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We contribute to the source description of gravitation due to Schwinger by developing 
the necessary gravitational modifications of the couplings of various Boson fields to 
their sources and by providing a numerical supplement to his qualitative discussion of 
two-particle exchange. 

I. INTRODUCTION 

In a recent paper [I ] Schwinger has formulated a source description of 
gravitation; in this paper we discuss two aspects of this description. The first 
aspect is the construction of the interaction skeleton. In particular, we discuss 
the source terms which provide the gravitational modifications of the couplings 
of the boson fields to their sources. The second aspect is the calculation of the 
two-particle exchanges implied by the first primitive interactions. Schwinger [l], [2] 
has discussed the principles involved and we merely provide the numerical details. 

In Section II we describe the noninteracting behaviour of the bosons that we 
study in this paper; they are spinless particles with mass, photons, and gravitons. 
The first primitive interaction between the spinless particles and gravitons is 
introduced in Section III by coupling the gravitational field to the stress tensor 
of the particle. In this weak field situation we introduce the accompanying gravita- 
tional modification of the coupling of this matter field to its source; this source 
term guarantees that the primitive interaction is invariant under gravitational 
gauge transformations. In addition, this Section contains the calculation of some 
emission amplitudes using various forms of the primitive interaction. Section IV 
contains the corresponding results for the first primitive photon-graviton 
interaction. 

The extension from the primitive interaction to the interaction skeleton which 
includes the graviton-graviton interaction is made in Section V through the 
principle of general coordinate invariance. It is here that the general problem 

* Based on the author’s doctoral dissertation at Harvard University. 
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of finding the gravitational modifications or source terms is discussed. We present 
a (deceptively) simple prescription for calculating a more complex modification 
from a simpler one. In Section VI we make explicit the first modification of the 
coupling of the gravitational field to its source. This section also contains a calcul- 
ation of the two-graviton emission amplitude that is implied by the first primitive 
graviton-graviton interaction. In Section VII we develop the interaction skeleton 
to describe two-particle scattering and further illustrate our prescription for the 
source terms. 

Having calculated various emission amplitudes, we use them in Section VIII 
to find the corresponding two-particle exchange contributions to the vacuum- 
persistance probability amplitude. The resulting modifications of both the photon 
and graviton propagators as well as those implied for the Coulomb and Newtonian 
potentials are presented. Finally, we verify that our results satisfy probability 
requirements. 

II. NONINTERACTING SYSTEMS 

We will review the source description of the various particles [I]-[31 under 
conditions of noninteraction to establish notation9 and expressions that will be 
referred to frequently in the remainder of the paper. The simplest case is that of 
a spinless particle with mass m which is described by a real scalar function K(x). 
The vacuum-persistance probability amplitude (briefly, the vacuum amplitude) 
is given by 

(0, / O-)K = exp[irz@)] 

w,(K) = (l/2) j (dx)(dx’) K(x) Ll+(x - x’) K(x’) 
(1) 

and 
64~) expbp(x - ~'11 

A+@ - x7 = j (2n)4 p2 + ma - ie (2) 

which involves the limiting process E -+ $0. The multiparticle states are found 
by considering the situation in which K = K1 + K2 where K, , effectively localized 
in time prior to Kl , creates particles which are subsequently absorbed by Kl . 
For this situation we require the property: 

A+@ - x’) = i 1 dw, exp[ip(x - x’)], x0 > x0’, (3) 

‘The relativistic and quantum-mechanical notations are the same as those in Refs. [l]-[3], 
except that the Minkowski metric is written as vrrV . Unless otherwise stated, our units are h/2n = 
c = 8aG = 1, where G is the Newtonian gravitational constant. 
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where 

(Lip) = 2py2ny do, 

defines dw, and p” = (p” + m2)lj2. The vacuum amplitude becomes 

where 

(0, / 0-y = (0, Io->K1 (0, / 0-y (0, / 0-p 

(0, I 0-Y = ev [ - 1 dw, KX-P) K2(p)], 

K(p) = / (d-u) K(x) exp(-ipx). 

By comparing Eq. (5) with the completeness relation 

we can extract the multiparticle states; we find that 

(4) 

(5) 

(6) 

(7) 

({n} 1 O-)K = (0, 1 o-yq (iKpJ/[n,!]l’2 
P 

(8) 
(0, 1 {n})” = (0, j o->“n (iK,*pJ/[n,!]l’2 

9 
where n, = 0, I, 2 ,..., and we have written 

K, = (dws)lj2 K(p). (9) 

The function w,(K) can be presented in the alternative form: 

w2(K) = Wi’ + W$‘, 
(10) 

Wt’ = j (dx) K(x) +(x), 

where 

L!’ = -(1/2)[a,+ +b + m2~+l, (11) 

and it is understood that w,(K) is stationary with respect to variations of the 
auxiliary quantities 4(x). Thus, the resulting field equation is 

(-a2 + m2) $(x1 = K(x), WI 
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and when this is solved with the appropriate boundary conditions we obtain 

4(x) = j. (dx’) Ll+(x - x’) K(x’). (13) 

Finally, when we substitute this expression into Eqs. (lo), thereby eliminating the 
auxiliary quantities d(x), we obtain the original form of w,(K) as expressed by 

W (1). 
We turn now to the description of photons by introducing the real vectorial 

function fp(x) which satisfies Z,J @ = 0. We start with the implicit differential 
form of w,(J): 

wz(J) = W?’ + WF’, 
(14) 

w$’ = j (dx) L?‘(x), ws”’ = j (dx) J”(x) A,(x), 

where 

I,(‘) = -(l/4) F’““F, Y u.’ 3 Fuy = aLLAY - &A, . (15) 

The requirement that w,(J) be stationary with respect to variations of the auxiliary 
fields A,(x) implies the field equations: 

i?,(L3~A” - PAti) = J“, 

which have the solution (with the usual boundary conditions): 

06) 

where 

A,(x) = j (dx’) Duv(x - x’) J”(x’) + a&x), (17) 

DJX - x’) = 7Q+(x - x’). (18) 

In Eq. (18) 71~” is the Minkowski metric (with diagonal elements -1, + l,‘,+l, $1) 
and D+(x - x’) is the zero-mass version of d+(x - x’). The arbitrary gauge 
function h(x) in Eq. (17) disappears when we substitute that equation into Eqs. (14) 
to obtain the form: 

w,(J) = (l/2) s (cix)(dx’) J“(x) Duv(x - x’) J”(x’). (19) 

By considering the situation in which Ju = J1@ + Jz”, where the decomposition 
has the same meaning as before, we are led to the form 
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To complete the derivation of the multiphoton state, we introduce the two real 
polarization vectors e,“(p) associated with each p@. They satisfy 

e,a(p) yevb(p) = sub, a,b = 1,2, 

P%“(p) = 0, P%Yp) = 0, 
(21) 

where 
j” = p@ + 2n”n~p, (22) 

and IZ~ is a time-like unit vector: n2 = -1. Then we may write 

77 I1y = T e,“(p) e,“(p) + (P, E + P” A)/(PF)~ (23) 

and when this is substituted into Eq. (20) only the polarization sum survives since 
p,J”(p) == 0. We obtain 

where 

(0, I O-)J = exp 1 (iJzs)l (iJD,a)B 
ml 

JDa = (~cQ/~ e,“(p) J“(p), a = 192, 

is a convenient notation for writing the multiphoton states: 

(25) 

<W I QJ = (0, I 0-Y’ I-I (~J,P’a/[~,, Wz, 
Pa 

(26) 
(0, I {n})” = (0, I 0->“II (iJ;~)n”a/[nPa!]1/2. 

na 

Eqs. (26) were obtained from the completeness relation (7) adapted to the photon 
source Ju(x). 

