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Hawking radiation and ultraviolet regulators
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Polchinski has argued that the prediction of Hawking radiation must be independent of the detail
unknown high-energy physics because the calculation may be performed using ‘‘nice slices,’’ for which
adiabatic theorem may be used. If this is so, then any calculation using a manifestly covariant—an
slice-independent—ultraviolet regularization must reproduce the standard Hawking result. We investigat
dependence of the Hawking radiation on such a short-distance regulator by calculating it using a Pauli-V
regularization scheme. We find that the regulator scaleL only contributes to the Hawking flux by an amount
that is exponentially small in the large variableL/TH@1, whereTH is the Hawking temperature, in agreement
with Polchinski’s arguments. Using the techniques of effective Lagrangians, we demonstrate the robustn
our results. We also solve a technical puzzle concerning the relation between the short-distance singulari
the propagator and the Hawking effect.@S0556-2821~96!03610-7#

PACS number~s!: 04.70.Dy, 04.62.1v, 11.10.Gh
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I. INTRODUCTION

The prediction that very massive stars must end their d
as black holes has by now become deeply ingrained i
common astrophysical lore. Our belief in this result rests
no small part on the continued success with which gene
relativity accounts for observations, both within the sol
system and beyond.

Part of the progress of the last 20 years has been
integration of this success into the broader body of la
which describe the other known, nongravitational, intera
tions. It is now understood that, in spite of the notorio
obstacles to constructing a full quantum theory of gravi
semiclassical general relativity can be interpreted as a c
trollable low-energy approximation to whatever unknow
physics might ultimately describe nature on the very short
of length scales. In this sense, general relativity joins oth
venerable, but nonrenormalizable, low-energy effective th
ries @1#, and semiclassical calculations are justified for o
servables that vary on distance scales that are long comp
to the Planck length.

Perhaps the biggest surprise to emerge from the stud
semiclassical quantum physics in the presence of mac
scopic gravitational fields is Hawking’s discovery@2#, that
black holes constantly radiate subatomic particles. Th
particles dominantly emerge far from the hole with energ
that are of order the Hawking temperature:E.TH
[(4pr s)

21, where1 r s52GM is the Schwarzschild radius
for a black hole of massM . Provided that the hole is suffi-
ciently massive,GM2@1 ~or, in cgs units,M@22mg), the
radiation is a long-wavelength effect, and so one expects
semiclassical description to be justified.

It therefore comes as something of a surprise, as w
originally emphasized in@3#, and more recently in@4,5#, to
find that the standard derivations of the Hawking effect~in
four dimensions! make reference in one way or another
physics at extremely short distances. This is true both

1We use fundamental units,\5c5kB51, throughout.
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Hawking’s original derivation, as well as of more modern
alternatives@6#.

The short distances arise because the Hawking radiation
defined to be the flux which emerges at very late times, we
after all of the transients associated with the stellar collap
itself have passed. However, in the usual derivations the
diation which emerges at the Hawking temperature at su
late times is strongly redshifted as it climbs out of the blac
hole’s gravitational well. Alternatively, in the formalism se
up in Ref. @6#, the outgoing flux is derived from the short-
distance form for the radiated particle’s two-point~Had-
amard! function ~see below for details! as its position argu-
ments, x and x8, approach one another and the even
horizon.

Polchinski@7#, on the other hand, has argued persuasive
that, in spite of these appearances, Hawking radiation is ne
ertheless a robust feature of the long-distance theory. H
arguments use the ability, in principle, to perform one’s ca
culations using only ‘‘nice slices’’ for which curvatures are
everywhere small, and for which the adiabatic theorem e
sures all high-frequency modes must be in their ground sta

Our purpose here is to present evidence supporti
Polchinski’s arguments using an explicit calculation of th
Hawking radiation in a simple model. We perform the fol
lowing consistency check on these arguments: if the exi
ence of nice slices guarantees that the Hawking flux is ind
pendent of the details of short-distance physics, then a
reasonable manifestly covariant, and so slice-independe
ultraviolet regularization must also not affect this flux. We
test this by computing the Hawking radiation using a min
mally coupled massive scalar field in the presence of
Schwarzschild black hole, using a Pauli-Villars ultraviole
regularization. We are able to implement this regularizatio
by suitably adapting the methods of Fredenhagen and Ha
Ref. @6#. We find that all of the cutoff dependence vanishe
exponentially in the limit L@TH , in agreement with
Polchinski’s arguments.

