensor. Below we show that restoring the 
Riemann tensor restores the locality of the early-time expansion. 

The early-time expansion for Tr K(s) is of the form3 

“2 tr 4,(x,x), (3.3) 

where ci,(x,x) are the Dewitt coefficients with coincident arguments. All ci,(x,x) are local func- 
tions of the background fields entering the operator (2.1). There exist independent methods for 
obtaining these coefficients, and, for 1z=O,l,2,3,4, the ~,,(x,x) have been calculated 
explicitly. 3*4*6~‘07-13*24*27 A comparison with these known expressions, carried out below, provides a 
powerful check of the results of covariant perturbation theory. 

By using the behaviors (3.1)-(3.2) and the tables of form factors of Ref. 22, one arrives at Eq. 
(3.3) with the following results for the (integrated) Dewitt coefficients a0 to u4: 

I dx g’12 tr Lio(x,x)= 
I 

dx g”2 tr E, 

I dx g’12 tr ci,(x,x)= 
I 

dx g1’2 tr k, 

(3.4) 

I dx g’12 tr i,(x,x)=/ dx g1j2 tr (; k,a2+~&,$%~v+~ RI &“i-& RIR21^ 

03 6 1 
+3600,0, RlR2R31 +&j 

2 03 
-o,+~,~, Rt&pR~p i 

(3.5) 
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2 3 
-o,o,-- q 2o3 

R:+'$,V,R,i 

+45; q VpR?82~~3i+ 
1 

1 2 45&i& R(;T’,R,aSV yR3 .+i 

1 -- 
0203 

Rr”V,R2 BJBR;yi 

-45c1 ‘0 q VaV,R~“v,W;%~ 
1 2 3 

-45020 I7 
1 2 3 

V,R~"V&'$',VpR~vi 
I 

+O[9T4], 

I 
dx g112 tr (i3(x,x)=/ dx g1j2 tr[ z i+@2+;.%‘1,&%$v+~ FIR2 

02 II 
+~RI JV’l- & R,R2i+; ij~2~3--&mit?$5%?& 

+jp%y”.982’&P3+180 1 6 n 1 ( 201 
1+0, 

-- 403 0: n 
q 2 +m,m, 

i 
RIiLVR2d3 

+( &+j$-)@%$ a?%& pp+j&j (-;+$+&) 

A 1 4 XR&W+~ -5 - ~- 20, +ulu2 0: q 3 

Cl1 803 70; 
l-o,+%-- 20102 

RB”R2 pP3 f 

+-&( & -&)VfiR;1Vfi2 pmk3+&, R, ~BV,5%~“V&%;p 

-& R~BV$%$“v,&?3 &- R~"O,V&9?93 ay 
1 1 

1 03 2 
+z 

,. 
0102 -702 Vp’R?S2,d31 

1 01 6 
+m 

* 
0283 -502 vyJeVJr3 apl 

(3.6) 
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Xl3 4 01 
R$=‘VJ?2 ,,VaR&i 

+45; 
1 
q LV,R~“vJV7,“s~3 

2 

1 3 . 

-m-&q 
V,VpRc;?‘,V,,R;pR31 

1 3 

-c]102-- q 2O3 
V,RyAV & J’,VpR~yf 

+ 1890; q q VxV&+V,VpR~YV,V&“i +0[s41, 
I 2 3 

(3.7) 

