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Hawking radiation and ultraviolet regulators
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Polchinski has argued that the prediction of Hawking radiation must be independent of the details of
unknown high-energy physics because the calculation may be performed using “nice slices,” for which the
adiabatic theorem may be used. If this is so, then any calculation using a manifestly covariant—and so
slice-independent—ultraviolet regularization must reproduce the standard Hawking result. We investigate the
dependence of the Hawking radiation on such a short-distance regulator by calculating it using a Pauli-Villars
regularization scheme. We find that the regulator sdalkenly contributes to the Hawking flux by an amount
that is exponentially small in the large variab\éT,;> 1, whereT is the Hawking temperature, in agreement
with Polchinski's arguments. Using the techniques of effective Lagrangians, we demonstrate the robustness of
our results. We also solve a technical puzzle concerning the relation between the short-distance singularities of
the propagator and the Hawking effef$0556-282196)03610-1

PACS numbgs): 04.70.Dy, 04.62+v, 11.10.Gh

I. INTRODUCTION Hawking’s original derivation, as well as of more modern
alternativeq6].

The prediction that very massive stars must end their days The short distances arise because the Hawking radiation is
as black holes has by now become deeply ingrained intdefined to be the flux which emerges at very late times, well
common astrophysical lore. Our belief in this result rests inafter all of the transients associated with the stellar collapse
no small part on the continued success with which generatself have passed. However, in the usual derivations the ra-
relativity accounts for observations, both within the solardiation which emerges at the Hawking temperature at such
system and beyond. late times is strongly redshifted as it climbs out of the black

Part of the progress of the last 20 years has been thiole’s gravitational well. Alternatively, in the formalism set
integration of this success into the broader body of lawsup in Ref.[6], the outgoing flux is derived from the short-
which describe the other known, nongravitational, interacdistance form for the radiated particle’s two-poiad-
tions. It is now understood that, in spite of the notoriousamard function (see below for detai)sas its position argu-
obstacles to constructing a full quantum theory of gravity,ments, x and x’, approach one another and the event
semiclassical general relativity can be interpreted as a corhorizon.
trollable low-energy approximation to whatever unknown  Polchinski[7], on the other hand, has argued persuasively
physics might ultimately describe nature on the very shortestat, in spite of these appearances, Hawking radiation is nev-
of length scales. In this sense, general relativity joins otheertheless a robust feature of the long-distance theory. His
venerable, but nonrenormalizable, low-energy effective theoarguments use the ability, in principle, to perform one’s cal-
ries [1], and semiclassical calculations are justified for ob-culations using only “nice slices” for which curvatures are
servables that vary on distance scales that are long comparederywhere small, and for which the adiabatic theorem en-
to the Planck length. sures all high-frequency modes must be in their ground state.

Perhaps the biggest surprise to emerge from the study of Our purpose here is to present evidence supporting
semiclassical quantum physics in the presence of macrdolchinski’s arguments using an explicit calculation of the
scopic gravitational fields is Hawking’s discovef®], that  Hawking radiation in a simple model. We perform the fol-
black holes constantly radiate subatomic particles. Thespwing consistency check on these arguments: if the exist-
particles dominantly emerge far from the hole with energiessnce of nice slices guarantees that the Hawking flux is inde-
that are of order the Hawking temperatur&=T,  pendent of the details of short-distance physics, then any
=(4mrg) L, wheré rg=2GM is the Schwarzschild radius reasonable manifestly covariant, and so slice-independent,
for a black hole of mas#. Provided that the hole is suffi- ultraviolet regularization must also not affect this flux. We
ciently massiveGM?>1 (or, in cgs units M>22ug), the  test this by computing the Hawking radiation using a mini-
radiation is a long-wavelength effect, and so one expects itmally coupled massive scalar field in the presence of a
semiclassical description to be justified. Schwarzschild black hole, using a Pauli-Villars ultraviolet

It therefore comes as something of a surprise, as wasegularization. We are able to implement this regularization
originally emphasized ifi3], and more recently ifi4,5], to by suitably adapting the methods of Fredenhagen and Haag,
find that the standard derivations of the Hawking effést  Ref.[6]. We find that all of the cutoff dependence vanishes
four dimensions make reference in one way or another to exponentially in the limit A>Ty, in agreement with
physics at extremely short distances. This is true both oPolchinski’'s arguments.