The (hypothetical) graviton will be assumed to be a spin-2 particle with no rest 
mass. Its noninteracting behaviour is then described by 

,1;(T) = wp + wp, 

w?) = J’ (dx) p(x), wp = j (dx) T”“(x) h,,(x), 
(27) 

where the source function TuY(x) is a real symmetric tensor satisfying a,T@” = 0, 
and IT,“(X) are the gravitational field variables. The Lagrange function for spin-2 
massless particles may be written as 
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Fiy = ~,hvA f a,huA - aAh‘,, . (29) 

The field equations implied by the stationary requirement on w,(T), with respect 
to variations of h,,(x), are 

-ax, + W)(%h, -1 Wd = +jU”,AJAK, 

h, = 2iPh,, - a,h, h = y*huV , 

and 

77WAK = ww?Uh~YK + 77dbA - %“%1. 

The solution with the appropriate boundary conditions is 

h,&) = j (W D UY,hK(~ - ~7 TAK(x’) - wmw + a,5,(.41, 

where 

%.A~(x - 4 = %v,d+(x - -6 

(30) 

(31) 

(32) 

The arbitrary vector gauge functions t,(x) disappear when we substitute Eq. (32) 
into Eqs. (27). The result is an explicit integral construction of wz(T): 

w,(T) = (l/2) j (dx)(dx’) T““(X) DuYpAK(x - x’) TAr(x’). (34) 

The multigraviton states are found by specializing w,(T) to the familiar situation 
T = Tl + T, . We must again consider the form 

(0, I 0-Y = exp [ - j dwk KY--k) ijuvJtW], (35) 

where k is the four-momentum variable of the real graviton. Substituting Eq. (23), 
withy replaced by k, into Eq. (31) produces a form of 7jUVsAK appropriate to Eq. (35). 
Thus, the fact that k,TuY(k) = 0 allows the replacement: 

where 

&W = (1/~2)[e,Yk) e,lW - eG2(k) cW1, 
(37) 

&W = (1/~2&,W ep2W + eu2W e,Wl. 
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The properties of these polarization tensors, deduced from Eqs. (21) are: 

7f’ezJk) = 0, (38) 

/cue:,(k) = 0, E%:,(k) = 0. 

By comparing the version of Eq. (35) containing the replacement (36) with the 
completeness relation we deduce the multigraviton states: 

((n} I 0-y = (0, I 0-y-n (i~k,)nLl/[b!ll’z, 
kr 

(39) 
(0, / {ny = (0, I OJTJJ (iT,*,)nkr/[nkr!11’2, 

/cl 

where 

T,, = (cA.+)~~~ eLv(k) T’“(k). (40) 

We summarize our discussion of the noninteracting systems by stating that the 
vacuum amplitude for the combined system of material particles, photons, and 
gravitons is given by 

(0, 1 O-)xJT = exp[iw,(K, J, T)], 

w,K J, T> = w,(K) + ~‘z(Jl + w,(T). 
(41) 

III. FIRST PRIMITIVE PARTICLE-GRAVITON INTERACTION 

Schwinger has successfully described gravitational phenomena in the quasi-static 
macroscopic domain by coupling the gravitational field to the stress tensor of 
various systems [I]. Following his suggestion, we extend that prescription to 
interactions in the microscopic domain. The stress tensor of the system defined 
by l4!2’ is found by considering the response of this system to a general coordinate 
transformation x” - x” + 6x” . Using 

sya,) = -(a, axq a,, 6'(dx) = (a, &P)(~x), (42) 

and 6’+(x) = 0, we find this response to be 

(43) 
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where 

(44) 

The assumption that the primitive interaction is given by 

w:’ = j (dx) TZ(x) h,,(x), (45) 

is incorrect even in the weak field situation since we have ignored the source K(x). 
Thus, the fact that the divergence of T;(x) is given by 

a,T;(x) = -K(X) a"+(x) f 0, (46) 

means that when we substitute expression (32) for h,,(x) into Eq. (45) the gauge 
functions &(x) survive. This deficiency is eliminated by formulating the primitive 
interaction in the following way: 

where 

w,,,(K, T) = iv,“’ + wp, (47) 

involves 

w$ = j (~x)x,(x) K(X) a"+(x) 

X,(x) = - 
s 

(dx’) fZ”(x - x’) h,,(x’). 

(48) 

(49) 

This linear functional of the gravitational field must respond to the gauge 
transformations 

h ,,v + h,, - u/2m~, + avt3, (50) 

according to 

XA - XA + EA . (51) 

This response requires thatf;“(x’ - x) satisfy 

-a,fy(x' - X) = 6: s(x' - x). (52) 

The construction of the function ft”(x’ - x) is greatly facilitated by considering 
the analogous situation that arises in electrodynamics [2]. The latter situation 
requires the construction of a functionf@(x’ - x) that satisfies 

-ap(x' - x) = 6(x' - x). (53) 
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Thus, we can satisfy Eq. (52) with the construction: 

fyyx’ - x) = f”(X’ - x) s,y + f”(x’ - x) 6,” 

+ j (dx")[a;f"(x' - x")] f"(x" - x). (54) 

Now an alternative way of presenting the primitive interaction is: 

where 

satisfies 

tZ(x) = r;(x) - j (dx’) lqx’) &$(x’) fY(x’ - x) (56) 

a,tg(x) = 0. (57) 

The two terms in Eq. (56) imply that both the particle and the source are involved 
in the mechanism of graviton radiation. This means thatfy(x’ - x) must be local 
in time. But this requirement is satisfied by makingf@(x’ - x) local in time and 
such a function is already available from the source description of electrodynamics. 
In our context the source function K(x) supplies a time-like vector,2 as represented 
by -aK, from which we construct 

where 

f”(X’ - x) = -( V”/V2) 6(x’ - x), (58) 

vu = au - a,qaa,)/a,2. (59) 

This version offu(x - x) defines a particular type of effective source and we will 
limit ourselves to this choice.3 To understand better the nature of the source 
characterized by this function, we will now consider the emission amplitudes that 
are implied by this choice. 

