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Extension of covariant perturbation theory to third order in curvature requires the triple-
spectral forms for one-loop vertex functions of massless fields to be established. For the simplest
triangular graph with unit vertices the three spectral masses are known to form a triangle, and the
spectral weight is 1/4#S where S is the area of this triangle. We generalize this result to an
arbitrary derivative coupling.

1. Introduction

Covariant perturbation theory considered in the two preceding papers* [1,2] is a
regular method for computing nonlocal terms in the effective action of quantum
gauge fields. In this method the effective action is expanded in powers of a standard
set of fields strengths characterizing any given field model. Symbolically this
expansion is of the form

W= fdxg‘/z{ R+ F(0,,0,) R, R, + F(0,,0,,0,)%,%,%, + O[®#*]}, (1.1)

where dx g'/? is the space-time volume element, and R is the collective notation for
a set of field strengths (curvatures, see refs. [1,2]) and their finite-order derivatives.
The coefficients of the expansion, the nonlocal form factors F,, F; etc., are
functions of covariant d’alembertians O only. The numbers 1, 2, 3 labeling the
d’alambertians and curvatures in eq. (1.1) indicate that O, acts on R, = R(x;), O,
acts on R, = R(x,), etc. with subsequent setting x, = x,= --- = x. The second-

* For more references and the discussion of relevant physical problems see paper II [2].

0550-3213/90,/$03.50 © Elsevier Science Publishers B.V.
(North-Holland)
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order form factor is more conveniently introduced as a function of one argument:
[dxg/2F,(0,,0,) 1.k, = [dxg*RE(O)#, (1.2)

F(0) =F(@0,0), (1.3)

and beginning with fourth order in the curvature the d’alambertians act on products
of R’s.

The effective action is actually computed for euclidean signature of space-time in
which case O’s are the covariant laplacians. As discussed in ref. [1], two important
quantum problems in lorentzian space-time boil down to the calculation of the
euclidean effective action. These are (i) the problem about transition amplitudes
between the standard in- and out-states defined in the remote past and remote
future, and (ii) the problem about expectation values in an in- (or out-) state. (For
the general setting of these problems see ref. [3).) In particular, the effective
equations for the mean field which may be either the normalized matrix element
between the in-vacuum and out-vacuum states or the expectation value in the
in-vacuum (or out-vacuum) state can be obtained by varying the euclidean effective
action. It turns out that the form factors in the effective equations for these two
cases are given by one and the same functions F(0O,,0,), £(0,,0,,0,) etc. — the
ones obtained by computing the euclidean effective equations, and the difference is
only in the boundary conditions for the operator arguments O of functions F. These
boundary conditions are most easily formulated if the euclidean form factors can be
represented as spectral integrals with respect to all of their arguments:

F(0) = fdm*= 22alm D). (1.4)
£(O,,0,,0,) =fdmfdm%dm§(m12_D‘?)((’:lz’:n;’;;(ils_DB) . (1.5)

etc. so that all nonlocal operators can be expressed entirely in terms of Green
functions

Then the algorithm of obtaining the effective equations for the in—out or in-in
(out-out) mean fields is as follows: compute the euclidean effective equations and
go over to lorentzian signature, replacing all euclidean Green functions by the
Feynman Green functions or retarded (advanced) Green functions respectively
[4,1]. In general, expressing the nonlocal form factors in terms of Green functions
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via spectral integrals seems the only way to make them tractable when dealing with
the effective equations.

Spectral representations play, therefore, an important role in the effective action
theory. For the one-loop effective action the precise form of expansion (1.1) to
second order in the curvature is obtained in ref. [2]. In four dimensions the only
nonlocal form factor which arises in this approximation is

F,(0) = In(~0/4?) (16)
(n? is a renormalization parameter) and its spectral representation is obvious:

1

—0O/p?) fd ( TR wiso) OO (1.7)

Preliminary consideration of terms cubic in the curvature can be found in refs. [1,2].
The full cubic expression requires much work and we hope to present it in a
separate publication*. A distinct part of this work is establishing the triple spectral
forms (1.5) for all third-order form factors. This is the purpose of the present paper.

Spectral theory is, of course, a subject covered by a vast amount of literature. In
particular, the single and double spectral forms for the three-point functions were
repeatedly discussed in various contexts [5-12]. The triple spectral form was
proposed in ref. [5] and, for the massless case, correctly established in ref. [8].
However, this earlier work was mainly confined to the consideration of simplest
interactions whereas for the present purposes we need explicit formulae for an
arbitrary derivative coupling. Such formulae are obtained below.

