
8 The Unruh effect
Summary: Uniformly accelerated motion. The Rindler spacetime in 1+1
dimensions. Quantization of massless scalar field. The Rindler and the
Minkowski vacua. Density of particles. The Unruh temperature.

The Unruh effect predicts the detection of particles in vacuum by an accelerated ob-
server. In this chapter we consider the simplest case when the observer moves with
a constant acceleration through the Minkowski spacetime. Even though the field is
in the vacuum state, the observer finds a distribution of particles characteristic of a
thermal bath of blackbody radiation.

8.1 Kinematics of uniformly accelerated motion
First we consider the trajectory of an object moving with a constant acceleration in
the Minkowski spacetime. A model of this situation is a spaceship with an infinite
energy supply and a propulsion engine that exerts a constant force (but moves with
the ship). The resulting motion of the spaceship is such that the acceleration of the
ship in its own frame of reference (the proper acceleration) is constant. This is the
natural definition of a uniformly accelerated motion in a relativistic theory. (An object
cannot move with dv/dt = const for all time because velocities must be smaller than
the speed of light, |v| < 1.)

We now introduce the reference frames that will play a major role in our consider-
ations: the laboratory frame, the proper frame, and the comoving frame. The labo-
ratory frame is the usual inertial reference frame with the coordinates (t, x, y, z). The
proper frame is the accelerated system of reference that moves together with the ob-
server; we shall also call it the accelerated frame. The comoving frame defined at a
time t0 is the inertial frame in which the accelerated observer is instantaneously at rest
at t = t0. (Thus the term comoving frame actually refers to a different frame for each
t0.)

By definition, the observer’s proper acceleration at time t = t0 is the 3-acceleration
measured in the comoving frame at time t0. We consider a uniformly accelerated
observer whose proper acceleration is time-independent and equal to a given 3-vector
a. The trajectory of such an observer may be described by a worldline xμ(τ), where
τ is the proper time measured by the observer. The proper time parametrization
implies the condition

uμuμ = 1, uμ ≡ dxμ

dτ
. (8.1)
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8 The Unruh effect

It is a standard result that the 4-acceleration in the laboratory frame,

aμ ≡ duμ

dτ
=

d2xμ

dτ2
,

is related to the three-dimensional proper acceleration a by

aμaμ = − |a|2 . (8.2)

Derivation of Eq. (8.2). Let uμ(τ ) be the observer’s 4-velocity and let tc be the time vari-
able in the comoving frame defined at τ = τ0; this is the time measured by an inertial
observer moving with the constant velocity uμ(τ0). We shall show that the 4-acceleration
aμ(τ ) in the comoving frame has components

`
0, a1, a2, a3

´
, where ai are the components

of the acceleration 3-vector a ≡ d2x/dt2c measured in the comoving frame. It will then
follow that Eq. (8.2) holds in the comoving frame, and hence it holds also in the laboratory
frame since the Lorentz-invariant quantity aμaμ is the same in all frames.

Since the comoving frame moves with the velocity uμ(τ0), the 4-vector uμ(τ0) has the
components (1, 0, 0, 0) in that frame. The derivative of the identity uμ(τ )uμ(τ ) = 1 with
respect to τ yields aμ(τ )uμ(τ ) = 0, therefore a0(τ0) = 0 in the comoving frame. Since
dtc = u0(τ )dτ and u0(τ0) = 1, we have

d2xμ

dt2c
=

1

u0

d

dτ

»
1

u0

dxμ

dτ

–
=

d2xμ

dτ 2
+

dxμ

dτ

d

dτ

1

u0
.

It remains to compute

d

dτ

1

u0(τ0)
= − ˆ

u0(τ0)
˜−2 du0

dτ

˛̨
˛̨
τ=τ0

= −a0 (τ0) = 0,

and it follows that d2xμ/dτ 2 = d2xμ/dt2c =
`
0, a1, a2, a3

´
as required. (Self-test question:

why is aμ = duμ/dτ �= 0 even though uμ = (1, 0, 0, 0) in the comoving frame?)

We now derive the trajectory xμ(τ) of the accelerated observer. Without loss of
generality, we may assume that the acceleration is parallel to the x axis, a ≡ (a, 0, 0),
where a > 0, and that the observer moves only in the x direction. Then the coordi-
nates y and z of the observer remain constant and only the functions x(τ), t(τ) need to
be computed. From Eqs. (8.1)-(8.2) it is straightforward to derive the general solution

x(τ) = x0 − 1

a
+
1

a
coshaτ, t(τ) = t0 +

1

a
sinh aτ. (8.3)

This trajectory has zero velocity at τ = 0 (which implies x = x0, t = t0).

Derivation of Eq. (8.3). Since aμ = duμ/dτ and u2 = u3 = 0, the components u0, u1 of the
velocity satisfy

„
du0

dτ

«2

−
„

du1

dτ

«2

= −a2,

`
u0´2 − `

u1´2
= 1.
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8.1 Kinematics of uniformly accelerated motion

We may assume that u0 > 0 (the time τ grows together with t) and that du1/dτ > 0, since
the acceleration is in the positive x direction. Then

u0 =

q
1 + (u1)2;

du1

dτ
= a

q
1 + (u1)2.

The solution with the initial condition u1(0) = 0 is

u1(τ ) ≡ dx

dτ
= sinh aτ, u0(τ ) ≡ dt

dτ
= cosh aτ.

After an integration we obtain Eq. (8.3).

The trajectory (8.3) has a simpler form if we choose the initial conditions x(0) = a−1

and t(0) = 0. Then the worldline is a branch of the hyperbola x2 − t2 = a−2 (see
Fig. 8.1). At large |t| the worldline approaches the lightcone. The observer comes in
from x = +∞, decelerates and stops at x = a−1, and then accelerates back towards
infinity. In the comoving frame of the observer, this motion takes infinite proper time,
from τ = −∞ to τ = +∞.

From now on, we drop the coordinates y and z and work in the 1+1-dimensional
spacetime (t, x).

8.1.1 Coordinates in the proper frame
To describe quantum fields as seen by an accelerated observer, we need to use the
proper coordinates (τ, ξ), where τ is the proper time and ξ is the distance measured
by the observer. The proper coordinate system (τ, ξ) is related to the laboratory frame
(t, x) by some transformation functions τ(t, x) and ξ(t, x) which we shall now deter-
mine.

The observer’s trajectory t(τ), x(τ) should correspond to the line ξ = 0 in the proper
coordinates. Let the observer hold a rigid measuring stick of proper length ξ0, so
that the entire stick accelerates together with the observer. Then the stick is instanta-
neously at rest in the comoving frame and the far endpoint of the stick has the proper
coordinates (τ, ξ0) at time τ . We shall derive the relation between the coordinates
(t, x) and (τ, ξ) by computing the laboratory coordinates (t, x) of the far end of the
stick as functions of τ and ξ0.

In the comoving frame at time τ , the stick is represented by the 4-vector sμ
(com) ≡

(0, ξ0) connecting the endpoints (τ, 0) and (τ, ξ0). This comoving frame is an inertial
system of reference moving with the 4-velocity uμ(τ) = dxμ/dτ . Therefore the coor-
dinates sμ

(lab) of the stick in the laboratory frame can be found by applying the inverse
Lorentz transformation to the coordinates sμ

(com):[
s0
(lab)

s1
(lab)

]
=

1√
1− v2

(
1 v
v 1

)[
s0
(com)

s1
(com)

]
=

(
u0 u1

u1 u0

)[
s0
(com)

s1
(com)

]
=

[
u1ξ
u0ξ

]
,

where v ≡ u1/u0 is the velocity of the stick in the laboratory system. The stick is
attached to the observer moving along xμ(τ), so the proper coordinates (τ, ξ) of the
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Q

P

R

a−1

t = −
x

t =
x

x

t

0

Figure 8.1: The worldline of a uniformly accelerated observer (proper acceleration
a ≡ |a|) in the Minkowski spacetime. The dashed lines show the light-
cone. The observer cannot receive any signals from the events P , Q and
cannot send signals to R.
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8.1 Kinematics of uniformly accelerated motion

far end of the stick correspond to the laboratory coordinates

t(τ, ξ) = x0(τ) + s0
(lab) = x0(τ) +

dx1(τ)

dτ
ξ, (8.4)

x(τ, ξ) = x1(τ) + s1
(lab) = x1(τ) +

dx0(τ)

dτ
ξ. (8.5)

Note that the relations (8.4)-(8.5) specify the proper frame for any trajectory x0,1(τ) in
the 1+1-dimensional Minkowski spacetime.