By treating rg(x) as a weak effective graviton source, we find that the emission 
amplitude for a graviton of four-momentum k and polarization index r is 

<lk, / O-)x = i(&~#/~ ezy(k) s (dx) evi”?~(x). (60) 

2 A more precise definition is given at the end of Section VII. 
3 Our intention here is to parallel Schwinger’s discussion of the akin situation in electrodynam- 

ics. See [2] for additional details including a verification of time locality. 
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The presence of the factor &(lc) allows some simplifications which may be presented 
in the form of replacements: 

T;(x) 3 2@$(X) av$(x), (61) 

and 

s (dx) eeiiczfft”(x’ - x) -+ iSy(k; 2,) emiks’, 

where 

Sff’(k; 2,) = (6,“ 3,” + S,y 2t)/(k 2,) - kA ap ax”/(k a,)“. (63) 

All told this leads to the replacement of tg(x) by 

2”+(x) 3”+(x) - iS,““(k; 8,) K(x) aa+( (64) 

Now consider the situation where K is a superposition of a particle-detection 
source and an extended source as indicated by the replacement K + K, + K. 
The relevant part of expression (64) for the emission of a particle and a graviton is 

2h$,(x) 29(x) - iSy(k; 2J K(x) @#J,(X), (65) 

where $r(x) is the field associated with the detection source Kl : 

+1(x> = j @x7 Kdx') 0+(x' - 4 
(66) 

= 1 (~cJJ~)~/~ (iK,*), eCipx. 
2, 

If the particle is emitted with a four-momentum p then the source K(x) must 
supply the four-momentum P = p + k; thus, 

S,“‘(k; 2,) -+ (6,“~” + ~,vp‘Wp) - kApPpy/(kp12. (67) 

The emission amplitude is 

(l,,l, 1 o-)K = i(dC$, d’-#‘2 G(k) [ pf7’2 1 K(P). (68) 

However, the fact that P2 = -in2 + 2(kp) means that the second term in brackets 
cancels the first term. Contrast this result with the one obtained by replacing -3, 
inX”(x’ - x) by a constant vector parallel to the time axis. For this type of source 
the second term in Eq. (68) does not appear [2] and the first term appears intact. 
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The denominator of the first term becomes very small for soft gravitons; hence, 
our original choice off;“(x’ - X) avoids this strong radiation that would accompany 
the creation of the material particle. 

The probability amplitude for the emission of two particles from an extended 
graviton source does not involve the source term W$‘. To make this statement 
convincing we recast the primitive interaction into the form: 

where 

KY(x) = L(x) + ww,~“(4 + GLW (70) 

is invariant under the gauge transformations (50). When we specialize the source K 
to the arrangement KI + K, , the relevant part of T&” involves only the field & 
presented in Eqs. (66). Then the emission amplitude for two particles of four- 
momenta p and p’ reads 

where 

and 

(l,l,, [ OY = i(dw, &Ja’)~~2 P(p, p’)(1/2) kW,“(k), (71) 

k = p + p’, (l/2) k2 = (pp’) - m2, (72) 

pqp, p’) = .qw’” - (P”P’” + P”P’~/[(PP’) - m”l. (73) 

We can replace H,,(k) by the more general field h,,(k) because 

kP”(p, P’) = 0, (74) 

and this means that the source term Wg) makes no contribution. The result stated 
in Eq. (71) implies a modification of the graviton propagator but we postpone 
that calculation until we have the corresponding results for two-photon and 
two-graviton emission. 

IV. FIRST PRIMITIVE PHOTON-GRAVITON INTERACTION 

In this section we consider the first primitive interaction between photons and 
gravitons. Following the procedure of the previous section, we postulate this 
interaction: 
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T,“” = Fp+qAKFYK - (l/4) 7 YFAKFAK (76) 

is the stress tensor associated with the system defined by WG”; its derivation requires 
the use of Eqs. (42) together with 

PA,(x) = -a, Gx”A,(x). (77) 

Using Eq. (70) and the fact that 

iJ,,T.;(x) = -F’“(x) Ju(x), 

we can write the primitive interaction in the alternative form 

(78) 

W,,J(J, T) = WY(l) + wy, (794 

wy = 
s W KYL , Wt’ = 

s 
(dx) X F”“J II Y * (79b) 

To calculate the one-graviton emission amplitude implied by this interaction we 
use the form: 

where 

satisfies 

tY”“(x) = T,““(x) - s (dx’) FA”(x’) JK(x’) ff(x’ - x> (81) 

a,gyx> = 0. (82) 

The probability amplitude has the same structure as Eq. (60): 

(80) 

<lKT ( O-)J = i(dwk)1/2 e:,(k) 1 (dx) e-“““t,““(x). (83) 

In this case the presence of the polarization tensor allows the replacement of ‘y”“(x) 
by 

F”A(x) qAKFYK(x) - iS,““(k; a,) J,(x) FAK(x), (84) 

which indicates that the time-like vector -iaJ , which is involved in the definition 
offy(x’ - x), is now supplied by the source J”(x). 

The probability amplitude for the emission of a graviton and a photon is 
developed by considering J,(x) to be the superposition of a photon-detection source 
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and an extended photon source as represented by the substitution J” -+ Jf + J”. 
The relevant part of t?(x) is 

2@(x) vAKF”“(x) - iSy(k; 3,) JK(x) Fib(x) 

where F?(x) is the field associated with the detection source: 

L&3 = J W,) J,~(--P~~P~ - rlAu~J emi”“. 

(85) 

(86) 

By using the decomposition of q,,” in Eq. (23) we can write 

(87) 

The emission amplitude may be written in the unified form: 

(1 krlD,a 1 O-)J = i(dwR ~cIJ~)~~~ e;“(k) en”(p) U”“~AK(k, p) A,(P), (88) 

where P = p + k is the total four-momentum supplied by the source, when we 
relate J,(x) in Eq. (85) to the field A,(x) through Eq. (16). The first term in Eq. (85) 
makes the following contribution to UU”*AK(IC, p): 

2~~p”$~ + (qYAqYK + yq”“)(pk) - (py”” + p”yA) p” - (purl”” + p”~“““) k”, (89) 

and the second or source term contributes: 

-2p”p”@ + (~“7”~ + p”yA)(pK - kK) + 2p”p”k”k”/(kp). (90) 

The total contribution reduces to the simple form: 

U”“*AK(k, p) = (l/2) P2[P“A(k, p) PYK(k, p) + P”“(k, p) PyA(k, p)] 

where 

P”“(k, p) = q”” - Wp” + W‘)lW, 

is actually Eq. (73) specialized to this zero-mass situation. The properties 

(91) 

(92) 

k,P@“(k, p) = 0, p,PW, P) = 0, (93) 

not only guarantee the invariance of Eq. (88) under the gravitational gauge trans- 
formations (50) but also under the usual electromagnetic gauge transformations. 

The two-photon emission amplitude will be calculated from Eq. (75) specialized 
to two photon-detection sources which may be indicated by the replacement: 

T’--+ F,““r),,F,“” + r)““L~‘(Fl). (94) 

595/56/2-3 
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By using Eq. (87) for the fields Fy we find that the probability amplitude for the 
emission of two photons of four-momentap andp’ and polarization indices a and b, 
respectively, is 

(l,,l,,, I O.JT = -i(dw, d~+,,)l/~ k2e,‘(p) e,“(p’) PuYsAK(p, p’) H,,(k), (95) 

where 

p”“YP, P’) = u/wwP, P’) P”“(P, P’) + P”“(P, P’) WP, P’) 

- JYP, P’> fYP> P’II, (96) 

and k = p + p’. We may replace H,+,(k) in Eq. (95) by the field h,,(k) because 

kAP@Y-AK(p, p’) = 0. (97) 

We close this section by pointing out that 

Pu”(P, $1 P,“(P, P’) = P,“(P? P’), (98) 
and 

CXP, P’) K(P, P’) = I’XP, P’>, 

which are useful in calculating two-particle exchanges. 