2. Triple spectral forms for the one-loop form factors

The simplest third-order euclidean form factor is given by a triangular graph (fig.
1) with unit vertices and massless scalar propagators. In four dimensions

I(x,y,z)=G(x, y)G(y,2)G(z, x), (2.1)
eiP(x—y)
G(x.2)= )f P (22)

* The computation of cubic terms is motivated by a desire to reproduce the conformal anomaly in
four-dimensional gravity theory (see a discussion in ref. [2]).
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Y

X z

Fig. 1. The triangular graph contribution to the vertex function: I'(x, . z).

With a convenient normalization of the form factor one has

1 4
Iy »2, ) = Wfd xF(D,,0,,0,,)

X8(x; =) 0(x3—y,) 8(x3— y3) . (2.3)
X|=Xp=X3=X

By introducing for each of the three propagators the proper-time integral

1 i ,
—_— = dse P 24
> fo (2.4)

and carrying out the gaussian momentum integration one finds the form of the
function F:

o ds;ds,ds,

F(O,,0,.0 =[ R e
(01,0,.0,) 0 (s1+s2+s3)2

§58300; + 515;,0, + 515,00,

X exp , 0,<0,0,<0,0,<0. (2.5)

$) +85;+ 5

A convenient starting expression for the form factor arises after introducing new
variables
St ) 53

s=s,+5+5;, =", =, ay=— (2.6)

and carrying out the integration over s:

F(o,,0,,0;)= fd’aa(l - Za)%. (2.7)
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Here
= 0y05(-0y) + a3 (—0,) + may(—0;), (2.8)

and
Ya=a +a,+ay, fd3 Ej(;wdalj(;wdazfowda3. (2.9)

If the vertices of the diagram in fig. 1 contain derivatives, more complicated form
factors arise. All of them are linear combinations of the integrals

(2.10)

) 0‘1‘0‘22“3

fdaS 1-Ya

which generalize eq. (2.7). Moreover, since for theories with derivative coupling the
triangular graph diverges, there are also form factors of the form

fd3a8(l -Ya )a11a22a33 In(2/p?) (2.11)

where p? is a renormalization parameter. In egs. (2.10) and (2.11), n,, n,, n; are
integers.

Our goal is the triple spectral representation of functions (2.7), (2.10) and (2.11)
in the variables O,, O,, O;:

P(’"lv m3, m3)

(’"12 -0, (mz_ Dz)(m§—D3)

F(O,,0,,0,) = fvdmfdmgdmg (2.12)

and similarly for eqgs. (2.10) and (2.11), where V is some integration region, and
p(m?, m%, m3) is an unknown spectral weight function.

The result for the basic form factor (2.7) is remarkably simple. The integration
region V is a region of such values of the three masses

m,= [m? (2.13)

13

that m; form a triangle (fig. 2), and the spectral weight equals

1
p(m?, m3, m}) =5 (2.14)

where S is the area of this triangle [8]. Explicitly:

\'& m, <m,+m;, m,<m; + m,, my<my; +m, (2.15)
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Fig. 2. The triangle of masses defining the spectral density for the triangular graph.

and
1

(ml +m,+ m3)

1
p(md, m3 m3) =~

1

\/(ml +m;— m3)(m1 +my— m2)(m3 +m,— ml) )

(2.16)

As regards the integrals (2.10) and (2.11), they can be reduced to the basic form
factor (2.7). The reduction formulae read

M) W n
al la22a33

fd3a8(l—za) o

1 am gn g
= (—g,))™ a0 e (—0.) ™ F O
("1+n2+n3)!( 1) 3[1{"( 2) 6[1%’1( 3) FTars (0,,0,,0,),
(2.17)
2
deGs(l—Za)ln—z
I
3 3 3
=%Zln(—l:l,-/u2)—%‘% D,-+D,.2——8D F(O,,0,,05), (2.18)
i=1 i=1 i

fd3a8 (1 - Ea) aaja® In(2/p?)

nyin,ing! mo1 n o1 3 mtmytny+2 q
T (ny +ny g+ 2)! Lytry+rXo-2 Lo g
np+ny+ng+2)11 2 = = fat
- 2 (_.[]1)"l+1 (_Dz)"zﬂ (_Da)ny-i-l _
(ny+n,+n;+2)! aom 907 a0
X 5,0,0, J@as(1~ Ta)in(2/p2). (2.19)