Now we can substitute Eq. (8.3) into the above relations to compute the proper
coordinates for a uniformly accelerated observer. We choose the initial conditions
x0(0) = 0, x1(0) = a−1 for the observer’s trajectory and obtain

t(τ, ξ) =
1 + aξ

a
sinhaτ, (8.6)

x(τ, ξ) =
1 + aξ

a
coshaτ. (8.7)

The converse relations are

τ(t, x) =
1

2a
ln

x+ t

x− t
,

ξ(t, x) = −a−1 +
√

x2 − t2.

The horizon

From Eqs. (8.6)-(8.7) it can be seen that the coordinates (τ, ξ) vary in the intervals
−∞ < τ < +∞ and −a−1 < ξ < +∞. In particular, for ξ < −a−1 we would
find ∂t/∂τ < 0, i.e. the direction of time t would be opposite to that of τ . One can
verify that an accelerated observer cannot measure distances longer than a−1 in the
direction opposite to the acceleration, for instance, the distances to the events P and
Q in Fig. 8.1. A measurement of the distance to a point requires to place a clock
at that point and to synchronize that clock with the observer’s clock. However, the
observer cannot synchronize clocks with the events P and Q because no signals can
be ever received from these events. One says that the accelerated observer perceives
a horizon at proper distance a−1.

The coordinate system (8.6)-(8.7) is incomplete and covers only a “quarter” of the
Minkowski spacetime, more precisely, the subdomain x > |t| (see Fig. 8.2). This
is the subdomain of the Minkowski spacetime accessible to a uniformly accelerated
observer. For instance, the events P , Q, R cannot be described by (real) values of τ
and ξ. The past lightcone x = −t corresponds to the proper coordinates τ = −∞
and ξ = −a−1. The observer can see signals from the event R, however these signals
appear to have originated not from R but from the horizon ξ = −a−1 in the infinite
past τ = −∞.

Another way to see that the line ξ = −a−1 is a horizon is to consider a line of
constant proper length ξ = ξ0 > −a−1. It follows from Eqs. (8.6)-(8.7) that the line
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8 The Unruh effect

ξ = ξ0 is a trajectory of the form x2 − t2 = const with the proper acceleration

a0 ≡ 1√
x2 − t2

=
(
ξ0 + a−1

)−1
.

The observer cannot hold a rigid measuring stick longer than a−1 because the point
ξ = −a−1 of the stick would have to move with an infinite proper acceleration, which
would require an infinitely large force and is thus impossible.

8.1.2 The Rindler spacetime
The Minkowski metric in the proper coordinates (τ, ξ) is

ds2 = dt2 − dx2 = (1 + aξ)2dτ2 − dξ2. (8.8)

The spacetime with this metric is called the Rindler spacetime. The curvature of the
Rindler spacetime is everywhere zero since it differs from the Minkowski spacetime
merely by a change of coordinates.

Exercise 8.1
Derive the metric (8.8) from Eqs. (8.6)-(8.7).

To develop the quantum field theory in the Rindler spacetime, we first rewrite the
metric (8.8) in a conformally flat form. This can be achieved by choosing the new
spatial coordinate ξ̃ such that dξ = (1 + aξ)dξ̃, because in that case both dτ2 and dξ̃2

will have a common factor (1 + aξ)2. The necessary replacement is therefore

ξ̃ ≡ 1

a
ln(1 + aξ).

Since the proper distance ξ is constrained by ξ > −a−1, the conformal distance ξ̃

varies in the interval −∞ < ξ̃ < +∞. The metric becomes

ds2 = e2aξ̃(dτ2 − dξ̃2). (8.9)

The relation between the laboratory coordinates and the conformal coordinates is

t(τ, ξ̃) = a−1eaξ̃ sinh aτ, x(τ, ξ̃) = a−1eaξ̃ coshaτ. (8.10)

8.2 Quantum fields in the Rindler spacetime
The goal of this section is to quantize a scalar field in the proper reference frame of
a uniformly accelerated observer. To simplify the problem, we consider a massless
scalar field in the 1+1-dimensional spacetime. All physical conclusions will be the
same as those drawn from a four-dimensional calculation.

The action for a massless scalar field φ(t, x) is

S[φ] =
1

2

∫
gαβφ,αφ,β

√−gd2x.
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8.2 Quantum fields in the Rindler spacetime

Q

P

R

x

t

Figure 8.2: The proper coordinate system of a uniformly accelerated observer in the
Minkowski spacetime. The solid hyperbolae are the lines of constant
proper distance ξ; the hyperbola with arrows is ξ = 0, or x2 − t2 = a−2.
The lines of constant τ are dotted. The dashed lines show the lightcone
which corresponds to ξ = −a−1. The events P , Q, R are not covered by
the proper coordinate system.
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8 The Unruh effect

Here xμ ≡ (t, x) is the two-dimensional coordinate. It is easy to see that this action is
conformally invariant: indeed, if we replace

gαβ → g̃αβ = Ω2(t, x)gαβ ,

then the determinant
√−g and the contravariant metric are replaced by
√−g → Ω2√−g, gαβ → Ω−2gαβ , (8.11)

so the factorsΩ2 cancel in the action. Therefore the minimally coupled massless scalar
field in the 1+1-dimensional Minkowski spacetime is in fact conformally coupled. The
conformal invariance causes a significant simplification of the theory in 1+1 dimen-
sions. (Note that a minimally coupled massless scalar field in 3+1 dimensions is not
conformally coupled!)

In the laboratory coordinates (t, x), the action is

S[φ] =
1

2

∫ [
(∂tφ)

2 − (∂xφ)
2
]
dt dx.

In the conformal coordinates, the metric (8.9) is equal to the flat Minkowski metric
multiplied by a conformal factorΩ2(τ, ξ̃) ≡ exp(2aξ̃). Therefore, due to the conformal
invariance, the action has the same form in the coordinates (τ, ξ̃):

S[φ] =
1

2

∫ [
(∂τφ)

2 − (∂ξ̃φ)
2
]
dτ dξ̃.

The classical equations of motion in the laboratory frame and in the accelerated
frame are

∂2φ

∂t2
− ∂2φ

∂x2
= 0;

∂2φ

∂τ2
− ∂2φ

∂ξ̃2
= 0,

with the general solutions

φ(t, x) = A(t− x) +B(t+ x), φ(τ, ξ̃) = P (τ − ξ̃) +Q(τ + ξ̃).

Here A, B, P , and Q are arbitrary smooth functions. Note that a solution φ(t, x)

representing a certain state of the field will be a very different function of τ and ξ̃.

8.2.1 Quantization
We shall now quantize the field φ and compare the vacuum states in the laboratory
frame and in the accelerated frame.

The procedure of quantization is formally the same in both coordinate systems
(t, x) and (τ, ξ̃). The mode expansion in the laboratory frame is found from Eq. (4.17)
with the substitution ωk = |k|:

φ̂(t, x) =

∫ +∞

−∞

dk

(2π)1/2

1√
2 |k|

[
e−i|k|t+ikxâ−k + ei|k|t−ikxâ+

k

]
. (8.12)
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8.2 Quantum fields in the Rindler spacetime

The normalization factor (2π)1/2 is used in 1+1 dimensions instead of the factor (2π)3/2

used in 3+1 dimensions. The creation and annihilation operators â±k defined by
Eq. (8.12) satisfy the usual commutation relations and describe particles moving with
momentum k either in the positive x direction (k > 0) or in the negative x direction
(k < 0).

Remark: the zero mode. The mode expansion (8.12) ignores the k = 0 solution, φ(t, x) =
c0 + c1t, called the zero mode. Quantization of the zero mode in the 1+1-dimensional
spacetime is a somewhat complicated technical issue. However, the zero mode does not
contribute to the four-dimensional theory and we ignore it here.

The vacuum state in the laboratory frame (the Minkowski vacuum), denoted by
|0M 〉, is the zero eigenvector of all annihilation operators â−k ,

â−k |0M 〉 = 0 for all k.