(99) 

V. INTERACTION SKELETON 

The introduction of the first primitive interaction may be viewed as the intro- 
duction of new, effective sources. For example, tg(x) is an effective graviton source 
introduced by the first primitive particle-graviton interaction. By coupling these 
sources to each other we obtain more complicated interactions which imply 
additional effective sources. In this section we will develop the description of 
a class of processes belonging to this proliferation; these are the so-called skeleton 
interactions which may be analyzed as the exchange of a single particle between 
appropriately defined effective sources. This development cannot be divorced 
from the concomitant introduction of more complicated primitive interactions 
including the graviton-graviton interaction. The unifying principle is that of 
general coordinate invariance and our starting point is Schwinger’s introduction 
of that principle in the context of a source description [l]. 

The response of W,,, (O) to infinitesimal coordinate transformations can be 
represented by the variation: 
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where 
se4 = --6x, au+. (101) 

The response of W, (l) to infinitesimal gravitational gauge transformations is 

6, wJ;) = 1 (do) a,[s w~)ph,,l St, . (102) 

Reference to Eqs. (10) and (11) for W$ and Eqs. (44) and (45) for Wi’ reveals 
the identity 

a,[swjf)/sh,,] = [sw~)/s+] a”+ (103) 

By making the connection St, = 6x,, we introduce a higher symmetry which 
links the gravitational gauge transformations with arbitrary coordinate trans- 
formations as expressed by 

v,, = -m(a, 6x, + av SX,). (104) 

To obtain the full response of W, w to the transformation: XU = xLL + 8x”, we must 
supplement Eq. (102) with 

where 

6, w2’ = 1 (dx)[S W??/S& SC4 + 1 (lw[S WiwL”l VL” , (105) 

S,h,, = S’h,, - SxA aAh,,, WW 

involves the tensor transformation property 

S’h,, = -hMA 3” SxA - hvA a, SxA. (1072 

The new interaction W$ is introduced by requiring that its response to infinitesimal 
gravitational gauge transformations cancel the response in Eq. (105), 

6 9 w(2) + s ?n w(1) = 0. e ?n (108) 

In general, Wz) will be connected to W$-‘) by 

s w(n) + s 
!? 112 c 

J,@-1) = 0 
3 n = 1, 2,... . (109) 

This guiding principle will aid the development of the series 

w 
92 

= w(o) + w(l) + w(2) + * -- 
m m m , (110) 
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where the superscripts indicate the number of times the gravitational field appears 
as a factor in the integrands. The function W,, will be invariant under the variations 

84 = b$, Sh,, = %A, + ~ch,, . (111) 

The definitions g,, = vLLy + 2h,, simplifies the last variation, 

This familiar equation suggests the following expression for the function W, : 

where 

w, = / (dx)(-gy2 (-- WQjg”” a”4 + m2C21, (113) 

g(x) = det guM &AW gw = %“- (114) 

By making use of the expansions 

-g(x) = 1 + 2h(x) + .a., 

guy(x) = y” - 2ho”(x) + *.a, 
(11% 

we can reproduce the previously defined functions W$” and W$. We have followed 
this heuristic development of the principle of general coordinate invariance since 
it will help us in constructing the necessary modifications of the coupling of the 
matter field 4 to the source K. 

To satisfy the principle of general coordinate invariance, we must replace the 
structure W$” + W$” by the more general development: 

WK = wp + w$’ + w(2) + *. . 
K (116) 

where the superscripts have the same meaning as in Eq. (110) and the source terms 
are related by 

6 W'"' + 6 
9 K 

w(n-1) = () 
G K 9 n = 1, 2,... . (117) 

The variations are those connected with Eq. (109). The equation labelled n = 1 
is already satisfied by the structure of W$) defined in Eq. (48). The equation labelled 
n = 2 introduces Wg’ and implies the differential equation 

-a,[S Wjt2)/8hJ = f‘:,[S W$)/ShJ + 2h,’ a,[S W$‘/Sh,,] - [S W$“‘lS& iY+. (118) 
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The right side of this equation is a known, linear functional of the gravitational 
field which we write as 

z”(x) = j (&‘) 29(X, x’) h,&‘). (119) 

It should be noted that the structure of W$) implies that Zv+“Qz, x’) is local in time. 
The form of Eq. (118) suggests that we write 

WPVJ) = (l/2) 1 (dx)(dx’) K”Y,AK(X, x’) hLIY(X) I&(X’)) WO) 

which implies the integrability conditions 

lwyx, x’) = KA-(X’, x). (121) 

The differential equation (118) implies the condition 

-auK~“~yX) x’) = zyx, x’). W) 

In addition to these requirements, K uY*AK should be linear in the source K and 
linear in the field 4 since we only seek that modification of B’$‘) due to the presence 
of a strong gravitational field. This suggests that we relate KLLYsAK directly to its 
derivatives. An algebraic construction of Wz’ accomplishes this and at the same 
time by-passes the problem of satisfying the integrability conditions. The function 
Wz) is introduced by making reference only to its response to gravitational gauge 
transformations and this suggests that we make use of the gauge-invariant field Huy 
.defined in Eq. (70). These, and other,4 considerations lead us to the prescription: 

,or 
W$2’(H) = 0 

(123) 

(l/2) j (dx)(dx’) P”+yX) x’) Huy(x) H&&d) = 0. 

‘The modification Wg’ already satisfies a similar equation. By eliminating the 
field Ho, in favor of h,, , we obtain 

W:‘(h) = - j (dx)(dx’) X,(x) Z’JK(X, x’) h,,(x’) 

+ (l/2) j (dx)(dx’) a,)‘ZVyx, x’) X,(x) X,(x’). (124) 

4 The decisive reason for this prescription is given near the end of Section VII. 
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We eliminated KUY.AK(~, x’) by using Eq. (122). This IV:“’ is local in time and 
responds to infinitesimal gravitational gauge transformations according to 

s,wp = - j (dx) Z”(x) sx, ) (125) 

since the variation of h,&‘) in the first term in Eq. (124) is cancelled by the variation 
of the second term in that equation. This results from the gauge invariance of Huy 
and, of course, is not limited to the case 71 = 2. Thus, in general, we have the 
prescription 

W:‘(H) = 0, n = 1, 2,... . (126) 

Eqs. (126) and (116) determine each of the source functions ?@)(A) by the method 
just outlined for the case II = 2. 