The difficulty with any calculation which refers to an ex-
plicit type of short-distance physics is that one is left won
dering to what extent the conclusions drawn depend in
5717 © 1996 The American Physical Society
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5718 53N. HAMBLI AND C. P. BURGESS
detailed way on its specific form. We address this potent
criticism in Sec. III, by showing that the influence ofany
new physics that is local and generally covariant must
smaller than any power ofTH /L. We do so by showing that
no possible counterterm exists which can contribute to t
Hawking flux as seen by observers at late times far from t
hole.

The details of this calculation are described in Secs. II a
III. In Sec. IV, we resolve an apparent paradox concerni
the relation between the Hawking radiation and the absen
of short-distance singularities of the two-point function i
the regulated theory. Our conclusions are summarized
Sec. V.

II. A REGULATED EXAMPLE

In this section we compute the dependence of the Haw
ing flux on the short-distance regulator.

We take as our observable the outgoing energy flux p
unit time,F [2^Tt

r&, as seen at very late times and at a ve
large distance from the black hole, with the average taken
the state which corresponds to the vacuum at very ea
times before the black hole has formed.t and r here
represent the usual Schwarzschild coordinates, in ter
of which ds252(12r s /r )dt

21(12r s /r )
21dr21r 2(du2

1sin2udf2). F is related to the total black hole luminosity
by LH5*F r 2sinududf.

For a minimally coupled scalar field the stress tens
is quadratic in the field operator, and so its expectati
may be expressed in terms of the coincidence limit of t
Hadamard two-point function:G(x,x8)[1/2^w(x)w(x8)
1w(x8)w(x)&. In our case,

F [2^Tt
r&52^Ttr!&

52
1

2
lim
x8→x

S ]

]t8

]

]r ! 1
]

]r !8

]

]t DG~x,x8!, ~2.1!

where r ! is the ‘‘tortoise’’ coordinate:r ![r1r sln@(r/rs)
21#. The problem reduces to the calculation ofG(x,x8).

A. The regulator

SinceG(x,x8) is singular asx8→x, the components of
the stress tensor usually diverge, and so must be regulari
and renormalized.~Off-diagonal components are typically fi-
nite in Schwarzschild, however.! We choose to perform this
Pauli-Villars regularization, i.e., by introducing additiona
fields,w i(x), some with the ‘‘wrong’’ sign kinetic energies,
in such a way as to ensure the finiteness of the coincide
limit of

Greg~x,x8!5(
i

e iGi~x,x8!, ~2.2!

where e i56 keeps track of the sign of the correspondin
field’s kinetic energy. We should also point out that the su
in Eq. ~2.2! includes the contribution from the physical field
of massm whosee51. Our purpose is ultimately to deter-
mine howF depends on the masses of the regularizati
fields,Mi , in the limit thatMi;L@TH*m, whereL is the
ial
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inverse of a covariantly defined cutoff length~see below!,
andm is the mass of the original scalar field.

The properties of the regulator fields that are require
may be directly calculated from the known divergence stru
ture for minimally coupled free scalar fields propagatin
through macroscopic background fields. For a scalar field
mass,m, there are three independent types of divergence
which are known to be proportional to the three coefficient2

@8#:

C0[m4@a0#5m4,

C1[m2@a1#52
m2

6
R,

and

C2[@a2#5
1

180
RmnlrR

mnlr2
1

180
RmnR

mn

2
1

30
hR1

1

72
R2. ~2.3!

Cancellation of all of these short-distance singularitie
among the Pauli-Villars fields is therefore equivalent to th
conditions

11(
i

e i50,

m21(
i

e iM i
250, ~2.4!

m41(
i

e iM i
450.

As is easily verified, a solution to these equations is given b
e15e251, M1

25M2
253L21m2; e35e452, M3

25M4
2

5L21m2; ande552, M5
254L21m2.