dx g’12 tr (i4(x,x)=f dx g112 tr [s k,F2+& iIR2++&&&.i%$v 

0; 
+E RI p,,Rfvf+$ F,F2F3-~&$‘$A$&8fG 

q l,+O2+2O3 n 2U,-03 
+ 180 .5Vh2 pvi)3+ 15120 R&k 

1 0: 50; 317; + - q 1+E+3 2&+&& - -~+20,02 RY’R 2 n 
1680 02 

93 

4i&& 40; 
q ,+4Cl3+p + - Ry%% 2 

01 01 
al*&3 p/.4 

0; * 1 
+w2 R,R2R31 + 18900 i 

303, 20: cl,02 303 

~ 2C1102 -- El3 ---- ITI3 2 

130: 30; 
--‘0 

02 1 2 
R(r-“R2 p~3i+~~BV*&p~Vv&,, 

RY’V k V I; p2v3 

2 El1 203 30: 
3+0,+0, -~ 2~102 

VpR;aV,,R2 pai) 
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1 
+210 

R7PV&“Va&33 pv 

) 
Rfb R V R 1^ u2p3 

1 

( 

703 cl, 30; ------ 
+37800 q 2 [72 0,172 

V'Rt;"VJt2pLaR3i 

30: 2C13 +--- 
0, 2ClzC13 02 

R~YV,R,nPV"R 1^ 3 @ 

303 q 3 30: 
-- -o,+o,+ q lu2 %‘“Va 

X R2 sPVpR;,i V,VpR';"V,V"R;BE;3 

1 20 4 +25200 6Oi q 3 ,. 
-302 

-- 
q 3 

-- +- 
n2o3 q lo2 

V,JpR~~&R;aR31 

1 4 8 40, Cl3 ,. 
$6300 - -02 -3~13 -c12[7, -0102 V,R~XVv@~VJ'pR~"l 

+6300; 17 V,VJ?;pV,V,Rf’Tv,VJ?;ai +O[S4]. 
1 2 I 

The task is now to bring expressions (3.6)-(3.8) to a local form by restoring the Riemann 
tensor. The procedure that we use is as follows. For each a,, we first consider a linear combina- 
tion of all possible local invariants of the appropriate dimension with unknown coefficients. Next, 
in this combination, we exclude the Riemann tensor by the technique of Ref. 34 [see Eq. (2.2) of 
this reference], and equate the result to the nonlocal expression above. This gives a set of equa- 
tions for the coefficients, which, in each case, has a unique solution. In the case of u2, there is 
only one local invariant with explicit participation of the Riemann tensor: 
Jdx g112 RnppyRUfl~". In the case of a,, there are seven (the integral over space-time is as- 
sumed): 

tr ;R~"@R l*"d, & &up&P "R dP", Rap 9 ap* p"mpR=" Rap/wfY,pR(T"ap, 
(3.9) 

R;Rap”o@‘“a, RRCL”aPRI*“a’B’ Rm'"RP"R,pc(", 

and the coefficient of the sixth turns out to be zero. In the case of u4, there are ten (counting only 
cubic): 
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tr •~Ra~““R’R,,c,,v, tr PVpV,~vp~~“ffP, tr ~~~A~“R,~~,, •R;R,~~#I*“Q, 

IIIRRC”“+R P”“B’ R,vV~RaP~pV”Ra~u~, RV,V,RvpR~“ap, (3.10) 

VpRv(XVaRp$~P”(T, V,RBxVpR;Ra@“, Ra~LOR~“RaBpv, 

and the last one proves to be absent. The number of invariants with the Riemann tensor does not 
grow fast owing to the Bianchi identities and, particularly, their corollary which excludes 
OR aaPv in a local way. 

The final results are as follows. The expressions (3.4) and (3.5) are already in the local form. 
The expression (3.6) is brought to a local form 

dx g’12 tr i2(x,x)= 
f 

dx g”2 tr 

a~~“-&Rp$?P” 1^ +o[ s4 1, 1 I (3.11) 

by using the identity (6.36) of Ref. 34 which expresses for arbitrary space-time dimension 2w the 
Gauss-Bonnet combination of Riemann and Ricci curvatures in terms of nonlocal invariants built 
of the Ricci tensor. 

Finally, the expressions (3.7), (3.8) rewritten in terms of invariants (3.9) and (3.10) take the 
form 

I dx g ‘I2 tr ri,(x,x)=f dx g*12 tr[ A ~lJ~+&&PvCl~~“+~ kClR+[ & R,,ORp” 

+i RP”ap&“b$$ 
72 

py--& R”Y.W;&,& RpvnPR,,,~~ 

-&, R”pRa&- -A RnppyRp~vpR(raPP 

17 
+45360 

- Ra~r~““m~uvap+&y R,pR”,v,RBP”X 

1 +- R 
945 4 

RF”R+-- TV 2;35 R;R$R: i +0[%4], II (3.12) 

f dx g’12 tr a,(x,x)=f dx g’12 tr (A &I’@+& k~2R+~&‘“~2&pv 
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-&R'"VpRV& PR~R 

1 n 1 ,. 1 II -- 
1260 V'R""V"R,,P-~R'"~RpvP-mR""R,vOP 

1 
+1120 

- RP”“PR .,gO~+~R""nBV,V,R,BB 

13 
+30240 

q Rj@J”&,,- ’ -R.!&"O&!,, 
15120 

-A RVu&~‘V~&~& ORa%& ~~pp 

-& R”Q,.jR”“V&Gp,C& R’“VGV~&?Aa.&nv 

1 
--Rpa"W,Rv~VAR 

2 
6300 Up 4725 

--RLL'fi"V,Rp~VpRX, 

+~R'"VuRp,VBRt:-~R~~,Ru~V~,p 
9450 

1 
-- V’RvuV&R+& 

18900 RaBV,RVpR 

1 1 1 
+37800 -RR""'R,"-75600 -ORR'"R,v-m q RpR"RB UPcL 

-& q RRR (3.13) 