Exactly the same develofiment can be carried out to describe more complicated 
photon-graviton interactions. The result is that 

WY = -(l/4) j (dx)( -gp FwyguAguKFAK 
(127) 

= w(o) + w(l) + w(2) + . . . Y Y Y 

reproduces our original expression for W,?’ + WF’ and builds further interactions 
by the principle of general coordinate invariance. Furthermore, the series 

w, = ws”’ + wy + ws” + --* (129 

has each of its terms WY) determined by the equations 

6 
9 

W'"' 
J 

+ 6 w(I"-1) 
c J 

= () 
, 

n = 1, 2,..., (129) 
W?‘(H) = 0, 

which involves the use of the variation 

&,A, = -A, a, &xv - 6X” a,A, . (130) 

We have introduced the first primitive interactions by coupling the gravitational 
field to the stress tensors of the systems. But the system of noninteracting gravitons 
defined by Eqs. (27) and (28) also possesses a stress tensor. Thus, we are led to 
the introduction of a graviton-graviton interaction. In fact, to satisfy the principle 
of general coordinate invariance we must develop a series of interactions: 

w 
L7 

= w(2) + w(3) + W(4) + . . . 
B n 9 (131) 
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A function W, which is invariant under general coordinate transformations and 
contains the previously introduced Wjz) is 

w, = UP) 1 (W-gY2 s”“[GG - c”cx (132) 

where 

(133) 

‘The expansions in Eqs. (115) will generate the series in Eq. (131). In particular, 
we will obtain W$) which is a major portion of the first primitive graviton-graviton 
interaction; we will discuss this in the next section. Finally, we introduce the 
modifications of W$?‘, 

w,= w$‘+ w$‘+ w$‘+ . . . 

which will be generated by the equations 

(134) 

6 

9 

w’” 

T  + 

6 w(n-1) 

c T  

= 0 

2 I1 = 2, 3,..., 
W$‘(H) = 0, 

(135) 

.and the only variations involved are those in Eqs. (104) and (106). Tye other part 
of the first primitive interaction, W$“, will be constructed in the next section. 

The theory we have so far may be summarized in the statement 

(0, 1 OJKJT = expW(K J, VI, (136) 

where 
w(K, J, T) = Win + W, + W, + W, + W, + WT. (137) 

When the consequences of the implied action principle are worked out, we obtain 
not only the series of primitive interactions in which more and more gravitons 
participate but also all the skeleton interactions found by compounding these 
primitive interactions. This development is illustrated in Section VII. 

VI. FIRST PRIMITIVE GRAVITON-GRAVITON INTERACTION 

In this section we continue the evaluation of emission amplitudes implied by 
the first primitive interactions. For this purpose we employ the weak field treatment 
which characterized the calculations of Sections III and IV. The first primitive 
graviton-graviton interaction is given by 

w,(T) = Wj3’(h) + wp(/l). (138) 



338 RADKOWSKI 

The evaluation of the functional IV’?) follows from the conditions 

s, H&h) + s, b@‘(h) = 0, 

W$‘(H) = 0. 

The first of these equations provides the differential equation 

-a,[6 W$‘(h)/Sh,,(x)] = j (dx’) Ppyx, x’) hJx’), 

where 

ly(X, x’) = [TpT-qx) + yKTyx) - q”Tyx)] a, 6(x - x’). 

The second of Eqs. (139) leads to a structure that is similar to Eq. (124): 

M+‘(h) = - j (dx)(dx’) X”(X) Ppyx, x’) hAK(X’) 

+ (l/2) j w(~x') Km%, x') X"(X) Ux'), 

or, performing the integration over x’, 

J@)(h) = j (dx) T”“[(1/2) a,P&x, - F;“XJ. 

Under infinitesimal gravitational gauge transformations 

sgF;y = -a,a,6xA, s,x, = sxn ; 

(139) 

(140) 

(141) 

(142) 

(143) 

(144) 

thus, we see from Eq. (143) that the response of W$‘(h) to the same 
transformations is 

S, W?‘(h) = - j (dx) T“v~;y Sx, . (145) 

This in turn cancels the response 

8, W:‘(h) = j (dx) T”“S,h,, , (146) 

where 6,h,, is defined by Eqs. (106) and (107) and may be written in the form 

S,h,, = ruvA SxA - Lfv(huI\ Sx”) - Z’,(h,, 6.x”). (147) 
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We have verified that We’ satisfies the first of Eqs. (139). The functional We’ 
satisfies a similar equation, 

s w(3) + ij !2 L3 w(2) z c t3 0 7 (148) 

which is a consequence of the invariance of W,(h) under general coordinate 
transformations. Eq. (148) implies the differential equation 

--a II [S Wt3’/6h Q UY ] = F:JS W’2’/6h,,]. Ll (149) 

It then follows that the structure 

satisfies 

&y(x) = s W,(3)/Sh,,(x) + s W~)/Sh,,(x), (150) 

a&“(x) = 0, 

in virtue of the weak field equations 

6 W12’/Sh 4 WV (x) + T’“(x) = 0. 052) 

Then the response of w3(T) to a change in the graviton source may be written as 

i&w,(T) = j (dx)(dx’) ST”yx’) &&(X - x) t,““(x), (153) 

which identifies In as the effective graviton source implied by the first primitive 
graviton-graviton interaction. The emission of a graviton, of four-momentum k and 
polarization index r, from this source is then described by 

(I pp 1 O-)T = i(d~@~ e;“(k) j (dx) e-“““t,““(x). (154) 

It is interesting and useful to relate the first or field term in t,““(x) to the stress 
tensor Tr of the noninteracting graviton system described by Wj2). The latter 
is defined by 

s’wp = j (dx) T,““(x) a, 6.X" ) (155) 

which implies the use of the transformation Eqs. (42) and (107). Using the 
expressions (27) and (28), we find that 

Tj”’ = $‘vL,(2) - (1/2)[?PAKa"hAK + PAKauhAK] 

+ a,[,%“” + z”*D@] + (hK43,q + hKY2Snu) al,+QK, (156) 
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and 

(158) 

In the appendix we develop an identity for the purpose of calculating the functional 
derivatives of IVh2’ and Wj”). Using this identity we find that 

where 

s W,‘3’/6h,, = T,“” + aAaKfFA: (159) 

/p”,AK = lluKyYA _ rUVyAK + ?l”AYuK _ pyuu, 

and y”” is the quadratic term in the expansion 

(-g)‘/“g”” = 7”” - 2(hu” - (l/2) y”“h) + 2y” + .*a . 

Chang [4] has pointed out that the properties 

APV.AX = (Ikuu = -&4v = -AAV.W 7 

(160) 

(161) 

(162) 

imply that this term makes no contribution to the integrals of energy-momentum 
and angular momentum. Furthermore, this term does not contribute to emission 
(or absorption) amplitudes since 

e;,,(k) J’ (dx) e-ikXaAaKAuY*AK(X) = 0, (163) 

which follows from k2 = 0 and the properties of e;“(k) in Eqs. (38). Thus, there is 
essentially no difference between Tr and 6 W,‘3’/6h,” . 