B. Computing the Hawking flux

We may now useGreg(x,x8) to compute theL depen-
dence of the Hawking flux. We do so by adapting the arg
ments of Ref.@6# to our example, since this formulation of
the calculation is easily applied to massive fields.

Starting from the definition ofGreg(x,x8), and Eq.~2.1!,
we see that the Hawking flux may be simply written a
F 5( ie iF i , whereF i is the Hawking flux due to a mini-
mally coupled scalar field of massMi . A straightforward
application of the techniques of Ref.@6# gives the usual re-
sult

2These expressions use the conventions of Ref.@9#.
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F i~Mi !5
1

4p2r 2(l m uYl m~u,f!u2

3E
Mi

`

dvuT l ~v,Mi !u2
v

ev/TH21
. ~2.5!

In this expression, (r ,u,f) are the Schwarzschild coordi
nates for the point at whichF i is computed, andYl m are the
usual spherical harmonics.uT l (v,Mi)u2<1 is the probabil-
ity that an outgoing particle of massMi and energyv ~as
seen by the stationary observers at infinity! is transmitted
from the event horizon (r !→2`) out to infinity, rather than
being scattered back to the horizon by the black hole’s gra
tational field.

Since the regulator fields all satisfyMi@TH , it suffices to
use the asymptotic form for the flux in this limit. In this limi
the frequency integral may be bounded from above:

E
Mi

`

dvuT l ~v,Mi !u2
v

ev/TH21
<2E

Mi

`

dvve2v/TH

<2TH
2 S 11

Mi

TH
De2Mi /TH. ~2.6!

We see that, forF i , every term in the sum overl is expo-
nentially small inL/TH . Of course, this is just what would
be expected for a thermal radiation spectrum.

One might worry that, although each term in the sum ov
l is exponentially small, it may be that the series sums t
result which isnot exponentially suppressed. This does n
happen, however, because a much stronger bound is pos
for uT l u2 when l becomes sufficiently large. The bette
bound arises because for large angular momenta the tr
mission probability,uT l (v,Mi)u2 goes to zero. This can
most easily be seen by recasting the scattering problem
terms of the quantum mechanics of a single particle mov
in the presence of an effective ‘‘potential’’:

Veff[Mi
2S 12

r s
r D S 11

l ~ l 11!

Mi
2r 2

1
r s

M i
2r 3D

'Mi
2S 12

r s
r D S 11

l 2

Mi
2r 2D . ~2.7!

This last, approximate, form has been simplified usi
l @1 andMir s@1. Classical evolution in this potential sim
ply predictsuT l u251 whenv lies above the potential for all
r , anduT l u250 whenv is below the barrier for somer . For
the above potential, however, there is no barrier at all
escape forl <L[A3Mir s , since only for thesel ’s can the
centrifugal contribution dominate the gravitational attractio
For l .L, on the other hand,Veff has a maximum for
r5rmax*r s that can reflect a potentially outgoing particle
and so transmission is forbidden forv,Vmax. But since the
height of the barrier,Vmax;l /Mir s , grows for largel , re-
flection eventually becomes inevitable for sufficiently larg
l . Physically, particles with largel , but fixedv, are not
sufficiently radially directed to escape to infinity once the
-

vi-

t

er
o a
ot
sible
r
ans-

in
ing

ng
-

to

n.

,

e

y

try to climb out of the black hole’s gravitational well. As a
result the sum overl that appears inF i is eventually cut off
for sufficiently largel .

We conclude, then, that at least for this regularization, th
contribution of very-short-distance physics, at distance
;1/L, to the Hawking flux is exponentially suppressed b
the large ratioL/TH . This result raises two further ques-
tions.

~1! To what extent does this result depend on the deta
of the small-distance physics? Could other regularizatio
lead to different conclusions, such as to corrections propo
tional toL2p, for somep? We claim not, and demonstrate
this robustness in Sec. III.

~2! A more technical question is: since the technique o
Ref. @6# relates the Hawking flux to the singularity of the
two-point function,G(x,x8) in the coincidence limit at the
horizon, how can a nonzero flux have been obtained using
regularized propagator such as the functionGreg(x,x8) used
here? We deal with this question in Sec. IV.