The mode expansion in the accelerated frame is quite similar to Eq. (8.12),

φ̂(τ, ξ̃) =

∫ +∞

−∞

dk

(2π)1/2

1√
2 |k|

[
e−i|k|τ+ikξ̃ b̂−k + ei|k|τ−ikξ̃ b̂+

k

]
. (8.13)

Note that the mode expansions (8.12) and (8.13) are decompositions of the operator
φ̂(x, t) into linear combinations of two different sets of basis functions with operator-
valued coefficients â±k and b̂±k . So it is to be expected that the operators â±k and b̂±k are
different, although they satisfy similar commutation relations.

The vacuum state in the accelerated frame |0R〉 (the Rindler vacuum) is defined by

b̂−k |0R〉 = 0 for all k.

Since the operators b̂k differ from âk, the Rindler vacuum |0R〉 and the Minkowski
vacuum |0M 〉 are two different quantum states of the field φ̂.

At this point, a natural question to ask is whether the state |0M 〉 or |0R〉 is the
“correct” vacuum. To answer this question, we need to consider the physical inter-
pretation of the states |0M 〉 and |0R〉 in a particular (perhaps imaginary) physical ex-
periment. In Sec. 6.3.2 we discussed a hypothetical device for preparing the quantum
field in the lowest-energy state. If mounted onto an accelerated spaceship, the device
will prepare the field in the quantum state |0R〉. All observers moving with the ship
would agree that the field in the state |0R〉 has the lowest possible energy, while the
Minkowski state |0M 〉 has a higher energy. Thus a particle detector which remains at
rest in the accelerated frame will register particles when the field is in the state |0M 〉.
However, in the laboratory frame the state with the lowest energy is |0M 〉 and the
state |0R〉 has a higher energy. Therefore, if the field is in the Rindler state |0R〉 (the
vacuum prepared inside the spaceship), it will appear to be in an excited state when
examined by observers in the laboratory frame.

Neither of the two vacuum states is “more correct” if considered by itself, without
regard for realistic physical conditions in the universe. Ultimately the choice of vac-
uum is determined by experiment: the correct vacuum state must be such that the
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8 The Unruh effect

theoretical predictions agree with available experimental data. In an inertial refer-
ence frame in the Minkowski spacetime, we observe empty space that does not create
any particles by itself. By virtue of this observation, we are justified to assume that
fields in the empty Minkowski spacetime are in the vacuum state |0M 〉 and that any
excitations in the field modes are always due to external sources. In particular, an
accelerated observer moving through empty space will encounter fields in the state
|0M 〉 and therefore will detect particles. This detection is the manifestation of the
Unruh effect.

The rest of this chapter is devoted to a calculation relating the Minkowski frame
operators â±k to the Rindler frame operators b̂±k through the appropriate Bogolyubov
coefficients. This calculation will enable us to express the Minkowski vacuum as a su-
perposition of excited states built on top of the Rindler vacuum and thus to compute
the probability distribution for particle occupation numbers observed in the acceler-
ated frame.

8.2.2 Lightcone mode expansions
It is convenient to introduce the lightcone coordinates1

ū ≡ t− x, v̄ ≡ t+ x; u ≡ τ − ξ̃, v ≡ τ + ξ̃.

The relation between the laboratory frame and the accelerated frame has a simpler
form in lightcone coordinates: from Eq. (8.10) we find

ū = −a−1e−au, v̄ = a−1eav, (8.14)

so the metric is
ds2 = dū dv̄ = ea(v−u)du dv.

The field equations and their general solutions are also expressed more concisely in
the lightcone coordinates:

∂2

∂ū∂v̄
φ (ū, v̄) = 0, φ (ū, v̄) = A (ū) +B (v̄) ;

∂2

∂u∂v
φ(u, v) = 0, φ(u, v) = P (u) +Q(v). (8.15)

The mode expansion (8.12) can be rewritten in the coordinates ū, v̄ by first splitting
the integration into the ranges of positive and negative k,

φ̂(t, x) =

∫ 0

−∞

dk

(2π)1/2

1√
2 |k|

[
eikt+ikxâ−k + e−ikt−ikxâ+

k

]

+

∫ +∞

0

dk

(2π)1/2

1√
2k

[
e−ikt+ikxâ−k + eikt−ikxâ+

k

]
.

1The chosen notation (u, v) for the lightcone coordinates in a uniformly accelerated frame and (ū, v̄) for
the freely falling (unaccelerated) frame will be used in Chapter 9 as well.
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8.2 Quantum fields in the Rindler spacetime

Then we introduce ω = |k| as the integration variable with the range 0 < ω < +∞
and obtain the lightcone mode expansion

φ̂ (ū, v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[
e−iωūâ−ω + eiωūâ+

ω + e−iωv̄â−−ω + eiωv̄â+
−ω

]
. (8.16)

Lightcone mode expansions explicitly decompose the field φ̂ (ū, v̄) into a sum of
functions of ū and functions of v̄. This agrees with Eq. (8.15) from which we find
that A (ū) is a linear combination of the operators â±ω with positive momenta ω, while
B (v̄) is a linear combination of â±−ω with negative momenta −ω:

φ̂ (ū, v̄) = Â (ū) + B̂ (v̄) ;

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[
e−iωūâ−ω + eiωūâ+

ω

]
,

B̂ (v̄) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[
e−iωv̄â−−ω + eiωv̄â+

−ω

]
.

The lightcone mode expansion in the Rindler frame has exactly the same form ex-
cept for involving the coordinates (u, v) instead of (ū, v̄). We use the integration vari-
able Ω to distinguish the Rindler frame expansion from that of the Minkowski frame,

φ̂(u, v) = P̂ (u) + Q̂(v)

=

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[
e−iΩub̂−Ω + eiΩub̂+

Ω + e−iΩv b̂−−Ω + eiΩv b̂+
−Ω

]
. (8.17)

As before, P̂ (u) is expanded into operators b̂±Ω with positive momenta Ω and Q̂(v)

into the operators b̂±−Ω with negative momenta −Ω. (Note that in all lightcone mode
expansions, the variables ω and Ω take only positive values.)

8.2.3 The Bogolyubov transformations
The relation between the operators â±±ω and b̂±±Ω, which we shall presently derive, is a
Bogolyubov transformation of a more general form than that considered in Sec. 6.2.2.

Since the coordinate transformation (8.14) does not mix u and v, the identity

φ̂(u, v) = Â (ū(u)) + B̂ (v̄(v)) = P̂ (u) + Q̂(v)

entails two separate relations for u and for v,

Â (ū(u)) = P̂ (u), B̂ (v̄(v)) = Q̂(v).

Comparing the expansions (8.16) and (8.17), we find that the operators â±ω with posi-
tive momenta ω are expressed through b̂±Ω with positive momenta Ω, while the oper-
ators â±−ω are expressed through negative-momentum operators b̂±−Ω. In other words,
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8 The Unruh effect

there is no mixing between operators of positive and negative momentum. The rela-
tion Â (ū) = P̂ (u) is then rewritten as

Â (ū) =

∫ +∞

0

dω

(2π)1/2

1√
2ω

[
e−iωūâ−ω + eiωūâ+

ω

]
=P̂ (u) =

∫ +∞

0

dΩ

(2π)1/2

1√
2Ω

[
e−iΩub̂−Ω + eiΩub̂+

Ω

]
. (8.18)

Here ū is understood to be the function of u given by Eq. (8.14); both sides of Eq. (8.18)
are equal as functions of u.

We can now express the positive-momentum operators â±ω as explicit linear combi-
nations of b̂±Ω . To this end, we perform the Fourier transform of both sides of Eq. (8.18)
in u. The RHS yields

∫ +∞

−∞

du√
2π

eiΩuP̂ (u) =
1√
2 |Ω|

{
b̂−Ω , Ω > 0;

b̂+
|Ω|, Ω < 0.