We now turn our attention to the calculation of the two-graviton emission 
amplitude implied by w&T). This amplitude can be calculated from the form 
of w3(T) in Eq. (138). The result is simple but the intermediate steps are tedious. 
There is another approach which is much simpler and leads, of course, to the same 
result. In the latter approach we take advantage of the weak field situation by 
performing the gauge transformation 

h uv - Hw = h,, + ww,x + ax,). (164) 

The source term then disappears and the primitive interaction reduces to 

w3(T) = W,(3)(H). (165) 
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The field H&Y) may be written in the form 

where 

HJX) = J (dx’) c;;(x - x’) hAK(X’)) (166) 

&.:(x - x’) = S$$) 6(x - x’) - a&(x - x’) (167) 

involves the symmetrization A(,&,, = (l/2)(,4& + AJ,). The property 

a,‘c;;(x - x’) = 0 (168) 

guarantees that the emitted gravitons have the correct polarization. Thus, the 
field associated with a detecting source becomes 

which indicates that the source supplies the time-like vector -2,. If the emitted 
gravitons have four-momenta k and k’, we may make the replacement 

SCK(k; a,) --f (S$k+ + 6,Kk’̂ )/(kk’) - kJAkfK/(kk’)“. (170) 

This leads to the simple form 

where 

[HJs)]~ = 1 i(dco,)1/2 ( T?r), EL’,(k; k’) ebfcz, 
kr 

(171) 

EL’,(k; k’) = d,,(k) &k, k’) P$(k, k’), (172) 

and P,“(k, k’) is the projection operator in Eq. (92). The two-graviton emission 
amplitude then reads 

where 

(I,,1 k,S ! O-)T = i(dwk &J,~)~~~ 1 (dx)(dx’) emikrfCik”’ 

x E;,(k; k’) E;Jk’; k) Q’“*AK(x, x’), (173) 

J-Pyx, x’) = [S2WS(a)/Shll”(X) sh,,(x’)]H ) (174) 

and the subscript “H” reminds us that Q WA is still a linear functional of the 
gauge-invariant field. The next step is to functionally differentiate Eq. (159) using 
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the expression for Tr in Eq. (156). However, the properties of the polarization 
tensors in Eqs. (38) and the projection operators in Eqs. (93) imply 

k”E;,(k; k’) = 0 = k’uE;“(k; k’), 

k”E;Jk; k’) = 0 = k’“E;Jk; k’), 

?;l”“E;v(k; k’) = 0. 

(175) 

‘This means that very little actually has to be calculated. The result is 

(lk,la,s / OJT = i(dwk &J~J)“~~ ELA(k; k’) qAKEKy(k’; k) V”“(k, k’), (176) 

where 

Vu”&, k’) = Wk’) PYk, k’) P”‘(k, k’) + y’e”‘(k, k’)] H,,(k + k’) (177) 

and 

P”‘(k, k’) = 2(k’“k” + k”kT) + (k”k’T + k7k’“) - 3y(kk’). (178) 

The property 

(k + k’), p(k, k’) = 0 (179) 

means that we can make the replacement Ho, + A,, in Eq. (177). 
Before closing this section we note one more property of the gauge-invariant 

polarization tensors: 

where the projection operator PUv,Ar is defined in Eq. (96). 

VII. SOURCE TERMS AND TWO-PARTICLE SCATTERING 

So far in our development we have applied the prescription for the source 
terms to the first primitive interactions only. In these simple situations we have 
shown that the source terms need not be calculated if we use the gauge-invariant 
fields H,,, . In this section we expand the interaction skeleton sufficiently to describe 
two-particle scattering and demonstrate again that the source terms need not be 
calculated. This demonstration will clarify the nature of the source terms and make 
their prescription pIausible. 
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We restrict the system of interest to interacting photons and gravitons since 
no new features would occur if we included the spinless particles. The interaction 
skeleton reduces to 

d&T)= w,+ w,+ wg+ w,. (181) 

The various primitive interactions are made explicit by expanding the right hand 
side of (181) according to Eqs. (115): 

w(J, T) = WY(o) + wf) + w, ) (182) 

where W, represents the remaining terms in the expansion. The action principle 
then provides the field equations: 

4 W”‘/6A = 6 W,/liA Y II iA1 

--6W”‘/6h P LIY = SW /ah R U” * 

(183) 

This system of equations will be solved by introducing an iteration procedure: 

A, = A,’ + A; + . . . . 
(184) 

h,, = hLv + hEy + me*, 

where A,’ and hLy are the noninteracting fields introduced in Section II and satisfy 

-[6 W,‘O’/SA,]’ = J”, 

--[S W,‘2’/Sh,,]’ = Tu” 
(185) 

respectively (the primes mean the functional derivatives are evaluated with the 
noninteracting fields). The fields Ai and hi,, represent corrections from the first 
primitive interactions and satisfy 

-[6 W,(O#A,]” = j“ = (6[ Wy(1) + WF’]/SA,)‘, 

--[a W,(Z)/~h,,]” = tuY = tY”’ + t;“. 
(186) 

The elements of t@” are aIso evaluated with the noninteracting fields and are the 
.same as those discussed previously. 

The iteration procedure (184) is also applied to Eq. (182) and produces the series: 

w(J, T) = w2(J) + w,(T) + w~,~(J, T) + wQ(T) + IV@, T) + . . . . (187) 

where 

w4(J, T) = [W,‘“’ + Wp’]’ + [W,“’ + Wp’]’ + ; j (dx)[t”‘h:: + j”A;] (188) 
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describes the various two-particle scattering processes. To make this more explicit 
we eliminate the fields Ai and I& ; Eqs. (186) have the solutions 

A:(x) = i (dx’) D,Jx - x’) y(x)) + gradients, 
(189) 

IrEV = J (dx’) DUYJx - x’) P(x’) + gradients, 

respectively. The gradient structures are immaterial to the evaluation of Eq. (188) 
since the extended sources ju and t 11” are conserved. The resulting expression is 

M”4t.A T> = w*(T) + w.%(J) + %,zV, n, (190) 
where 

describes graviton-graviton scattering, 

w,(J) = w&“,AKt: (192) 

describes photon-photon scattering, and 

describes photon-graviton scattering. Throughout Eqs. (191)-(193) we have 
employed a short hand notation in which the tensor indices represent the 
coordinates as well, e.g., 

i .j”DIIyjy = k / (dx)(dx’) j@(x) D,Jx - x’) p(x’). (194) 

The last step in this development is the elimination of the noninteracting fields 
in favor of the sources using the familiar solutions of the field Eqs. (185). An 
unambiguous elimination requires expressions (19 l)-( 193) to be invariant under 
the Abelian gauge transformations. The electromagnetic gauge transformations 
present no problem, so we consider only the gravitational gauge transformations 

sh;” = -(l/2)@, 6X” + a, 6x,). (195) 

The response of expression (193) to these transformations may be written as 

Sw,,,(J, T) = S[W,‘“’ + W:“‘]’ + J (dx)[j” SA: + ty ShC], (196) 
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in which 

6Az = FL, 6x’ + gradients, 

S/z,“, = I’;“,+ 6xA + gradients. 
(197) 

The form of Eqs. (197) may be obtained from the solutions (189) or by iteration 
of Eqs. (130) and (147). The other variation in Eq. (196) is evaluated using 

2,{8[ IV,? + W~‘]/Slt,,}’ = --$;:t$ - FEj” (198) 

which follows from the invariance of WY + W, under general coordinate invariance 
.as discussed in Section V. Thus, the total response of wZ,.#, T) is zero. The same 
procedure applied to w,(T) and wq(J) shows that they are also gauge-invariant. 