III. THE GENERAL ARGUMENT

In this section we wish to argue for the robustness of th
last section’s result. We do so by demonstrating thatany
other physically acceptable regularization can also only gi
an exponentially small contribution to the Hawking flux.

Our starting point is the following expression for the
lowest-order~i.e., one-loop! vacuum expectation value of the
stress tensor@10#

^Tmn&5F 2

A2g

dG

dgmn
G
gs ,ws

, ~3.1!

where the subscripts indicate that the result is to be evalua
at the background field configuration, (gs)mn andws . In the
present instance we take these to be the classical solution
Schwarzschild metric with a constant scalar field whic
minimizes the scalar potential. The functionalG@g,w# in the
above expression represents the generator for the one par
irreducible~1PI! Green’s functions for the scalar field,w, in
the presence of a background metric,gmn .

We know how physics at very-short-distance scale
l;1/L, can contribute tôTmn& once we determine how it
can appear inG@g,w#. But here we may take advantage o
the basic property that makes effective Lagrangian tec
niques so powerful elsewhere in physics: the influence
short-distance physics on long-wavelength observables m
be parametrized in terms of a set of real, local and genera
covariant operators which involve only the long-wavelengt
degrees of freedom. That is,

G@g,w#5Scl1G loop@g,w#1GL@g,w#, ~3.2!

whereScl is the classical action,G loop@g,w# represents the
long-distance loop contributions~as are usually computed!,
and the ‘‘counterterms’’ inGL@g,w# are the result of short-
distance loops from frequencies greater thanL. This last
contribution cannot be evaluated in detail without knowin
what physics lies beyondL, but in general must take the
form
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GL@g,w#5(
n

cnL
42dnE d4xOn~w,gmn!. ~3.3!

Here n runs over all possible local operators,On(w,g),
which we take to be organized with increasing dimensio
~mass! dn. In all of these expressions the fieldsgmn andw can
vary appreciably only over distances that are long compa
to l. This is because it is only in this limit that the short
distance physics can be represented by local operators.

The main point is thatany type of physically acceptable
short-distance physics may be parametrized in terms of t
type of real, local, and generally covariant effective Lagran
ian. Differing types of short-distance physics that share t
same low-energy particle content, and respect the same l
energy symmetries, can only differ in their predictions fo
the values of the various coefficients,cn . It is important to
notice that we donot restrict ourselves here to those terms i
GL@g,w# which diverge asL→`.

In particular, in order forany short-distance modification
of the minimally coupled scalar model of the previous se
tion to contribute differently to the Hawking radiation, i
must be possible to represent this difference in terms o
real, local, generally covariant contribution toLeff . A contri-
bution that is suppressed only byk powers ofL21 ~as op-
posed to being exponentially small! should show up as an
effective operator having dimension~mass! k14. It only re-
mains to show that no such operator exists that is a gener
covariant, local polynomial of the fields,f, gmn and their
derivatives. As a result, new physics at scaleL can only
contribute an amount that is smaller than any power
L21.

An effective operator inGL@g,w# can only contribute to
the Hawking radiation if its contribution,d^Tmn&, to the
vacuum expectation value of the stress tensor satisfies
following two properties:~1! In order to contribute toF , its
off-diagonal,d^Ttr!&, component must not be zero; and~2!
this off-diagonal component must fall off like 1/r 2 as r→`
in order to contribute a nonvanishing amount to the partic
flux, LH , at large distances from the black hole.

The argument that rules out any such term is very simp
to give. Any such term must be a symmetric, conserved te
sor that is constructed from local powers of the fields a
their derivatives. Since the background scalar-field config
ration, ws , is constant, it only contributes in a trivial way
The only other fields are the metric, and its derivatives: cu
vature tensors, their covariant derivatives, etc.

The only possible term which does not involve the curv
ture tensor would bed^Tmn&}(gs)mn , for which the t–r !

element is zero. But all components of the curvature tens
and its covariant derivatives fall off for larger at least as fast
as 1/r 3, and so approach zero too quickly to contribute a flu
at infinity.

We see in this way that, with the given particle conten
the contribution of short-distance physics is always smal
than any power ofL21.