(8.19)

(The Fourier transform variable is denoted also by Ω for convenience.) The Fourier
transform of the LHS of Eq. (8.18) yields an expression involving all â±ω ,

∫ +∞

−∞

du√
2π

eiΩuÂ (ū) =

∫ ∞

0

dω√
2ω

∫ +∞

−∞

du

2π

[
eiΩu−iωūâ−ω + eiΩu+iωūâ+

ω

]
≡

∫ ∞

0

dω√
2ω

[
F (ω,Ω)â−ω + F (−ω,Ω)â+

ω

]
, (8.20)

where we introduced the auxiliary function2

F (ω,Ω) ≡
∫ +∞

−∞

du

2π
eiΩu−iωū =

∫ +∞

−∞

du

2π
exp

[
iΩu+ i

ω

a
e−au

]
. (8.21)

Comparing Eqs. (8.19) and (8.20) restricted to positive Ω, we find that the relation
between â±ω and b̂−Ω is of the form

b̂−Ω =

∫ ∞

0

dω
[
αωΩâ−ω + βωΩâ+

ω

]
, (8.22)

where the coefficients αωΩ and βωΩ are

αωΩ =

√
Ω

ω
F (ω,Ω), βωΩ =

√
Ω

ω
F (−ω,Ω); ω > 0,Ω > 0. (8.23)

2Because of the carelessly interchanged order of integration while deriving Eq. (8.20), the integral (8.21)
diverges at u → +∞ and the definition of F (ω, Ω) must be understood in the distributional sense. In
Appendix A.3 it is shown how to express F (ω,Ω) through Euler’s gamma function, but we shall not
need that representation.
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8.2 Quantum fields in the Rindler spacetime

The operators b̂+
Ω can be similarly expressed through â±ω using the Hermitian conju-

gation of Eq. (8.22) and the identity

F ∗(ω,Ω) = F (−ω,−Ω).

The relation (8.22) is a Bogolyubov transformation that mixes creation and annihi-
lation operators with different momenta ω �= Ω. In contrast, the Bogolyubov trans-
formations considered in Sec. 6.2.2 are “diagonal,” with αωΩ and βωΩ proportional to
δ(ω − Ω).

The relation between the operators â±−ω and b̂±−Ω is obtained from the equation
B̂ (v̄) = Q̂(v). We omit the corresponding straightforward calculations and concen-
trate on the positive-momentum modes; the results for negative momenta are com-
pletely analogous.

General Bogolyubov transformations

We need to briefly consider the properties of general Bogolyubov transformations,

b̂−Ω =

∫ +∞

−∞
dω

[
αωΩâ−ω + βωΩâ+

ω

]
. (8.24)

The relation (8.22) is of this form except for the integration over 0 < ω < +∞ which
is justified because the only nonzero Bogolyubov coefficients are those relating the
momenta ω,Ω of equal sign, i.e. α−ω,Ω = 0 and β−ω,Ω = 0. But for now we shall not
limit ourselves to this case.

The relation for the operator b̂+
Ω is the Hermitian conjugate of Eq. (8.24).

Remark: To avoid confusion in the notation, we always write the indices ω, Ω in the Bo-
golyubov coefficients in this order, i.e. αωΩ, but never αΩω . In the calculations throughout
this chapter, the integration is always over the first index ω corresponding to the momen-
tum of a-particles.

Since the operators â±ω , b̂±Ω satisfy the commutation relations

[
â−ω , â+

ω′

]
= δ(ω − ω′), [b̂−Ω , b̂+

Ω′ ] = δ(Ω− Ω′), (8.25)

the Bogolyubov coefficients are constrained by

∫ +∞

−∞
dω (αωΩα∗ωΩ′ − βωΩβ∗ωΩ′) = δ(Ω− Ω′). (8.26)

This is analogous to the normalization condition |αk|2 − |βk|2 = 1 we had earlier.
Exercise 8.2

Derive Eq. (8.26).

Note that the origin of the δ function in Eq. (8.25) is the infinite volume of the entire
space. If the field were quantized in a finite box of volume V , the momenta ω and Ω
would be discrete and the δ function would be replaced by the ordinary Kronecker
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8 The Unruh effect

symbol times the volume factor, i.e. V δΩΩ′ . The δ function in Eq. (8.26) has the same
origin. Below we shall use Eq. (8.26) with Ω = Ω′ and the divergent factor δ(0) will
be interpreted as the infinite spatial volume.

Remark: inverse Bogolyubov transformations. The commutation relation [̂b−Ω , b̂−Ω′ ] = 0
yields another restriction on the Bogolyubov coefficients,

Z +∞

−∞

dω (αωΩβωΩ′ − αωΩ′βωΩ) = 0. (8.27)

It follows from Eqs. (8.26), (8.27) that the inverse Bogolyubov transformation is

â−ω =

Z +∞

−∞

dΩ
“
α∗ωΩb̂−Ω − βωΩb̂+

Ω

”
.

This relation can be easily verified by substituting it into Eq. (8.24). One can also derive
orthogonality relations similar to Eqs. (8.26), (8.27) but with the integration over Ω. We
shall not need the inverse Bogolyubov transformations in this chapter.

8.2.4 Density of particles
Since the vacua |0M 〉 and |0R〉 corresponding to the operators â−ω and b̂−Ω are different,
the a-vacuum is a state with b-particles and vice versa. We now compute the density
of b-particles in the a-vacuum state.

The b-particle number operator is N̂Ω ≡ b̂+
Ω b̂−Ω , so the average b-particle number in

the a-vacuum |0M 〉 is equal to the expectation value of N̂Ω,

〈N̂Ω〉 ≡ 〈0M | b̂+
Ω b̂−Ω |0M 〉

= 〈0M |
∫

dω
[
α∗ωΩâ+

ω + β∗ωΩâ−ω
] ∫

dω′
[
αω′Ωâ−ω′ + βω′Ωâ+

ω′

] |0M 〉

=

∫
dω |βωΩ|2 . (8.28)

This is the mean number of particles observed in the accelerated frame.
In principle one can explicitly compute the Bogolyubov coefficients βωΩ defined by

Eq. (8.23) in terms of the Γ function (see Appendix A.3). However, we only need to
evaluate the RHS of Eq. (8.28) which involves an integral over ω, and we shall use a
mathematical trick that allows us to compute just that integral and avoid cumbersome
calculations.

We first note that the function F (ω,Ω) satisfies the identity

F (ω,Ω) = F (−ω,Ω) exp

(
πΩ

a

)
, for ω > 0, a > 0. (8.29)

Exercise 8.3*
Derive the relation (8.29) from Eq. (8.21). Hint: deform the contour of integration in the

complex plane.
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8.2 Quantum fields in the Rindler spacetime

We then substitute Eq. (8.23) into the normalization condition (8.26), use Eq. (8.29)
and find

δ(Ω− Ω′) =
∫ +∞

0

dω

√
ΩΩ′

ω
[F (ω,Ω)F ∗(ω,Ω′)− F (−ω,Ω)F ∗(−ω,Ω′)]

=

[
exp

(
πΩ + πΩ′

a

)
− 1

]∫ +∞

0

dω
Ω

ω
F ∗(−ω,Ω)F (−ω,Ω).

The last line above yields the relation

∫ +∞

0

dω
Ω

ω
F (−ω,Ω)F ∗(−ω,Ω′) =

[
exp

(
2πΩ

a

)
− 1

]−1

δ(Ω− Ω′). (8.30)

Setting Ω′ = Ω in Eq. (8.30), we directly compute the integral in the RHS of Eq. (8.28),

〈N̂Ω〉 =
∫ +∞

0

dω |βωΩ|2 =
∫ +∞

0

dω
Ω

ω
|F (−ω,Ω)|2 =

[
exp

(
2πΩ

a

)
− 1

]−1

δ(0).

As usual, we expect 〈N̂Ω〉 to be divergent since it is the total number of particles in
the entire space. As discussed in Sec. 4.2, the divergent volume factor δ(0) represents
the volume of space, and the remaining factor is the density nΩ of b-particles with
momentum Ω: ∫ +∞

0

dω |βωΩ|2 ≡ nΩδ(0).

Therefore, the mean density of particles in the mode with momentum Ω is

nΩ =

[
exp

(
2πΩ

a

)
− 1

]−1

. (8.31)

This is the main result of this chapter.
So far we have computed nΩ only for positive-momentum modes (withΩ > 0). The

result for negative-momentum modes is obtained by replacing Ω by |Ω| in Eq. (8.31).