But the invariance of MI&I, T) means that we can carry out the transformation 

&,(X) + H,,(x) = 1 (fix’) c;:<x - x’) &(x’), (199) 

which eliminates the source terms Wj” and W, . (3) Furthermore, when the extended 
sources are evaluated with the gauge-invariant fields they become: 

WWIH = P Wy(l)lUJHt, 

[qyX)]H = 1 (dx’)[S w,“‘/sh,,(xy c::(x’ - x), P32 

[tfyyx)]* = J (d,u’)[S Wp/shAx(Xr)]Ht Cf#(X - x). 

Thus, all reference to the source terms is eliminated. The form of the expressions 
4200) suggests the following transformation of the propagation function: 

which employs the notation illustrated in Eq. (194). The transformations (199) 
and (201) absorb all the projectors Cfi and in fact define a particular gauge. 
Thus, the source terms allow the consistent introduction of a particular gauge and 
disappear once this purpose is achieved. 

Finally, we must refine the definition of the gauge function f ~(x - x’) used in 
connection with the first primitive interactions so that it is applicable to the present 
situation. Thus, if the transformation (199) is to eliminate both source terms 
Wj2j and W$) then the symbols -i2, and -i2, must be given the same numerical 

assignment which we now represent by Ns. By choosing Ns as the four-vector 
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representing the total energy and momentum emitted (absorbed) by the production 
(detection) sources, we remain consistent with previous assignments and provide 
a definition that may be applied to more complicated situations. This vector is 
parallel to the time axis in the rest frame of the particle system, but the resulting 
gauge function does not lack covariance of form. 

VIII. SIMPLE TWO-PARTICLE EXCHANGE 

The introduction of the primitive interactions requires that we extend the 
definition of the source functions to values of momenta that are not on the mass 
shells. This allows two extended sources to interact through the exchange of 
more than one particle. These new interactions are not among the terms of the 
infinite series represented by w(K, J, T) in Eq. (137); rather they appear as modifi- 
cations of those terms. In this section we will discuss two-particle exchanges 
between extended sources that lead to modifications of the terms in w,(K, J, T) 
defined by Eq. (41). 

The probability amplitude for the emission of a photon and graviton from a 
weak extended photon source has been stated in Eqs. (88) and (91). It can be 
presented in the equivalent form 

(lfirlpa / O-)J = i(&+ d~~)l/~ e:“(k) e,“(p) PA&, p) P”“(k, p) J,(P), (202) 

which makes explicit reference to the source J. The corresponding absorption 
amplitude is 

(0, 1 lJPa) = i(dw, c&J#~ e:,(k) eA”(p) PA@, p) P”“(k, p) J,(-P). (203) 

The contribution to the vacuum amplitude associated with photon and graviton 
exchange between sources, J1 and J, , is 

1 (0, I I&a) 1 <l,,l,, I O-jJ2 = - j- do, dw, J&-P) P,y(k, p) J,“(P), (204) 
kr.pa 

in which the polarization sums have been removed by the use of Eqs. (23) and (36). 
To make this expression take on the appearance of being a modification of w,(J), 
we introduce a unit factor in the form 

(W3 j- dM2 dw, S(p + k - P), -P2=W>O. (205) 

Then the two-particle summation becomes 

- s dW dw, J&--P) I,,(P) J,“(P), 6’06) 
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where 

Z”“(P) = (2~)~ j dw, dw, S(p + k - P) P”“(k) p) (207) 

satisfies 
PuzyP) = 0. GW 

This property of Z”“(P) means that it only has spatial components in the rest frame 
of the timelike vector P. A quick calculation in this frame produces the result 

Z““(P) = (l/24+) N”“(P), (209) 

where 
Nuv(P) = 7”” + Pu”py/M2. (210) 

The contribution to the vacuum amplitude becomes 

-(G/37r) j dM2 dwp J,@(-P) T&“(P). (211) 

We have introduced the Newtonian gravitational constant G by lifting the 
restriction ~TG = 1. 

The result in expression (211) is restricted to a specific spatio-temporal arrange- 
ment of the sources. But the source functions Jlu(-P) and J,“(P), defined for 
-P2 > 0, are only elements of the general source function J@(x) which acts in 
space-time. Another element, which refers to --P2 = 0, is involved in 

i j (dx)(ddx’) Jlu(x) DJx - x’) J2y(x’) = - s dw, J,“(-P) qJ,“(P) (212) 

which is the contribution to the vacuum amplitude associated with photon propaga- 
tion between weak production and detection sources. The various elements are 
united in the generalization 

w2(J) --f (l/2) / (dx)(dx’) J”(x) I&,(x - x’) Jy(x’). (213) 

Our previous results are contained in the modified propagation function 

where 

&(p) 1 -.?!c- - 33 dM (213~) qLY 
p2 - ic p2G I+, M p2+M2-ie’ (215) 

5 95/56/2-4 
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The lower limit of the integral indicates some procedure must be introduced to 
deal with the infrared problem. An alternative version of the propagation function 
which involves only the first term of the expression 

--p2 j ,g p2 + 

1 

M2 - ie = +. jm MdM[p2+L2-ic 
1 

- ~1 (216) 

has been rejected since it does not exist. The second term in Eq. (216) is independent 
of p2; thus, its contribution to the vacuum amplitude is a phase factor which has 
no physical consequences since it effects neither the vacuum-persistance probability 
nor the particle-mediated coupling of different sources. 

The generalization in Eq. (213) implies a modification of the Coulomb potential: 

G(, - x') = - jIrn dx0 B,,(x - x'). (217) -m 

Both versions of the propagation function give the same result [l]: 

4&(x - x’) = l/r + 2G/3m3, Gw 

provided r = 1 x - x’ 1 is not zero. Of course, the quadrupole term is not within 
the range of contemporary experimentation. 

The contributions to the vacuum amplitude associated with two-particle exchange 
between extended graviton sources lead to modifications of the function w,(T). 
We provide a numerical supplement to Schwinger’s qualitative discussion of these 
modifications [l]. The modified graviton propagator has the structure 

(219) 

which is analogous in form to the photon propagator defined by Eq. (215). The 
function w,(T) is then replaced by 

where 

W,(T) = 5 j (dx)(dx’) P(x) B&(X - x’) Pqx’), (220) 

and K = 8nG indicates that we are now using the units of Ref. [l]. The relationship 
between oU,,,&t4) and the various two-particle exchange contributions to the 
vacuum amplitude is 

K2 
- __ dWdw, T,““(-k) 

167~ s u,,,&4) Z-:(k) = u(O) + ZI(” + v(‘) (222) 
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in which -k2 = M2. The contributions to the vacuum amplitude have been 
designated as follows: u(O) is the summation over the material particle states, 

Jo) = (l/2) c (0, I l,l,,)=~ (l,l,, 1 o-)=2, 
P,P’ 

u(l) is the summation over the photon states, 

u(l) = u/a c (0, I lpal*‘b)=’ (LJ,~b I w2, pa.0 
and ut2) is the summation over the graviton states, 

(223) 

(2241 

AZ) = (l/2) c (0, 1 1,,1,~,)‘1(1,,1,~, 1 o-)rC (225) 
PT.P'S 

Since the contributions are additive, we write 

The probability amplitude for emission of two material particles from a weak 
source has already been stated in a form equivalent to 

where 

(l,l,, I O-jT = i $ (dw, d~~,)l/~ I’&, p’) P(k) (227) 

i=uu = rl -uv,kT AK . (228); 