IV. HAWKING RADIATION AND THE ABSENCE
OF SINGULARITIES

The result of the last section raises another question. W
have computed the Hawking radiation in a regulated theo
n:
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having a completely smooth two-point function. But it is als
straightforward to show, by trivially extending the argumen
of Ref. @6# to massive fields, that a coincidence limit o
the formG(x,x8);1/@4p2s(x,x8)#1(less singular), where
s(x,x8) denotes the proper separation between the pointx
andx8, is required nearr5r s in order to produce the Hawk-
ing radiation. That is, in the approach of Ref.@6# the Hawk-
ing flux is completely determined by the coefficient of th
1/s singularity of the two-point function,G(x,x8), when the
coincidence limit is taken near the black hole event horizo
The question therefore is: How can a nonzero flux be o
tained using a regularized propagator which is smooth in
coincidence limit? The present section is devoted to the re
lution of this apparent contradiction.

The starting point for the analysis of Ref.@6# is the obser-
vation that Eq.~2.1! allows us to compute the Hawking flux
at a point (T,R,Q,F), at large distances from the blac
hole and at late times, given knowledge ofG(x,x8) in the
neighborhood of this point. In Ref.@6# the two-point function
at large distances from the black hole,G(X1 ,X2), is related
to its values on an earlier spacelike hypersurface using
surface independence of the Klein-Gordon inner product:

~ f ,g!5E
S
f * ]JmgdSm ~4.1!

provided that the functionsf andg satisfy the Klein-Gordon
equation. This leads to the expression

G~X1,X2!5E
St

E
St

dSm
1dSn

2G~x1,x2!

3 ]J]1m ]J2n f ~x1! f * ~x2!, ~4.2!

where both integrals are taken over the same timelike s
face, St which we may take to be a surface of consta
t5t1r !2r . The measure for such a surface
dSm5nmr 2sin2udrdudf, with nm the unit normal toSt . Ex-
plicitly,

n•]5S 11
r s
r D ]

]t
2
r s
r

]

]r
. ~4.3!

The functionf (x) which appears in Eq.~4.2! is the particular
solution to the Klein-Gordon equation which satisfies th
following ‘‘initial’’ conditions, which we choose to specify
on a late-time constant-t surface which contains the poin
X5(T,R,Q,F) at which the Hawking flux is to be mea
sured:

f ~x! U
t5T

50,

~4.4!

] t f ~x! U
t5T

5d3~xW2XW !.

The vector symbol here denotes the three coordinates wh
specify a point on the surfacet5T.

The Fredenhagen-Haag derivation@6# crucially relies on
this surface independence of the Klein-Gordon inner pro
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uct, (f ,g)5*S f * ]JmgdSm, when the functionsf andg sat-
isfy the Klein-Gordon equation. In Eq.~4.2!, this is applied
in particular to the two-point function,G(x,x8). The resolu-
tion of the apparent paradox therefore relies on the fact th
regulated propagator likeGreg(x,x8) does not satisfy the
Klein-Gordon equation, but rather satisfies a more comp
cated higher-derivative equation of motion. The conserv
inner product for this equation of motion also involve
higher-derivative corrections, and these corrections are w
generate the Hawking flux from a nonsingular two-poi
function.

We next illustrate this argument with an explicit calcula
tion. Rather than dealing with the cumbersome details of
five regulator fields that are used in the text, for clarity
presentation we instead present an example which uses
one regulator field. Consider, therefore, the following tw
point function:

Ĝ~x,x8![Gm2~x,x8!2GM2~x,x8!, ~4.5!

whereGm2(x,x8) andGM2(x,x8), respectively, denote the
two-point functions for free scalar fields of massm and
M@m. Comparing to the short-distance expansion of R
@8# shows that the coincidence limit ofĜ(x,x8) is at worst
; lns(x,x8), for Schwarzschild spacetime. Even though th
is less singular than 1/s(x,x8), our goal here is to show tha
Ĝ(x,x8) nevertheless produces a nonzero Hawking flux.