8.2.5 The Unruh temperature
A massless particle with momentum Ω has energy E = |Ω|, so the formula (8.31) is
equivalent to the Bose distribution

n(E) =

[
exp

(
E

T

)
− 1

]−1

where T is the Unruh temperature

T ≡ a

2π
.
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8 The Unruh effect

We found that an accelerated observer detects particles when the field φ is in the
Minkowski vacuum state |0M 〉. The detected particles may have any momentum
Ω, although the probability for registering a high-energy particle is very small. The
particle distribution (8.31) is characteristic of the thermal blackbody radiation with
the temperature T = a/2π, where a is the magnitude of the proper acceleration (in
Planck units). An accelerated detector behaves as though it were placed in a thermal
bath with temperature T . This is the Unruh effect.

Remark: conformal invariance. Earlier we said that a conformally coupled field cannot
exhibit particle production by gravity. This is not in contradiction with the detection of
particles in accelerated frames. Conformal invariance means that identical initial condi-
tions produce identical evolution in all conformally related frames. If the lowest-energy
state is prepared in the accelerated frame (this is the Rindler vacuum |0R〉) and later the
number of particles is measured by a detector that remains accelerated in the same frame,
then no particles will be registered after arbitrarily long times. This is exactly the same pre-
diction as that obtained in the laboratory frame. Nevertheless, the vacuum state prepared
in one frame of reference may be a state with particles in another frame.

A physical interpretation of the Unruh effect as seen in the laboratory frame is the
following. The accelerated detector is coupled to the quantum fields and perturbs
their quantum state around its trajectory. This perturbation is very small but as a
result the detector registers particles, although the fields were previously in the vac-
uum state. The detected particles are real and the energy for these particles comes
from the agent that accelerates the detector.

Finally, we note that the Unruh effect is impossible to use in practice because the
acceleration required to produce a measurable temperature is enormous (see Exer-
cise 1.6 on p. 12 for a numerical example). The energy spent by the accelerating agent
is exponentially large compared with the energy in detected particles. The Unruh
effect is an extremely inefficient way to produce particles.

Remark: more general motion. Observers moving with a nonconstant acceleration will
generally also detect particles but with a nonthermal spectrum. For a general trajectory
xμ(τ ) it is difficult to construct a proper reference frame; instead one considers a quantum-
mechanical model of a detector coupled to the field φ(x) and computes the probability for
observing an excited state of the detector. A calculation of this sort was first performed by
W. G. Unruh; see the book by Birrell and Davies, §3.2.
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9 The Hawking effect.
Thermodynamics of black holes
Summary: Quantization of fields in a black hole spacetime. Choice of vac-
uum. Hawking radiation. Black hole evaporation. Thermodynamics of
black holes.

In this chapter we consider a counter-intuitive effect: emission of particles by black
holes.

9.1 The Hawking radiation
Classical general relativity describes black holes as massive objects with such a strong
gravitational field that even light cannot escape their surface (the black hole horizon).
However, quantum theory predicts that black holes emit particles moving away from
the horizon. The particles are produced out of vacuum fluctuations of quantum fields
present around the black hole. In effect, a black hole (BH) is not completely black but
radiates a dim light as if it were an object with a low but nonzero temperature.

The theoretical prediction of radiation by black holes came as a complete surprise.
It was thought that particles may be produced only by time-dependent gravitational
fields. The first rigorous calculation of the rate of particle creation by a rotating BH
was performed in 1974 by S. Hawking. He expected that in the limit of no rotation the
particle production should disappear, but instead he found that nonrotating (static)
black holes also create particles at a steady rate. This was so perplexing that Hawk-
ing thought he had made a mistake in calculations. It took some years before this
theoretically derived effect (the Hawking radiation) was accepted by the scientific
community.

An intuitive picture of the Hawking radiation involves a virtual particle-antiparticle
pair at the BH horizon. It may happen that the first particle of the pair is inside the
BH horizon while the second particle is outside. The first virtual particle always falls
onto the BH center, but the second particle has a nonzero probability for moving
away from the horizon and becoming a real radiated particle. The mass of the black
hole is decreased in the process of radiation because the energy of the infalling virtual
particle with respect to faraway observers is formally negative.

Another qualitative consideration is that a black hole of size R cannot capture ra-
diation with wavelength much larger than R. It follows that particles (real or virtual)
with sufficiently small energies E 	 �c/R might avoid falling into the BH horizon.
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9 The Hawking effect. Thermodynamics of black holes

This argument indicates the correct order of magnitude for the energy of radiated par-
ticles, although it remains unclear whether and how the radiation is actually emitted.

The main focus of this section is to compute the density of particles emitted by a
static black hole, as registered by observers far away from the BH horizon.

9.1.1 Scalar field in a BH spacetime
In quantum theory, particles are excitations of quantum fields, so we consider a scalar
field in the presence of a single nonrotating black hole of mass M . The BH spacetime
is described by the Schwarzschild metric,1

ds2 =

(
1− 2M

r

)
dt2 − dr2

1− 2M
r

− r2
(
dθ2 + dϕ2 sin2 θ

)
.

This metric is singular at r = 2M which corresponds to the BH horizon, while for
r < 2M the coordinate t is spacelike and r is timelike. Therefore the coordinates (t, r)
may be used with the normal interpretation of time and space only in the exterior
region, r > 2M .

To simplify the calculations, we assume that the field φ is independent of the angu-
lar variables θ, ϕ and restrict our attention to a 1+1-dimensional section of the space-
time with the coordinates (t, r). The line element in 1+1 dimensions,

ds2 = gabdxadxb, x0 ≡ t, x1 ≡ r,

involves the reduced metric

gab =

[
1− 2M

r 0

0 − (
1− 2M

r

)−1

]
.

The theory we are developing is a toy model (i.e. a drastically simplified version) of
the full 3+1-dimensional QFT in the Schwarzschild spacetime. We expect that the
main features of the full theory are preserved in the 1+1-dimensional model.

The action for a minimally coupled massless scalar field is

S [φ] =
1

2

∫
gabφ,aφ,b

√−gd2x.

As shown in Sec. 8.2, the field φ with this action is in fact conformally coupled. Be-
cause of the conformal invariance, a significant simplification occurs if the metric
is brought to a conformally flat form. This is achieved by changing the coordinate
r → r∗, where the function r∗(r) is chosen so that

dr =

(
1− 2M

r

)
dr∗.

1In our notation here and below, the asimuthal angle is ϕ while the scalar field is φ.
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9.1 The Hawking radiation

From this relation we find r∗(r) up to an integration constant which we choose as 2M
for convenience,

r∗(r) = r − 2M + 2M ln
( r

2M
− 1

)
. (9.1)

The metric in the coordinates (t, r∗) is conformally flat,

ds2 =

(
1− 2M

r

)[
dt2 − dr∗2

]
, (9.2)

where r must be expressed through r∗ using Eq. (9.1). We shall not need an explicit
formula for the function r(r∗).

The coordinate r∗(r) is defined only for r > 2M and varies in the range−∞ < r∗ <
+∞. It is called the “tortoise coordinate” because an object approaching the horizon
r = 2M needs to cross an infinite coordinate distance in r∗. From Eq. (9.2) it is clear
that the tortoise coordinates (t, r∗) are asymptotically the same as the Minkowski
coordinates (t, r) when r → +∞, i.e. in regions far from the black hole where the
spacetime is almost flat.

The action for the scalar field in the tortoise coordinates is

S [φ] =
1

2

∫ [
(∂tφ)

2 − (∂r∗φ)
2
]
dt dr∗,

and the general solution of the equation of motion is of the form

φ (t, r∗) = P (t− r∗) +Q (t+ r∗) ,

where P and Q are arbitrary (but sufficiently smooth) functions.
In the lightcone coordinates (u, v) defined by

u ≡ t− r∗, v ≡ t+ r∗, (9.3)

the metric is expressed as

ds2 =

(
1− 2M

r

)
du dv. (9.4)

Note that r = 2M is a singularity where the metric becomes degenerate.

9.1.2 The Kruskal coordinates
The coordinate system (t, r∗) has the advantage that for r∗ → +∞ it asymptotically
coincides with the Minkowski coordinate system (t, r) naturally defined far away
from the BH horizon. However, the coordinates (t, r∗) do not cover the black hole in-
terior, r < 2M . To describe the entire spacetime, we need another coordinate system.