The two-particle summation becomes 

u(o) = _ f 8 j- dw, dw[Z”--k) PAP, P’> J’dp, P’> ~;YIC)I. (229) 

We concentrate our attention on the total momentum k by introducing a unit 
factor in the form 

(27r)3 s dM2 dw, S(p + p’ - k), -k2 = M2 > (2m)2. (230) 

Then 
d Jo) = - - 

16~ s dM2 dwl, T;“( - k) Z;;,,(k) TF(k), (230 
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Z$!AK(k) = (27r)4 1 dw, dw,, @P + P’ - k) PAP, P’) P*,(P, P’). (232) 

The property of Puv(p,p’) in Eq. (74) implies that 1$,,(k) has only spatial com- 
ponents in the rest frame of the time-like vector k. The calculation of IE!AK(k) in 
this frame involves a sum over all solid angles which is facilitated by the use of 

s dQ 4n U’CuzumUn = & [+y + ?lkn?7zm + rlkmrlzn], 

where uk, k = 1, 2, 3, are the components of a unit vector. The result is 

d%~(k> = ~w(W 4NuvW h(k) + B(O)(M) %.&), 

where 

p’(M) = & [l - (?Jy [l + %I2 

B(O)(M) = -!& [ 1 - (J!L,‘]‘~’ [ 1 - ($J]“, 

and 

%.dk) = (W~udk) L(k) + N,,(k) N,(k) - (2/3) ~,A4 Ndk)l. 

NUy is defined by Eq. (210). Substitution of Eq. (234) into Eq. (231) gives 

where 

Jo) = - g 
77 s 

dM2 dwl, T,“‘(-k) c&,(M) T;“(k), 

and 

(23% 

(234) 

(235) 

(236) 

(237) 

(238) 

(239) 

The probability amplitude for emission of two photons from a weak source, 
Eq. (95), can be written in the form 

(l,l,,, / 0-)T = -zic(dw, dwp,)l12 e,“(p) evb(p’) PUV*hK(p, p’) TAX(k). (240) 

Then the two-photon summation becomes 

$) = - $ 
s 

&j, &, D l Z“‘(--k) %,AP, P’) T?(k). (241) 
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Again we introduce a unit factor in the form (230), but in this case -k2 
A calculation in the rest frame of the vector k verifies that 

I:!&) = 649 j dw, dw,, %P + P’ - W L,dp, p’) 

is given by 

The property 

(242) 

(243) 

can be traced back to a similar property possessed by Tr” which is defined by 
Eq. (76). The desired result is 

dk(W = ~%v %L”rldK + B’%w L.AM 1 (245) 

where 

P(M) = 0, B”‘(M) = l/53-. (246) 

The probability amplitude for emission of two gravitons has been stated in 
Eq. (176). For present purposes, it should be multiplied by K and the k’s changed 
top’s. Then the two graviton summation becomes 

,.(a) = lc2 
4 s dw, dw,,[C”(p, P’) P,,(P, P’) PA,(P, ~‘1 V;Yp, ~71, (247) 

in which the polarization summations were performed by using Eq. (180). A more 
explicit form is 

p = --K? 
s dw, dMZ‘“(-k) G,,(P, P’) GAP, P’) T?V)l, (248) 

Guv(p> ~‘1 = Whv + (P,P~’ + P~P,‘)/(PP’) - ~(P,A + P,‘~,‘)/(PP’N, 
(249) 

and h- = p + p’. We now introduce the unit factor and consider the integral 

Z:;,,(k) = 128~~ j dw, dw,, &P + P’ - 4 G,“(P, P’! GAP, ~‘1. (250) 

The property k”Gu,(p,p’) = 0 means that Z$nK (k) only has spatial components 
in the rest frame of the time-like vector k. A calculation in this frame produces 

Z,%,(k) = + N,,(k) N,,(k) + + L&). i7 (251) 
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Thus the desired result is 

where 

k2’(M) = &, B”‘(M) = $- . 7? 

The modified Newtonian potential due to the exchange of the massless particles is 

4rgg(r) = l/r + 4G/15rr3 + 9G/10nr3, (254) 

where the second and third terms refer to photon and graviton exchange, 
respectively. 

Finally, we must show that our results satisfy probability requirements. The 
forms 

T%) r1”‘$“~&), c+xN P*AKTAKw, (255) 

are positive definite; thus the probability requirements are 

A(i)(M) > 0, B’qM) > 0, i = 0, 1, 2. (256) 

Reference to Eqs. (235), (246), and (253) shows that our results satisfy these 
requirements. 

IX. CONCLUSION 

A brief summary is achieved by remarking that we have developed Schwinger’s 
theory to about the same extent that Feynman developed his theory in his Warsaw 
lectures [5]. That is, we have a gauge covariant scheme for calculating skeleton 
interactions and simple two-particle exchanges that satisfy probability 
requirements. Can we extend our results to more complicated multiparticle 
exchanges as Dewitt [6] has extended Feynman’s results? This is an interesting 
question that deserves further attention. 

APPENDIX 

We will sketch the derivation of a well-known identity and adapt it to the 
calculation of those functional derivatives used in this paper. Except for the 
emphasis on the field h,, , our discussion follows that of Gupta [7]. 

The fact that Lagrange function 
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is invariant under linear coordinate transformations implies the identity 

S”uL, = 23?“’ a,h,” f- +AK avhAK + h + 2h,,) wah,, , 

where 
+uv = aL,la(a,h,,). 

The use of this identity allows the quantity 

9” = yL, - (1/2)[+Ax a”hA, + +JK auh,,] 

to be written as 

(A-2) 

64.3) 

(A-4) 

7 '" = [SK“SA" + h,P8AY + h/&“] 6 WJSh,, + a,[$‘“,;” + f’Rf;Y], (A-5) 

where 

Rf;” = (l/2) +“uK(~KA + 2h,J. c4.6) 

Now we form the quantity 

/+” zz= +u + a,[,zu.~v + Dou] - [SK“SAy + hKPSA” + hK”SA”] 6 W,/Sh,, , (A.7) 

where 
,FJU.D” = rr~~AK(SA~hK” - SAYhK~) 

= ,,“ARy - ,,dRy. (A.81 

An alternative version of fIUy is: 

@‘” = a,[qfiA(Rr + R”,) + r)““(Ry + Ry) - qP”(Rr + R;)]. 64.9) 

Evaluating R;” from (A.6) and (A.l), and substituting in (A.9), we find that 

euv = (i/2) araK[(-gy (qyK - yp + qxguv - ?l~~gq. (A. 10) 

By equating the two expressions for fILLyin Eqs. (A.7) and (A.lO), and using Eq. (A.4) 
for TU”, we obtain 

6 WJ17uy = r]““L, - (1/2)[rFK a”h,, + T”+‘~ MA,] 

+ a,[,D*~” + zly+ - (hKGh” + hK”SAw) 6 W,/Sh,, 

+ (i/2) al\aK[(-gpf (yp - rluVgAK + 7pguK - rlAKgql. (~.ii) 

When we apply the expansions in Eqs. (115) to this identity we easily obtain the 
functional derivatives of Wj2) and W,‘“‘. 
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