The expressions (3.4), (3.5), and (3.11) for a0 ,a,, and u2 coincide with the results obtained by 
other methods.374T6*‘0-‘3 It is easy to compare expression (3.12) for u3 with the result in’3P24 since 
they differ only by the substitution4’ 
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I dx g”’ t~-~&~v~L%~~- -j- dx g112 e( -~~~,o~~“+2~P~~~~~+R’~~~~~,, 

-; R~vap.5%apL%pv , (3.14) 

and it is very difficult to compare expression (3.13) for a4 with the result in Ref. 24. An algebra 
of the Bianchi identities, Jacobi identities for the commutator curvature (2.2) and integration by 
parts, which must be used for this purpose, can be found in Refs. 34 and 22. The coincidence does 
take place with accuracy O[!X4] but expression (3.13) is a result of such drastic simplifications 
that it should be considered as new. It goes without saying that, although all the equations (3.1 l)- 
(3.13) are presently obtained with accuracy O[f14], the results for a2 and a3 are exact. It is also 
worth emphasizing that the further expansion of the form factors gives the terms of given qua- 
dratic and cubic orders in the curvature of all tr 2,(x,x). 

IV. THE LATE-TIME BEHAVIOR OF THE TRACE OF THE HEAT KERNEL 

As discussed above, the late-time asymptotic behavior is the most important result of covari- 
ant perturbation theory for the heat kernel, because it gives a universal criterion of the analyticity 
of the effective action (1.5) in the curvature for massless models and, thus, determines the range 
of applicability of this theory. Derivation of the late-time behavior of the form factors in the heat 
kernel was given in Ref. 20 to all orders in the curvature. For the basic form factors (2.5) and (2.6) 
this behavior is 

f(-so)=-;;+0 g , i 1 S-+W (4.1) 

1 
F(-S~~*,-SCI~,-SSU~)=~ i 

1 1 1 
s+- iIl~Cl3+U2[7, - i 

1 
’ s+w* (4.2) 1 2 

+O 0 7 

The late-time behaviors of all second-order and third-order form factors follow then from expres- 
sions (4.1)-(4.2) and the tables of the paper in Ref. 22. One has 

i=l to 5, 

b,=-l/6, b2=1/18, b3=1/3, b,=-1, bS=-112, (4.3) 

1 1 1 1 
-+ q 1c72 -+- q 103 q 2O3 i +o 0 7? i=l to 7, 9, 10, 

a,= l/3, a2= -213, a3=0, a4= 1136, aS=O, ah= - l/6, a7=0, 

a9= - 11648, atu=O, (4.4) 

1 1 

FtJ(-sOl ,-SO2,-SCl3)=$ i 
1 

-+- q lU2 0103 1 +o 0 7* 

(4.6) 
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1 ai 1 
sFi(-s01,-sCI;!,-S03)=-Z s q ,&03 

+o 
( 1 73’ 

i=12 t0 25, 

a12=-2, a13= -2, a,4=-2, a15=o, a16=0, a17=o, a18=2, a19=-1, 

czza= l/3, uzr= 4, az2= l/6, a23=- l/3, a24=- l/3, a25=0, (4.7) 

s2Fi(--SnI 7-Sc72,-SlJ3)=0 i=26, 27, 28, 29. (4.8) 

The result is that the behavior of the trace of the heat kernel at large s is s-O+t, and the 
coefficient of this asymptotic behavior is obtained to third order in the curvature. As shown in Ref. 
20, this behavior holds at all orders in the curvature except zeroth. This power asymptotic behav- 
ior is characteristic of a noncompact manifold. For a compact manifold it will be replaced by the 
exponential behavior Tr K(S) 0: exp( -Atis), S-P=, where hti” is the minimum eigenvalue of 
the operator ( - H) in (1.1). By applying the modification of covariant perturbation theory, appro- 
priate for compact manifolds, one should be able to obtain this minimum eigenvalue as a nonlocal 
expansion in powers of the curvature (or a deviation of the curvature from the reference one).& 

As seen from the expressions above, not all basis structures contribute to the leading asymp- 
totic behavior. The asymptotic form of Tr K(s) is as follows: 

1 1 
+il.oR~v$R,,Rf-;R+‘Y~R cl &Ri-2 $&flV~ 

-2 $&WV ~~I;v,$a-2~~~~~'vu~~~~~a 

i-2 ; R,$‘+, &%“V,, &&@-; R”fiV, +YV/s A&&, 

.;$RV (I $&7+'~,+4~ R@‘“V,Vx &&‘=+3,,, 

+t +j R@Va $ RV ,$+P.+~~ v$R,,;Ri 

-f;R"Q,; R+ R,,i+O[914] +0 $, 
10 

s--+m. (4.9) 
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As discussed in the Introduction, the behavior (4.9) is very important for the effective action 
in massless theories. It controls the convergence of the integral (1.5) at the upper limit and serves 
as a criterion of analyticity of the effective action in the curvature. For manifolds of dimension 