518 A.O. Burvinsky, G.A. Vilkovisky / Couvariant perturbation theory (I11)

The spectral representations for the functions (2.17), (2.18) and (2.19) are obtained
by inserting expressions (1.7) and (2.12) for the basic form factors, and using the
identities

(_Dy,a" 1 n! ( —0 )"=( d )"(mzf

00" m: -0 m2-O\m2-0 dm?) m*—-0’

3. Derivation of the basic spectral formula

For completeness we begin the derivation with the basic spectral weight function
(2.16). The elementary proof of this result [8] is as follows.
By making the replacement of the integration variables in (2.7):

a; =Azx, a,=Az(1-x), a;=A(1-2z),
0<A<ow, O0<zgl, 0<x<l1, (3.1)

a(al’ ay, a3) —

- 2
a(A, z,x) A

and doing the integral over A with the aid of the delta function one obtains the
following expression for the function F(O,,0,,0,):

1 1 -
F:f dzj dx[zx(1 = x)(-03) + (1 = x)(A = 2)(—0;) + x(1 = 2)(-13,)] ',
0 0
(3:2)
where O, < 0.
Note that the s in eq. (3.2) are already in the denominator, as required.
Therefore, the simplest way to obtain the spectral representation is systematically
introducing integrals over masses with the aid of delta functions and then using

these delta functions to perform the integrals over the parameters. Thus, we write

2
F=/:dzfoldxfowm—gin—m—3

X 8((1-x)(1—z)(~0,) +x(1~2)(—-0,;) ~m?zx(1-x)). (3.3)

The integral over z can now be done. Since the only zero of the argument of the
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delta function in the variable z always lies in the integration region we obtain

oc dm2 .
F=j; mz—El3-/(.)]dX[X(1_x)m2+x(_lj2)+(l_X)(_Dl)] . (34)

Next we repeat the trick:

%) dm2 1 ® ., 1 2 2
Fe [ e 4[] 4w amg d (= om® + (1= 0(-0) — )

(3.5)

and use the delta function to perform the integral over x. The zeroes of the
argument of the delta function in eq. (3.5) are

1

xi=ﬁ[—(;ﬂ—mz—ﬂl)i\/(#2“m2‘51)2_4m2D1]- (3.6)

With O, negative, both roots are real. As seen from eq. (3.6),

x_<0, x,>0 (3.7)
always. By rewriting eq. (3.6) as
2mi(x,—1) = \/(pz +m?— D1)2 —4m¥? - (W +m?—0,) (3.8)
one makes sure that
x,<1 (3.9)

always. Thus x_ always lies outside and x, inside the integration region in x. As a
result we obtain

%) dmz oo dp.z ) -1,2
F=f0 mz_D3f0 Mz_Dz[(#z—mz—Dl) —4mm,| 7. (3.0)

To write the spectral representation for the remaining explicit function of O, we
note that this function can be transformed as

(o + (wtm) (o + (u-m))]

(3.11)

[(p.z -—m?— [Ill)2 - 4m2D1] )
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and use the identity

dx “1/2
5 [(x=a)(6-x)] / (3.12)

[(y+a)(y+b)]'l/2=%j:’x

with y= —0,>0, a=(p— m)?, b= (p+ m)% The latter integral is elementary.
Thus we obtain the desired triple spectral representation of the form factor

lj»oo dm? foo dp.z (n+m)? d»?
0

7l m* =030 p* =0y Ju-m ¥2 =0,
-1
X(\/(Vz—(p.-m)z)((p.+m)2—v2)) . (3.13)
The triple integral in eq. (3.13) can be rewritten as
/oodmszdplz (#+m)2dV2___. fdmzdpzdvz, (3‘14)
0 0 (p—m)? v
where
Vi(p—m)l<vi<(p+m). (3.15)

Hence (p + m — v) > 0, and either
(r+p—m)>0, (v+m—-p)>0 (3.16a)

or

(v+p—-m)<0, (v+m—p)<0. (3.16b)

The latter possibility is excluded, because the sum of the two inequalities in (3.16b)
gives 2» < 0. Thus

V: (p+m-v)>0, (v+p—-m)>0, (v+m—p)>0, (3.17)

that is m, p and » form a triangle. As for the square root in eq. (3.13), it is of the
form

J(p+m+e)(p+m—p)p+p—m)(r+m—p) (3.18)

which up to the factor 1/4 is the Heron formula for the area of this triangle!