It is a standard result that the singularity in the Schwarzschild metric (9.4) which
occurs at r → 2M is merely a coordinate singularity since a suitable change of co-
ordinates yields a metric regular at the BH horizon. For instance, an observer freely
falling into the black hole would see a normal, finitely curved space while crossing
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the horizon line r = 2M . Therefore one is motivated to consider the coordinate sys-
tem (t̄, r̄) describing the proper time t̄ and the proper distance r̄ measured by a freely
falling observer at the moment of horizon crossing. This coordinate system is called
the Kruskal frame.

We omit the construction of the Kruskal frame2 and write only the final formulae.
The Kruskal lightcone coordinates

ū ≡ t̄− r̄, v̄ ≡ t̄+ r̄

are related to the tortoise lightcone coordinates (9.3) by

ū = −4M exp
(
− u

4M

)
, v̄ = 4M exp

( v

4M

)
. (9.5)

The parameters ū, v̄ vary in the intervals

−∞ < ū < 0, 0 < v̄ < +∞. (9.6)

The inverse relation between (ū, v̄) and the tortoise coordinates (t, r∗) is then found
from Eqs. (9.1) and (9.5):

t = 2M ln
(
− v̄

ū

)
,

exp

(
− r∗

2M

)
= −exp

(
1− r

2M

)
1− r

2M

= −16M
2

ūv̄
. (9.7)

The BH horizon r = 2M corresponds to the lines ū = 0 and v̄ = 0. To examine the
spacetime near the horizon, we need to rewrite the metric in the Kruskal coordinates.
With the substitution

u = −4M ln
(
− ū

4M

)
, v = 4M ln

v̄

4M
,

the metric (9.4) becomes

ds2 = −16M
2

ūv̄

(
1− 2M

r

)
dū dv̄.

Using Eqs. (9.1) and (9.7), after some algebra we obtain

ds2 =
2M

r
exp

(
1− r

2M

)
dū dv̄, (9.8)

where it is implied that the Schwarzschild coordinate r is expressed through ū and v̄
using the relation (9.7).

It follows from Eq. (9.8) that at r = 2M the metric is ds2 = dū dv̄, the same as in the
Minkowski spacetime. Although the coordinates ū, v̄ were defined in the ranges (9.6),

2A detailed derivation can be found, for instance, in §31 of the book Gravitation by C.W. MISNER, K.
THORNE, and J. WHEELER (W. H. Freeman, San Francisco, 1973).
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there is no singularity at ū = 0 or at v̄ = 0 and therefore the coordinate system may
be extended to ū > 0 and v̄ < 0. Thus the Kruskal coordinates cover a larger patch of
the spacetime than the tortoise coordinates (t, r∗). For instance, Eq. (9.7) relates r to
ū, v̄ also for 0 < r < 2M , even though r∗ is undefined for these r.

The Kruskal spacetime is the extension of the Schwarzschild spacetime described
by the Kruskal coordinates t̄, r̄.

Remark: the physical singularity. The Kruskal metric (9.8) is undefined at r = 0. A
calculation shows that the spacetime curvature grows without limit as r → 0. Therefore
r = 0 (the center of the black hole) is a real singularity where general relativity breaks
down. From Eq. (9.7) one finds that r = 0 corresponds to the line ūv̄ = t̄2− r̄2 = 16e−1M2.
This line is a singular boundary of the Kruskal spacetime; the coordinates t̄, r̄ vary in the
domain |t̄| < √

r̄2 + 16e−1M2.

Since the Kruskal metric (9.8) is conformally flat, the action and the classical field
equations for a conformally coupled field in the Kruskal frame have the same form
as in the tortoise coordinates. For instance, the general solution for the field φ is
φ (ū, v̄) = A (ū) +B (v̄).

We note that Eq. (9.5) is similar to the definition (8.14) of the proper frame for a
uniformly accelerated observer. The formal analogy is exact if we set a ≡ (4M)−1.
Note that a freely falling observer (with the worldline r̄ = const) has zero proper ac-
celeration. On the other hand, a spaceship remaining at a fixed position relative to the
BH must keep its engine running at a constant thrust and thus has a constant proper
acceleration. To make the analogy with the Unruh effect more apparent, we chose the
notation in which the coordinates (ū, v̄) always refer to freely falling observers while
the coordinates (u, v) describe accelerated frames.

9.1.3 Field quantization
In the previous section we introduced two coordinate systems corresponding to a
locally inertial observer (the Kruskal frame) and a locally accelerated observer (the
tortoise frame). Now we quantize the field φ(x) in these two frames and compare the
respective vacuum states. The considerations are formally quite similar to those in
Chapter 8.

To quantize the field φ(x), it is convenient to employ the lightcone mode expansions
(defined in Sec. 8.2.2) in the coordinates (u, v) and (ū, v̄). Because of the intentionally
chosen notation, the relations (8.16) and (8.17) can be directly used to describe the
quantized field φ̂ in the BH spacetime.

The lightcone mode expansion in the tortoise coordinates is

φ̂(u, v) =

∫ +∞

0

dΩ√
2π

1√
2Ω

[
e−iΩub̂−Ω +H.c.+ e−iΩv b̂−−Ω +H.c.

]
,

where the “H.c.” denotes the Hermitian conjugate terms. The operators b̂±±Ω corre-
spond to particles detected by a stationary observer at a constant distance from the
BH. The role of this observer is completely analogous to that of the uniformly accel-
erated observer considered in Sec. 8.1.
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The lightcone mode expansion in the Kruskal coordinates is

φ̂ (ū, v̄) =

∫ +∞

0

dω√
2π

1√
2ω

[
e−iωūâ−ω +H.c.+ e−iωv̄â−−ω +H.c.

]
.

The operators â±±ω are related to particles registered by an observer freely falling into
the black hole.

It is clear that the two sets of creation and annihilation operators â±±ω, b̂±±Ω specify
two different vacuum states, |0K〉 (“Kruskal”) and |0T 〉 (“tortoise”),

â−±ω |0K〉 = 0; b̂−±Ω |0T 〉 = 0.

The state |0T 〉 is also called the Boulware vacuum.
Exactly as in the previous chapter, the operators b̂±±Ω can be expressed through â±±ω

using the Bogolyubov transformation (8.22). The Bogolyubov coefficients are found
from Eq. (8.23) if the acceleration a is replaced by (4M)−1.

The correspondence between the Rindler and the Schwarzschild spacetimes is sum-
marized in the following table. (We stress that this analogy is precise only for a con-
formally coupled field in 1+1 dimensions.)

Rindler Schwarzschild
Inertial observers: vacuum |0M 〉 Observers in free fall: vacuum |0K〉

Accelerated observers: |0R〉 Observers at r = const: |0T 〉
Proper acceleration a Proper acceleration (4M)−1

ū = −a−1 exp(−au) ū = −4M exp [−u/(4M)]
v̄ = a−1 exp(av) v̄ = 4M exp [v/(4M)]

9.1.4 Choice of vacuum
To find the expected number of particles measured by observers far outside of the
black hole, we first need to make the correct choice of the quantum state of the field
φ̂. In the present case, there are two candidate vacua, |0K〉 and |0T 〉. We shall draw on
the analogy with Sec. 8.2.1 to justify the choice of the Kruskal vacuum |0K〉, which is
the lowest-energy state for freely falling observers, as the quantum state of the field.