The difficulty with any calculation which refers to an ex-
plicit type of short-distance physics is that one is left won-
lwe use fundamental unité,=c=kg=1, throughout. dering to what extent the conclusions drawn depend in a
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detailed way on its specific form. We address this potentialnverse of a covariantly defined cutoff lengthee belowy,
criticism in Sec. lll, by showing that the influence afy = andm is the mass of the original scalar field.
new physics that is local and generally covariant must be The properties of the regulator fields that are required
smaller than any power af; /A. We do so by showing that may be directly calculated from the known divergence struc-
no possible counterterm exists which can contribute to theure for minimally coupled free scalar fields propagating
Hawking flux as seen by observers at late times far from théhrough macroscopic background fields. For a scalar field of
hole. mass,m, there are three independent types of divergences,
The details of this calculation are described in Secs. Il anavhich are known to be proportional to the three coefficients
lll. In Sec. IV, we resolve an apparent paradox concerning8]:
the relation between the Hawking radiation and the absence
of short-distance singularities of the two-point function in
the regulated theory. Our conclusions are summarized in
Sec. V.

Co=m*[ao]=m*,

2

m
C;=m7a;]=- R,

Il. A REGULATED EXAMPLE 6

In this section we compute the dependence of the Hawk-
ing flux on the short-distance regulator. and
We take as our observable the outgoing energy flux per
unit time,.”7=—(T}), as seen at very late times and at a very 1
large distance from the black hole, with the average taken in Co=[a]=
the state which corresponds to the vacuum at very early
times before the black hole has formed.and r here 1
represent the usual Schwarzschild coordinates, in terms —3g0R* 7—2R2. (2.3
of which ds?=—(1—rg/r)dt?>+(1—rg/r) " tdr?+r2(d6?
+sirfed¢?). .7 is related to the total black hole luminosity
by L= f.71?sinddéd . Cancellation of all of these short-distance singularities
For a minimally coupled scalar field the stress tenso@mong the Pauli-Villars fields is therefore equivalent to the
is quadratic in the field operator, and so its expectatiorconditions
may be expressed in terms of the coincidence limit of the
Hadamard two-point function:G(x,x")=1/2(¢(x)¢(X")
+o(X")@(X)). In our case, 1+, =0,

1
P MVAp__ my
180wl 1807w R

T==(T)=—(Tirs)

1 [d 4 a 9 ) m2+ >, &M2=0, (2.9
——§|,Im WF‘FFE G(X,x ), (2.1) i
X —X
where r* is the “tortoise” coordinate:r*=r+rgn[(r/ry) miS eM*=0
—1]. The problem reduces to the calculation®fx,x"). ~