2w>2 

this integral converges at the upper limit at each order in the curvature. Therefore, the effective 
action in four (and higher) dimensions is always analytic in the curvature whereas in two dimen- 
sions, w = 1, it is generally not. An exceptional case is a conformal invariant two-dimensional 
scalar field with 

tr i=i, L%~~,=o, I;=~t6, R,,=g,,+RJ2/2, g”‘R=a total derivative, o=l, (4.10) 

for which the effective action is expandable in powers of the curvature because the integral (1.5) 
converges at the upper limit at each order of this expansion owing to specific cancellations in the 
leading asymptotic behavior (4.9).“*” However, generally, for a two-dimensional theory the ef- 
fective action is nonanalytic in curvature, which implies that its calculation requires a further 
summation of the curvature series in the heat kernel - a technique which is beyond the presently 
discussed calculational scheme (see Introduction and Ref. 41). 

For a two-dimensional theory (4.10) the full set of curvature invariants of Eq. (2.4) reduces to 
the following two stmctures: RlR2 and R1R2R3, and Tr K(s) takes the form of an expansion in 
powers of the Ricci scalar only: 

5 
1 +S2C c,f,(-SUz)R1Rz 

i=l 

29 

+S3C C~F~(-S0,,-SO~,-s03)R,R~R3+O[R4] , W=I 
I 

(4.11) 
i=l 

where 

c,= l/2, c2= 1, c3 = l/6, c4= l/36, c5=0, 

C,= l/216, C4= l/6, C5= l/12, C6= l/36, C9= 1, Clo= l/4, Cl,= l/2, 

C,5=$ (n*-n2-03), &=& (03-02-n,), c*7=& 17,, 

c22=~~,-n2-n3), C23=3u3-02-0,), c24=~~,-~2-u3), (4.12) 

S S2 S2 
c25=+01-02-~3), c26=24 (7,n2, c27=Q q ,n,, 

c28=& 03(03-02-n,), c29”: ~1~2~3, 

By using in (4.11) the asymptotic behaviors (4.3)-(4.8), one can now check that, at stm, the 
leading terms l/s in Tr K(s)ls cancel at both second order and third order in the curvature so that 
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(4.13) 

As a result, the integral (1.5) converges at the upper limit. The convergence at the lower limit in 
the curvature-dependent terms holds trivially. Only the term of zeroth order in the curvature is 
ultraviolet divergent but, in the effective action of a massless theory, this term gets subtracted by 
a contribution of a local functional measure.47 The actual calculation of this integral can be 
performed by using in (4.11) the table of form factors of Ref. 22 and the differential equations 
(2.9)-(2.11) for basic form factors, which allow one to convert Tr K(s)ls into a total derivative in 
s: 

:Tr K(s)=-& $ -;+I (~,~~)R,Rz+~(~,~,,~zr~3)R,RzR3+O[R41 , 

w=l, (4.14) 

where 

1 1 
l w~=o g 

i 
-f(-s~)-‘f(-sn)-l 

4 I so ’ 
(4.15) 

h(s~0,,02,~3)=S~(-S~,,-~~2,-s~3) 3. 
q lo2o3+ f(-SD,) 

gp17,17, (~;-2@&+2&0; 

I 
4D; I7 (@+4~,&+&&-@4) 

1 2 

f(-G) f(-SO,) 1 
(4.16) 

Insertion of (4.14) (with the subtracted term of zeroth order in R) in (1.5) gives for the 
effective action: 

IV=& dx g”’ { 1 (0,~,)R,R,+~(0,~,,~z,~,)R,RzR~+OCR41 }, co= 1, 
(4.17) 

where use is made of the fact that the functions 1 and h vanish at S-W. With the asymptotic 
behaviors (3.1) and (3.2). and the explicit expressions above, we obtain for 1 (0,Cl) and the 
completely symmetrized in 0, ,02 ,O, function h(O,Cl , ,02 ,U,) [which only contribute to 
(4.1711 

1 (o,o)=&;, hs”““(O,~l ,a2rn3)=0, (4.18) 

whence 
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WE&--/ dx g*12 R A R+~[R~], o= 1. 

Here the term of second order in the curvature reproduces the result of pape?’ (and the results of 
Refs. 9 and 30 obtained by integrating the trace anomaly). 

Thus the third-order contribution in W  really vanishes, and the mechanism of this vanishing 
is that, under special conditions like (4.10), the third-order contribution in s- ‘Tr K(s) becomes a 
total derivative of a function vanishing at both s = 0 and s = 03. This mechanism underlies all 
“miraculous” cancellations of nonlocal terms including the trace anomaly in four dimensions. 
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