In order to apply the methods of Ref.@6#, we must first
find what equation of motionĜ(x,x8) satisfies, and then
construct the corresponding conserved ‘‘inner product’’ f
this equation. As is simple to check, the equation of moti
is

1

M22m2 ~h2m2!~h2M2!Ĝ~x,x8!50. ~4.6!

The conserved ‘‘inner product’’ for two solutions,f andg,
of this equation then is

@ f ,g#52
M1

2

M2
2 E

S
dSm f * ]Jmg1

1

M2
2 E

S
dSm f * ]Jmhg

1
1

M2
2 E

S
dSm~h f * ! ]Jmg, ~4.7!

whereM6
2 [M26m2, andS is a spacelike surface. Clearl

this expression approaches the usual Klein-Gordon one
the limit M→`.

Using this expression to write the analogue of Eq.~4.2!
gives the result

Ĝ~X1 ,X2!5(
j51

4

Ĝj~X1 ,X2!, ~4.8!

where

Ĝ1~X1 ,X2!5
1

M2
4 E

S
E

S
dS1

mdS2
nĜ~x1 ,x2!

3 ]J1m ]J2nF~x1!F* ~x2!,
at a
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Ĝ2~X1 ,X2!5
1

M2
4 E

S
E

S
dS1

mdS2
n@h1Ĝ~x1 ,x2!#

3 ]J1m ]J2n f ~x1!F* ~x2!,

~4.9!

Ĝ3~X1 ,X2!5
1

M2
4 E

S
E

S
dS1

mdS2
n@h2Ĝ~x1 ,x2!#

3 ]J1m ]J2nF~x1! f * ~x2!,

Ĝ4~X1 ,X2!5
1

M2
4 E

S
E

S
dS1

mdS2
n@h1h2Ĝ~x1 ,x2!#

3 ]J1m ]J2n f ~x1! f * ~x2!.

In these expressionsF(x)[h f (x)2M1
2 f (x). The function

f (x) must also satisfy the ‘‘initial conditions’’

f ~x!| t5T50,

] t f ~x!| t5T50,

~4.10!

h f ~x!| t5T50,

] th f ~x!| t5T5M2
2 d3~x!,

which play the role here of Eq.~4.4! in the Klein-Gordon
case.

As fearsome as it looks, this initial-value problem can b
solved, and leads to functions,f2(x), which are basically
identical with those that are found for the Klein-Gordon
case. In particular, their support becomes infinitely small a
(T2t)→`, requiring a coefficient function that varies like
1/s(x1 ,x2) near the horizon. The new feature, though, is tha
the function that must be this singular involves not jus
Ĝ(x1 ,x2), but also itsderivatives. It is these derivative terms
that save the day: acting onĜ(x,x8) they convert its
lns(x,x8) behavior into the 1/s(x,x8) that is required for a
nonzero result.

V. SUMMARY

We have presented a derivation of the Hawking radiatio
within a simple model for which the ultraviolet regulariza-
tion has been made explicit. This calculation permits th
regularization dependence of the Hawking flux to be explic
itly displayed. It is found that the cutoff dependence is ex
ponentially small in the limit thatL/TH@1. Since the Pauli-
Villars regularization used is slice independent, this resu
agrees with what one would expect from the ‘‘nice-slice’’
argument in favor of the irrelevance of the details of high
energy physics on the prediction of Hawking radiation.

We show in Sec. III that the conclusion that the contribu
tions of the details of the short-distance physics to the Haw
ing flux are exponentially suppressed in the ratioL/TH@1 is
not specific to the Pauli-Villars regularization but is a generi
feature of any generally covariant short-distance regulariz
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tion ~modification! of short-distance physics. Using the ef
fective Lagrangian techniques, we rule out the existence
any covariant, local cutoff dependent counterterm which c
contribute to the Hawking flux at late times far from th
hole.

The computation scheme of Fredenhagen and Haag@6# is
used throughout, in which the Hawking radiation is direct
related to the coincident singularity of the two-point functio
as both of its position arguments approach one another
the event horizon. We show in Sec. IV that there is no co
tradiction in this approach between having a nonzero Haw
-
of
an
e

ly
n
and
n-
k-

ing flux in the regulated theory, even though the resulti
regulated two-point function is nonsingular in the coinc
dence limit.
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