A. The regulator As is easily verified, a solution to these equations is given by

Since G(x,x') is singular asx’ —x, the components of e;=e,=+, Mi=M3=3A%+m? e3=€,=—, M3=M}
the stress tensor usually diverge, and so must be regularized A2+ m?; and es= —, M§=4A2+ m?.
and renormalized Off-diagonal components are typically fi-
nite in Schwarzschild, howevéiWe choose to perform this ) .
Pauli-Villars regularization, i.e., by introducing additional B. Computing the Hawking flux
fields, ¢;(x), some with the “wrong” sign kinetic energies, We may now useG,(Xx,x’) to compute theA depen-
in such a way as to ensure the finiteness of the coincidenagence of the Hawking flux. We do so by adapting the argu-
limit of ments of Ref[6] to our example, since this formulation of
the calculation is easily applied to massive fields.
Greg(XaX/):z €Gi(x,x), (2.2) Starting from the defi_nition 06 o X,X'), gnd Eq.(_2.1),
i we see that the Hawking flux may be simply written as
T=2¢7;, where.7; is the Hawking flux due to a mini-
where ;== keeps track of the sign of the correspondingmally coupled scalar field of maddl;. A straightforward
field's kinetic energy. We should also point out that the sumapplication of the techniques of Réb] gives the usual re-
in Eqg. (2.2) includes the contribution from the physical field sult
of massm whosee= +. Our purpose is ultimately to deter-
mine how.” depends on the masses of the regularization—
fields,M;, in the limit thatM;~ A>T,=m, whereA is the These expressions use the conventions of F2af.
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1 try to climb out of the black hole’s gravitational well. As a
Ti(My) = WE 1Y /m( 6, 0)|? result the sum over’ that appears irv; is eventually cut off
/m for sufficiently large/".
o ) We conclude, then, that at least for this regularization, the
Xf dw|~7/(w,Mi)|2m- (2.5  contribution of very-short-distance physics, at distances
Mi ~1/A, to the Hawking flux is exponentially suppressed by
the large ratioA/T, . This result raises two further ques-
In this expression, r(6,¢) are the Schwarzschild coordi- tions.
nates for the point at whichr; is computed, and ,, are the (1) To what extent does this result depend on the details
usual spherical harmonicsZ,(w,M;)|><1 is the probabil-  of the small-distance physics? Could other regularizations
ity that an outgoing particle of madd; and energyw (as lead to different conclusions, such as to corrections propor-
seen by the stationary observers at infinity transmitted tional to A P, for somep? We claim not, and demonstrate
from the event horizonr(— — ) out to infinity, rather than this robustness in Sec. IIl.
being scattered back to the horizon by the black hole’s gravi- (2) A more technical question is: since the technique of
tational field. Ref. [6] relates the Hawking flux to the singularity of the
Since the regulator fields all satisk§;> Ty, it suffices to  two-point function,G(x,x’) in the coincidence limit at the
use the asymptotic form for the flux in this limit. In this limit horizon, how can a nonzero flux have been obtained using a
the frequency integral may be bounded from above: regularized propagator such as the funct®gyx,x’) used
here? We deal with this question in Sec. IV.

oo w oo
fMidwl-y/(w,Mi)lzﬁ—ew 1 SZJMidwwe oI lll. THE GENERAL ARGUMENT
_ In this section we wish to argue for the robustness of the
<2T? 1+T—' e MilTh, (2.6) last section’s result. We do so by demonstrating thay
H other physically acceptable regularization can also only give
an exponentially small contribution to the Hawking flux.
We see that, for;, every term in the sum ovef is expo- Our starting point is the following expression for the
nentially small inA/T, . Of course, this is just what would lowest-orde(i.e., one-loopvacuum expectation value of the
be expected for a thermal radiation spectrum. stress tensqrl0]

One might worry that, although each term in the sum over
/" is exponentially small, it may be that the series sums to a
result which isnot exponentially suppressed. This does not (TH")=
happen, however, because a much stronger bound is possible
for |.7,|> when /' becomes sufficiently large. The better
bound arises because for large angular momenta the trang&here the subscripts indicate that the result is to be evaluated
mission probability,|.7,(w,M;)|? goes to zero. This can at the background field configuratiorgd ., and¢s. In the
most easily be seen by recasting the scattering problem ipresent instance we take these to be the classical solutions: a
terms of the quantum mechanics of a single particle movingchwarzschild metric with a constant scalar field which

2 or

v—0 5g,u,v

; 3.9
Js s

in the presence of an effective “potential”: minimizes the scalar potential. The functiofdlg, ¢] in the
above expression represents the generator for the one particle
, re /(/+1) rs irreducible(1PI) Green'’s functions fqr the scalar field, in
Ver=Mi| 1— n 1+ VZr2 + VERS the presence of a background metdg,, .
i i