When considering a uniformly accelerated observer in the Minkowski spacetime,
the correct choice of the vacuum state is |0M 〉which is the lowest-energy state as mea-
sured by inertial observers. An accelerated observer registers this state as thermally
excited. The other vacuum state, |0R〉, can be physically realized by an accelerated
vacuum preparation device occupying a very large volume of space. Consequently,
the energy needed to prepare the field in the state |0R〉 in the whole space is infinitely
large. If one computes the mean energy density of the field φ̂ in the state |0R〉, one
finds (after subtracting the zero-point energy) that in the Minkowski frame the en-
ergy density diverges at the horizon.3 On the other hand, the Minkowski vacuum

3This result can be qualitatively understood if we recall that the Rindler coordinate ξ̃ covers an infinite
range when approaching the horizon (ξ̃ → −∞ as ξ → −a−1). The zero-point energy density in
the state |0R〉 is constant in the Rindler frame and thus appears as an infinite concentration of energy
density near the horizon in the Minkowski frame. We omit the detailed calculation.
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state |0M 〉 has zero energy density everywhere.
It turns out that a very similar situation occurs in the BH spacetime. At first it

may appear that the field φ̂ should be in the Boulware state |0T 〉which is the vacuum
measured by observers remaining at a constant distance from the black hole. How-
ever, the field φ̂ in the state |0T 〉 has an infinite energy density (after subtracting the
zero-point energy) near the BH horizon.4 Any energy density influences the metric
via the Einstein equation. A divergent energy density indicates that the backreaction
of the quantum fluctuations in the state |0T 〉 is so large near the BH horizon that the
Schwarzschild metric is not a good approximation for the resulting spacetime. Thus
the picture of a quantum field in the state |0T 〉 near an almost unperturbed black hole
is inconsistent. On the other hand, the field φ̂ in the Kruskal state |0K〉 has an every-
where finite and small energy density (when computed in the Schwarzschild frame
after a subtraction of the zero-point energy). In this case, the backreaction of the quan-
tum fluctuations on the metric is negligible. Therefore one has to employ the vacuum
state |0K〉 rather than the state |0T 〉 to describe quantum fields in the presence of a
classical black hole.

Another argument for selecting the Kruskal vacuum |0K〉 is the consideration of a
star that turns into a black hole through the gravitational collapse. Before the collapse,
the spacetime is almost flat and the initial state of quantum fields is the naturally
defined Minkowski vacuum. It can be shown that the final quantum state of the field
φ̂ after the collapse is the Kruskal vacuum.

9.1.5 The Hawking temperature
Observers remaining at r = const far away from the black hole (r 
 2M ) are in an
almost flat space where the natural vacuum is the Minkowski one. The Minkowski
vacuum at r 
 2M is approximately the same as the Boulware vacuum |0T 〉. Since
the field φ̂ is in the Kruskal vacuum state |0K〉, these observers would register the
presence of particles.

The calculations of Sec. 8.2.4 show that the temperature measured by an acceler-
ated observer is T = a/(2π), and we have seen that the correspondence between the
Rindler and the Schwarzschild cases requires to set a = (4M)−1. It follows that ob-
servers at a fixed distance r 
 2M from the black hole detect a thermal spectrum of
particles with the temperature

TH =
1

8πM
. (9.9)

This temperature is known as the Hawking temperature. (Observers staying closer
to the BH will see a higher temperature due to the inverse gravitational redshift.)

Similarly, we find that the density of observed particles with energy E = k is

nE =

[
exp

(
E

TH

)
− 1

]−1

.

4This is analogous to the divergent energy density near the horizon in the Rindler vacuum state. We again
omit the required calculations.
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This formula remains valid for massive particles with mass m and momentum k, after
the natural replacement E =

√
m2 + k2. One can see that the particle production is

significant only for particles with very small masses m � TH .
The Hawking effect is in principle measurable, although the Hawking temperature

for plausible astrophysical black holes is extremely small.
Exercise 9.1

Rewrite Eq. (9.9) in the SI units and compute the Hawking temperature for black holes
of masses M1 = M� = 2 ·1030kg (one solar mass), M2 = 1015g, and M3 = 10−5g (of order
of the Planck mass).

Exercise 9.2
(a) Estimate the typical wavelength of photons radiated by a black hole of mass M and

compare it with the size of the black hole (the Schwarzschild radius R = 2M ).
(b) The temperature of a sufficiently small black hole can be high enough to efficiently

produce baryons (e.g. protons) as components of the Hawking radiation. Estimate the
required mass M of such black holes and compare their Schwarzschild radius with the
size of the proton (its Compton length).

9.1.6 The Hawking effect in 3+1 dimensions
We have considered the 1+1-dimensional field φ̂(t, r) that corresponds to spherically
symmetric 3+1-dimensional field configurations. However, there is a difference be-
tween fields in 1+1 dimensions and spherically symmetric modes in 3+1 dimensions.

The field φ in 3+1 dimensions can be decomposed into spherical harmonics,

φ(t, r, θ, ϕ) =
∑
l,m

φlm(t, r)Ylm(θ, ϕ).

The mode φ00(t, r) is spherically symmetric and independent of the angles θ, ϕ. How-
ever, the restriction of the 3+1-dimensional wave equation to the mode φ00 is not
equivalent to the 1+1-dimensional problem. The four-dimensional wave equation
(4)�φ = 0 for the spherically symmetric mode is[

(2)�+

(
1− 2M

r

)
2M

r3

]
φ00(t, r) = 0.

This equation represents a wave propagating in the potential

V (r) =

(
1− 2M

r

)
2M

r3

instead of a free wave φ(t, r) considered above. The potential V (r) has a barrier-like
shape shown in Fig. 9.1, and a wave escaping the black hole needs to tunnel from
r ≈ 2M to the potential-free region r 
 2M . This decreases the intensity of the wave
and changes the resulting distribution of produced particles by a greybody factor
Γgb(E) < 1,

nE = Γgb(E)

[
exp

(
E

TH

)
− 1

]−1

.
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M20

V (r)

r

Figure 9.1: The potential V (r) for the propagation of the spherically symmetric mode
in 3+1 dimensions.

The computation of the greybody factor Γgb(E) is beyond the scope of this book.
This factor depends on the geometry of the radiated field mode and is different for
fields of higher spin. (Of course, fermionic fields obey the Fermi instead of the Bose
distribution.)

9.1.7 Remarks on other derivations
We derived the Hawking effect in one of the simplest possible cases, namely that of
a conformally coupled field in a static BH spacetime restricted to 1+1 dimensions.
This derivation cannot be straightforwardly generalized to the full 3+1-dimensional
spacetime. For instance, a free massless scalar field is not conformally coupled in
3+1 dimensions, and spherically symmetric modes are not the only available ones.
Realistic calculations must consider the production of photons or massive fermions
instead of massless scalar particles. However, all such calculations yield the same
temperature TH of the black hole.

It is also important to consider a black hole formed by a gravitational collapse of
matter (see Fig. 9.2). Hawking’s original calculation involved wave packets of field
modes that entered the collapsing region before the BH was formed (the dotted line
in the figure). The BH horizon is a light-like surface, therefore massless and ultra-
relativistic particles may remain near the horizon for a very long time before they
escape to infinity. Since the spacetime is almost flat before the gravitational collapse,
the “in” vacuum state of such modes is well-defined in the remote past. After the
mode moves far away from the black hole, the “out” vacuum state is again the stan-
dard Minkowski (“tortoise”) vacuum. A computation of the Bogolyubov coefficients
between the “in” and the “out” vacuum states for this wave packet yields a thermal
spectrum of particles with the temperature TH .

This calculation implies that the radiation coming out of the black hole consists of
particles that already existed at the time of BH formation but spent a long time near
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t

x

Figure 9.2: Black hole (shaded region) formed by gravitational collapse of matter
(lines with arrows). The wavy line marks the singularity at the BH cen-
ter. A light-like trajectory (dotted line) may linger near the horizon (the
boundary of the shaded region) for a long time before escaping to infinity.

the horizon and only managed to escape at the present time. This explanation, how-
ever, contradicts the intuitive expectation that particles are created right at the present
time by the gravitational field of the BH. The rate of particle creation should depend
only on the present state of the black hole and not on the details of its formation in
the distant past. One expects that an eternal black hole should radiate in the same
way as a BH formed by gravitational collapse.

Another way to derive the Hawking radiation is to evaluate the energy-momentum
tensor Tμν of a quantum field in a BH spacetime and to verify that it corresponds to
thermal excitations. However, a direct computation of the EMT is complicated and
has been explicitly performed only for a 1+1-dimensional spacetime. The reason for
the difficulty is that the EMT contains information about the quantum field at all
points, not only the asymptotic properties at spatial infinity. This additional informa-
tion is necessary to determine the backreaction of fields on the black hole during its
evaporation. The detailed picture of the BH evaporation remains unknown.