The above spectral representation can also be derived by consecutively applying
the Cauchy formula to the three arguments of the function (2.7). Thus, for O, and
0O, negative, the spectral weight in the variable O, is given by the jump across a cut
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along the non-negative real axis:

F(O,,0,, m*+ ie) — F(0,,0,, m* - ie) = 2i7rfd3a8(1 -Ya)8(2). (3.19)

After doing two integrals over the parameters one writes a similar expression for the
spectral weight of the function (3.19) in the variable O,. Finally, application of the
Cauchy formula to the explicit function (3.11) gives eq. (3.12). The procedure
amounts to solving the same equations as above and leads, of course, to the same
result.

4. Derivation of the reduction formulae

To derive relations (2.17)—(2.19) it is useful to consider the function

1 j.oo ds, ds,ds, spsSsys . 558,00 + 55,0, + 575,00,
- Xp
T(e)Jo (s,+s,+5)° " (sp4sp+s5)" " S tsy s,
= fd3a8(l - Za) atay a7 (4.1)

which is a generalization of eqs. (2.5) and (2.10). The integral (2.10) is (4.1) at e = 1.
For the function (4.1) the following relation is true

fd3a6 (1 - Za)a{‘l et

n +1—-¢e—0,3d/90,
= d’as(1 - MajraPRE 4.2
"1+n2+n3+3—28f a( Za)a1a2a3 (4.2)

which makes it possible to reduce the power of the monomial in a. The proof of eq.
(4.2) is as follows.

Let us make the following replacement of variables in the integral on the Lh.s. of

eq. (4.1):
5293 5153 5152
u1=—-—-———, u2=-———-——, u3=_———,
S +s,+5, s+, + 5, s;+585;+ 5,
3s | (uyuy + tyuy + uzuy)’ (43)
Ju (“1“2“3)2 .
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Then eq. (4.1) takes the form
fd3a8(1 - Za)a{‘laglagﬂ‘ﬂ"

l1-¢ n n n
(wuu;)  “afras?ay?

1
=——(d% ex ( uiD,) 4.4
I'(¢) [ (uluz+u2u3+u3ul)3"2¢ P ; (4.4)

where the a’s on the right-hand side are functions of u:

UylUy U,y
o = > a2= ’
Uy + Uy + Uty Uy + Uy + usuy
uu
142
ay = (4.5)

Wy, + uyly + uguy
which satisfy the equations

u, da u; da u, da
———=-1, ——Z=q, —-—=q. (4.6)
o du, a, du, a; du,

The action of the operator

n+1l—eg—0——
! Lo,
on (4.4) boils down to its action on the exponential, which can be written as

d
(n1 +1 —e—ulb—z)exp(;u,ﬂi).

Now integrate over u, by parts using egs. (4.6). The result will be eq. (4.2).
Repeated application of the recurrence relation (4.2) makes use of the identity

d X d
(n—l—e-D}E)...( —E—DE)
n—-k

aDn-—k

=(-0)"" (-o) %, k<n-1 (4.7)

which can be proved by induction in n. In this way one obtains the reduction
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formula
fd3a8(l - Ea)a{"a'z'zag”ﬂ“

I'(3-2¢)
T I(ny+ny+n,+3-2¢)

(_Dlmzms)l—e

i am n2 am
x{ -0 1 _ n2 _ n3
( l) 3Df'( D2) 3[];2( D3) aDga
x(—D1D2D3)‘_1/d3a6(1 ~Ya)ae (4.8)

which is a generalization of eq. (2.17).
In order to reduce the integral

[d%s(1 - La)in(2/s?) (4.9)

to the basic form factor we make the replacement (3.1) of integration variables in
eq. (4.9) and integrate over z by parts. This gives

a0, + a0,
04
(4.10)

fd3aa(1 — Ta)ln(2/p?) = Hn( -0, /p?) — 3 - gdeas(l -Ya)

By symmetry, relation (4.10) remains valid under a cyclic permutation of indices on
s and a’s. This fact is made apparent by the identity

o;(0, —0,) + (e — )0,
Y]

In(0,/0,) = jd3a6(1 - ¥a) (4.11)

and similar identities with cyclically permuted indices. The identity (4.11) is proved
by again using the parametrization (3.1) in which it takes the form

o 140
/ d)\}\26(1—}\)/ldz[lnﬂlx_l—lnﬂlx_o—fldx = 0.
0 0 0

29x |
Explicit symmetrization of eq. (4.10) with subsequent use of eq. (2.17) gives eq.

(2.18). Finally, the reduction formula (2.19) is obtained by differentiating eq. (4.8)
with respect to £ and setting ¢ = 0.
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