We know how physics at very-short-distance scales,
/2 A~1/A, can contribute tqT,,) once we determine how it
W) (2.7 can appear ifT[g,¢]. But here we may take advantage of

! the basic property that makes effective Lagrangian tech-
niques so powerful elsewhere in physics: the influence of
This last, approximate, form has been simplified usingshort-distance physics on long-wavelength observables may
/=1 andM;rs>1. Classical evolution in this potential sim- be parametrized in terms of a set of real, local and generally
ply predicts|.7,|?=1 whenw lies above the potential for all covariant operators which involve only the long-wavelength
r, and|.7,|>=0 whenw is below the barrier for some For  degrees of freedom. That is,

the above potential, however, there is no barrier at all to

escape for’<L=3Mr, since only for these”’s can the I'[g9,¢]=Su+ ool 9, 0]+ a9, ¢], 3.2
centrifugal contribution dominate the gravitational attraction.

For />L, on the other handV has a maximum for whereS; is the classical actionl ,,{ g,¢] represents the
r=rma=rs that can reflect a potentially outgoing particle, long-distance loop contribution@s are usually computgd
and so transmission is forbidden fe<V,,,.. But since the and the “counterterms” i’ ,[g,¢] are the result of short-
height of the barrierV .~ 7//M;rg, grows for large/, re-  distance loops from frequencies greater thtan This last
flection eventually becomes inevitable for sufficiently largecontribution cannot be evaluated in detail without knowing
/. Physically, particles with large’, but fixed w, are not what physics lies beyond, but in general must take the
sufficiently radially directed to escape to infinity once theyform

Is
r

1+
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- A having a completely smooth two-point function. But it is also
I'\[0.0]1=2 coA ”f d*xOn(¢.,9,,). (3.3  straightforward to show, by trivially extending the arguments
" of Ref. [6] to massive fields, that a coincidence limit of

Here n runs over all possible local operator®,(¢,g), the formG(x,x’)~1/[47720(x,x')]+(|e53 singular), where
which we take to be organized with increasing dimension@(X,x") denotes the proper separation between the paints
(masg . In all of these expressions the fielgls, ande can andx’, is required near=r in order to produce the Hawk-
vary appreciably only over distances that are long comparefd radiation. That is, in the approach of Rg] the Hawk-
to \. This is because it is only in this limit that the short- INg flux is completely determined by the coefficient of this
distance physics can be represented by local operators. /0 singularity of the two-point functionG(x,x"), when the
The main point is thaainy type of physically acceptable commdenc_e limit is taker_l near the black hole event horizon.
short-distance physics may be parametrized in terms of thishe guestion therefore is: How can a nonzero flux be ob-
type of real, local, and generally covariant effective Lagrangf@ined using a regularized propagator which is smooth in the
ian. Differing types of short-distance physics that share th@o!nmdencg limit? The present section is devoted to the reso-
same low-energy particle content, and respect the same loyHtion of this apparent contradiction. _
energy symmetries, can only differ in their predictions for ~ The starting point for the analysis of R¢€] is the obser-
the values of the various coefficients,. It is important to ~ Vation that Eq(2.1) allows us to compute the Hawking flux
notice that we dmot restrict ourselves here to those terms in@t @ point ,.72,0,®), at large distances from the black
I'A[g,¢] which diverge as\ — . ho!e and at late times, given knowledge @(x,_x’) in the
In particular, in order fomny short-distance modification Neighborhood of this point. In Reff6] the two-point function
of the minimally coupled scalar model of the previous sec-2t large distances from the black ho@(X;,X5), is related
tion to contribute differently to the Hawking radiation, it O its values on an earlier spacelike hypersurface using the
must be possible to represent this difference in terms of gurface independence of the Klein-Gordon inner product:
real, local, generally covariant contributionltg;. A contri-
bution that is suppressed only lrypowers of A "1 (as op- (f,g):J f*g’ﬂgdgu (4.2)
posed to being exponentially smahould show up as an 3
effective operator having dimensigmass**4. It only re- . ) . .
mains to show that no such operator exists that is a generalffovided that the functions andg satisfy the Klein-Gordon
covariant, local polynomial of the fieldss, g, and their ~€duation. This leads to the expression
derivatives. As a result, new physics at scdlecan only