There seems to be no unique physical explanation of the BH radiation. However,
the resulting thermal spectrum of the created particles has been derived in many
different ways and agrees with general thermodynamical arguments. There is little
doubt that the Hawking radiation is a valid and in principle observable prediction of
general relativity and quantum field theory.
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9.2 Thermodynamics of black holes

9.2.1 Evaporation of black holes
In many situations, a static black hole of mass M behaves as a spherical body with
radius r = 2M and surface temperature TH . According to the Stefan-Boltzmann law,
a black body radiates the flux of energy

L = γσT 4
HA,

where γ parametrizes the number of degrees of freedom available to the radiation,
σ = π2/60 is the Stefan-Boltzmann constant in Planck units, and

A = 4πR2 = 16πM2

is the surface area of the BH. The emitted flux determines the loss of energy due to
radiation. The mass of the black hole decreases with time according to

dM

dt
= −L = − γ

15360πM2
. (9.10)

The solution with the initial condition M |t=0 = M0 is

M(t) = M0

(
1− t

tL

)1/3

, tL ≡ 5120π
M3

0

γ
.

This calculation suggests that black holes are fundamentally unstable objects with
the lifetime tL during which the BH completely evaporates. Taking into account the
greybody factor (see Sec. 9.1.6) would change only the numerical coefficient in the
power law tL ∼ M3

0 .

Exercise 9.3
Estimate the lifetime of black holes with masses M1 = M� = 2 · 1030kg, M2 = 1015g,

M3 = 10−5g.

It is almost certain that the final stage of the BH evaporation cannot be described
by classical general relativity. The radius of the BH eventually reaches the Planck
scale 10−33cm and one expects unknown effects of quantum gravity to dominate in
that regime. One possible outcome is that the BH is stabilized into a “remnant,”
a microscopic black hole that does not radiate, similarly to electrons in atoms that
do not radiate on the lowest orbit. It is plausible that the horizon area is quantized
to discrete levels and that a black hole becomes stable when its horizon reaches the
minimum allowed area. In this case, quanta of Hawking radiation are emitted as a
result of transitions between allowed horizon levels, so the spectrum of the Hawking
radiation must consist of discrete lines. This prediction of the discreteness of the
spectrum of the Hawking radiation may be one of the few testable effects of quantum
gravity.
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Remark: cosmological consequences of BH evaporation. Black holes formed by collapse
of stars have extremely small Hawking temperatures. So the Hawking effect could be ob-
served only if astronomers discovered a black hole near the end of its life, with a very high
surface temperature. However, the lifetimes of astrophysically plausible black holes are
much larger than the age of the Universe which is estimated as ∼ 1010 years. To evapo-
rate within this time, a black hole must be lighter than ∼ 1015g (see Exercise 9.3). Such
black holes could not have formed as a result of stellar collapse and must be primordial,
i.e. created at very early times when the universe was extremely dense and hot. There is
currently no direct observational evidence for the existence of primordial black holes.

9.2.2 Laws of BH thermodynamics
Prior to the discovery of the BH radiation it was already known that black holes
require a thermodynamical description involving a nonzero intrinsic entropy.

The entropy of a system is defined as the logarithm of the number of internal
microstates of the system that are indistinguishable on the basis of macroscopically
available information. Since the gravitational field of a static black hole is completely
determined (both inside and outside of the horizon) by the mass M of the BH, one
might expect that a black hole has only one microstate and therefore its entropy is
zero. However, this conclusion is inconsistent with the second law of thermodynam-
ics. A black hole absorbs all energy that falls onto it. If the black hole always had
zero entropy, it could absorb some thermal energy and decrease the entropy of the
world. This would violate the second law unless one assumes that the black hole has
an intrinsic entropy that grows in the process of absorption.

Similar gedanken experiments involving classical general relativity and thermody-
namics lead J. Bekenstein to conjecture in 1971 that a static black hole must have an
intrinsic entropy SBH proportional to the surface area A = 16πM2. However, the
coefficient of proportionality between SBH and A could not be computed until the
discovery of the Hawking radiation. The precise relation between the BH entropy
and the horizon area follows from the first law of thermodynamics,

dE ≡ dM = THdSBH , (9.11)

where TH is the Hawking temperature for a black hole of mass M . A simple calcula-
tion using Eq. (9.9) shows that

SBH = 4πM2 =
1

4
A. (9.12)

To date, there seems to be no completely satisfactory explanation of the BH entropy.
Here is an illustration of the problem. A black hole of one solar mass has the entropy
S� ∼ 1076. A microscopic explanation of the BH entropy would require to demon-
strate that a solar-mass BH actually has exp(1076) indistinguishable microstates. A
large number of microstates implies many internal degrees of freedom not visible
from the outside. Yet, a black hole is almost all empty space, with the exception of a
Planck-sized region around its center where the classical general relativity does not
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apply. It is not clear how this microscopically small region could contain such a huge
number of degrees of freedom. A fundamental explanation of the BH entropy proba-
bly requires a theory of quantum gravity which is not yet available.

The thermodynamical law (9.11) suggests that in certain circumstances black holes
behave as objects in thermal contact with their environment. This description applies
to black holes surrounded by thermal radiation and to adiabatic processes of emission
and absorption of heat.

Remark: rotating black holes. A static black hole has no degrees of freedom except its
mass M . A more general situation is that of a rotating BH with an angular momentum
J . In that case it is possible to perform work on the BH in a reversible way by making it
rotate faster or slower. The first law (9.11) can be modified to include contributions to the
energy in the form of work.

For a complete thermodynamical description of black holes, one needs an equation
of state. This is provided by the relation

E(T ) = M =
1

8πT
.

It follows that the heat capacity of the BH is negative,

CBH =
∂E

∂T
= − 1

8πT 2
< 0.

In other words, black holes become colder when they absorb heat.
The second law of thermodynamics now states that the combined entropy of all

existing black holes and of all ordinary thermal matter never decreases,

δStotal = δSmatter +
∑

k

δS
(k)
BH ≥ 0.

Here S
(k)
BH is the entropy (9.12) of the k-th black hole.

In classical general relativity it has been established that the combined area of all
BH horizons cannot decrease (this is Hawking’s “area theorem”). This statement ap-
plies not only to adiabatic processes but also to strongly out-of-equilibrium situations,
such as a collision of black holes with the resulting merger. It is mysterious that this
theorem, derived from a purely classical theory, assumes the form of the second law
of thermodynamics when one considers quantum thermal effects of black holes.

Moreover, there is a general connection between horizons and thermodynamics
which has not yet been completely elucidated. The presence of a horizon in a space-
time means that a loss of information occurs, since one cannot observe events beyond
the horizon. Intuitively, a loss of information entails a growth of entropy. It seems to
be generally true in the theory of relativity that any event horizon behaves as a surface
with a certain entropy and emits radiation with a certain temperature.5 For instance,
the Unruh effect considered in Chapter 8 can be interpreted as a thermodynamical
consequence of the presence of a horizon in the Rindler spacetime.

5See e.g. the paper by T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically
symmetric spacetimes, Class. Quant. Grav. 19 (2002), p. 5378.
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9.2.3 Black holes in heat reservoirs
As an application of the thermodynamical description, we consider a black hole in-
side a reservoir of thermal energy. The simplest such reservoir is a reflecting cav-
ity filled with radiation. Usual thermodynamical systems can be in a stable thermal
equilibrium with an infinite heat reservoir. However, the behavior of black holes is
different because of their negative heat capacity.

A black hole surrounded by an infinite heat bath at a lower temperature T < TBH

would emit heat and become even hotter. The process of evaporation is not halted
by the heat bath whose low temperature T remains constant. On the other hand, a
black hole placed inside an infinite reservoir with a higher temperature T > TBH

will tend to absorb radiation from the reservoir and become colder. The process of
absorption will continue indefinitely. In either case, no stable equilibrium is possible.
The following exercise demonstrates that a black hole can be stabilized with respect
to absorption or emission of radiation only by a reservoir with a finite heat capacity.

Exercise 9.4
(a) Given the mass M of the black hole, find the range of heat capacities Cr of the

reservoir for which the BH is in a stable equilibrium with the reservoir.
(b) Assume that the reservoir is a completely reflecting cavity of volume V filled with

thermal radiation (massless fields). The energy of the radiation is Er = σV T 4, where
the constant σ characterizes the number of degrees of freedom in the radiation fields.
Determine the largest volume V for which a black hole of mass M can remain in a stable
equilibrium with the surrounding radiation.

Hint: The stable equilibrium is the state with the largest total entropy.
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