contribute an amount that is smaller than any power of G(xl,xz):f f dz,lidz,z,G(XLXz)
AL s s,
An effective operator il ,[g,¢] can only contribute to - o .
the Hawking radiation if its contributiond(T,,), to the X 991,92, T (X)) T* (X2), (4.2

vacuum expectation value of the stress tensor satisfies theh both int | tak th timelik
following two properties{1) In order to contribute to7, its where both Integrals are taken over i€ same umelike sur-

off-diagonal, &(Ty-), component must not be zero: a@) face, 2, which we may take to be a surface of constant

this off-diagonal component must fall off likerf/ asr— o g;t:r u_2r"n2;dhzgdmeaiﬁreu t;m ‘Q.’tUCh al tcsEurfaé:e IS
in order to contribute a nonvanishing amount to the particle i 'tl_n resi rdéde, with n* the unit normal ta. ;.. Ex-
flux, Ly, at large distances from the black hole. plicitly,
The argument that rules out any such term is very simple
to give. Any such term must be a symmetric, conserved ten- n-dé=
sor that is constructed from local powers of the fields and
their derivatives. Since the background scalar-field configu- . . . . .
ration, ¢, is constant, it only co?ltributes in a trivial waﬁ The f_unctlonf(x) Wh.'Ch appears in Ec_{.4.2) |s.the par.t|c.ular
The only other fields are the metric, and its derivatives: cursolution o the ,!<Ie|n-(_'5_o rdon equation which satisfies the
vature tensors, their covariant derivatives, etc. following |_n|t|al conditions, which we choos_e to specn_‘y
The only possible term which does not involve the curva-2" @ late-time constatsurface which contains the point
ture tensor would beX(T ,,)%(g) .. for which thet—r* X=(T,2,0,®) at which the Hawking flux is to be mea-

element is zero. But all components of the curvature tenso?ured'
and its covariant derivatives fall off for largeat least as fast
as 13, and so approach zero too quickly to contribute a flux f(x) =0,
at infinity. t=T

We see in this way that, with the given particle content, (4.9
the contribution of short-distance physics is always smaller
than any power ofs 2. a,f (%)

— . 4.3

= 3(x—X).

t=T

IV. HAWKING RADIATION AND THE ABSENCE

OF SINGULARITIES The vector symbol here denotes the three coordinates which

specify a point on the surfade=T.
The result of the last section raises another question. We The Fredenhagen-Haag derivati8] crucially relies on
have computed the Hawking radiation in a regulated theoryhis surface independence of the Klein-Gordon inner prod-
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uct, (f,g)=fzf*3#gd2“, when the functiond andg sat- A 1 , -
isfy the Klein-Gordon equation. In E@4.2), this is applied Ga(X1,Xp)= |V|_4L LdE’dez[DlG(xl,xz)]
in particular to the two-point functiorG(x,x"). The resolu- -
tion of the apparent paradox therefore relies on the fact that a % 31 (3’2 f(x1)F* (X,),
regulated propagator lik&{x,x') does not satisfy the moer
Klein-Gordon equation, but rather satisfies a more compli- (4.9
cated higher-derivative equation of motion. The conserved A 1 A
inner product for this equation of motion also involves Gs(xl.xz)=—4J f d34d3 [ 0,G(Xq,%)]
higher-derivative corrections, and these corrections are what MZJsJs
generate the Hawking flux from a nonsingular two-point - o
function. X d1,,02,F (X)) F*(X2),
We next illustrate this argument with an explicit calcula-
tion. Rather than dealing with the cumbersome details of the . 1 g v -
five regulator fields that are used in the text, for clarity of Ga(Xy,Xp) = M_{L LdzldEZ[DlDZG(Xl’XZ)]
presentation we instead present an example which uses just
one regulator field. Consider, therefore, the following two- % 31#32Vf(xl)f*(xz)_
point function:

In these expressions(x)=0f(x)— Mif(x). The function

G, X")=Gma(x,x") = Gya(x,x"), (49 f(x) must also satisfy the “initial conditions”

where G2(X,Xx") and Gy2(x,x"), respectively, denote the £(x)| (o7=0

two-point functions for free scalar fields of mass and e

M>m. Comparing to the short-distance expansion of Ref. 2 ()] r=0

[8] shows that the coincidence limit &(x,x’) is at worst t =T

~Ino(x,x’), for Schwarzschild spacetime. Even though this (4.10

is less singular than &(x,x"), our goal here is to show that _

G(x,x") nevertheless produces a nonzero Hawking flux. D)) =7=0,
In order to apply the methods of R¢6], we must first

find what equation of motiorG(x,x") satisfies, and then

construct the corresponding conserved “inner product” for

this equation. As is simple to check, the equation of motionwhich play the role here of Eq4.4) in the Klein-Gordon
is case.

As fearsome as it looks, this initial-value problem can be
1 . solved, and leads to function§, (x), which are basically
W(D—mz)(D—Mz)G(X,X’)ZO- (4.0 identical with those that are found for the Klein-Gordon
case. In particular, their support becomes infinitely small as
The conserved “inner product” for two solution§,and g, (T—t)—oe, requiring a_coefficient function that varies_ like
of this equation then is /o (x1,x,) near the horizon. The new feature, though, is that
the function that must be this singular involves not just
M2 - 1 - G(x1,X2), but also itsderivatives It is these derivative terms
[f.9l=—4y=z LdE“f* aﬂg+M—2LdE“f*aﬂDg that save the day: acting ofs(x,x’) they convert its
- - Ina(x,x") behavior into the X*(x,x") that is required for a
nonzero result.

HOF(X)| =r=M? 8%(x),

1 -
+M—2_fzd2M(Df*)ﬂMg, (4.7
V. SUMMARY

2 _M24m2 i i
whereM - M *m’, and3 is a spacelike gurface. Clearly . We have presented a derivation of the Hawking radiation
this expression approaches the usual Klein-Gordon one in

S within a simple model for which the ultraviolet regulariza-
the limit M —eo. ion has been made explicit. This calculation permits the
Using this expression to write the analogue of E42) tion has b plct : P .

. regularization dependence of the Hawking flux to be explic-
gives the result itly displayed. It is found that the cutoff dependence is ex-
4 ponentially small in the limit that\/T> 1. Since the Pauli-
é(xl,xz)=2 éj(xl,xz), (4.9  Villars regularization used is slice independen‘t‘, this (esHIt
j=1 agrees with what one would expect from the “nice-slice
argument in favor of the irrelevance of the details of high-
where energy physics on the prediction of Hawking radiation.
1 We show in Sec. lll that the conclusion that the contribu-
A~ _ = BAS VA tions of the details of the short-distance physics to the Hawk-
Ca(X1 %)= gz Jz fzdzldzzG(Xl'XZ) ing flux are exponentially suppressed in the raticr ;> 1 is
. not specific to the Pauli-Villars regularization but is a generic
X d1,,02,F(X1)F*(Xp), feature of any generally covariant short-distance regulariza-
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tion (modification of short-distance physics. Using the ef- ing flux in the regulated theory, even though the resulting
fective Lagrangian techniques, we rule out the existence ofegulated two-point function is nonsingular in the coinci-
any covariant, local cutoff dependent counterterm which carlence limit.
contribute to the Hawking flux at late times far from the
hole.
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