
Appendix A
Functional integration

In this appendix we outline the basis of functional methods which are
employed in the text. Path integral techniques appear at first sight to be
rather formal and abstract. However, it is remarkable how easy it is to
obtain practical information from them. Very often they add insight or
new results which are difficult to obtain from canonical quantization.

A–1 Quantum mechanical formalism

Before attempting to address the full field theoretic formalism we first
review the application of such techniques within the more familiar setting
of nonrelativistic quantum mechanics in one spatial dimension. Unless
otherwise specified we hereafter set h̄ = 1.

Path integral propagator

Simply stated, the functional integral is an alternative way of evaluating
the quantity

D(xf , tf ;xi, ti) = ⟨xf |e−iH(tf−ti)|xi⟩ ≡ ⟨xf , tf |xi, ti⟩ . (1.1)

This matrix element, usually called the propagator, is the amplitude for a
particle located at position xi and time ti to be found at position xf and
subsequent time tf . The propagator can also be written as a functional
integral

D(xf , tf ;xi, ti) =

∫
D [x(t)] eiS[x(t)] , (1.2)

where the integration is over all histories (i.e. paths) of the system which
begin at spacetime point xi, ti and end at xf , tf . The paths are identified
by specifying the coordinate x at each intermediate time t, so that the
symbol D [x(t)] represents a sum over all such trajectories. The contribu-
tion of each path to the integral is weighted by the exponential involving
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the classical action

S [x(t)] =

∫ tf

ti

dt
(m
2
ẋ2(t)− V (x(t))

)
(1.3)

which, since it depends on the detailed shape of x(t), is a functional of
the trajectory.∗ Although the validity of the path integral representation,
Eq. (1.2), may not be obvious, its correctness can be verified by beginning
with Eq. (1.1) and breaking the time interval tf − ti into N discrete steps
of size ϵ = (tf − ti)/N . Using the completeness relation

1 =

∫ ∞
−∞

dxn |xn⟩⟨xn| ,

one can write Eq. (1.1) as

D(xf , tf ;xi, ti) =

∫ ∞
−∞

dxN−1 . . .

∫ ∞
−∞

dx1⟨
xN |e−iϵH |xN−1

⟩ ⟨
xN−1|e−iϵH |xN−2

⟩
. . .
⟨
x1|e−iϵH |x0

⟩
,

(1.4)

where x0 ≡ xi, xN ≡ xf . In the limit of large N the time slices become
infinitesimal, implying

⟨
xℓ|e−iHϵ|xℓ−1

⟩
= ⟨xℓ|e

−iϵ
(

p2

2m+V (x)

)
|xℓ−1⟩

= e−iϵV (xℓ)⟨xℓ|e−iϵ
p2

2m |xℓ−1⟩+O(ϵ2) .

(1.5)

Inserting a complete set of momentum states and introducing a conver-

gence factor e−κp
2
for the resulting integral over momentum, we have

⟨xℓ|e−iϵ
p2

2m |xℓ−1⟩ = lim
κ→0

∫ ∞
−∞

dp

2π
eip(xℓ−xℓ−1)−iϵp2/2m−κp2

=

√
m

2πiϵ
ei

m
2ϵ (xℓ−xℓ−1)

2

.

(1.6)

∗ It is important to understand the difference between the concept of a function and that of a
functional. A real-valued function involves the mapping from the space of real numbers onto
themselves

Reals←− [f : Reals] .

On the other hand, a real-valued functional such as S [x(t)] is a mapping from the space of
functions x(t) onto real numbers

Reals←− [S : x(t)] .
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Upon taking the continuum limit we obtain

D (xf , tf ;xi, ti) =

lim
N→∞

( m

2πiϵ

)N
2

[
N−1∏
n=1

∫ ∞
−∞

dxn

]
e
i
∑N

ℓ=1

(
m
2

(xℓ−xℓ−1)
2

ϵ −ϵV (xℓ)

)
.

(1.7)

It is clear then that we can make connection with Eq. (1.2) by identi-
fying each path with the sequence of locations (x1, . . . , xN−1) at times
ϵ, 2ϵ, . . . , (N − 1)ϵ. Integration over these intermediate positions is what
is meant by the symbol

∫
D [x(t)], viz.∫

D [x(t)] ≡ lim
N→∞

( m

2πiϵ

)N/2 N−1∏
n=1

∫ ∞
−∞

dxn . (1.8)

Each trajectory has an associated exponential factor exp iS [x(t)], where
the quantity

S [x(t)] =

N∑
ℓ=1

ϵ

(
m

2

(xℓ − xℓ−1)2

ϵ2
− V (xℓ)

)
(1.9)

becomes the classical action in the limit N →∞. We have thus demon-
strated the equivalence of the operator (Eq. (1.1)) and path integral
(Eq. (1.2)) representations of the propagator.∗ It is important to realize
that in the latter all quantities are classical – no operators are involved.

The path integral propagator contains a great deal of information, and
there are a variety of techniques for extracting it. For example, the
spatial wavefunctions and energies are all present, as can be seen by
inserting a complete set of energy eigenstates {| n⟩} into the definition of
the propagator given in Eq. (1.1),

D(xf , tf ;xi, ti) =

∞∑
n=0

ψn(xf )ψ
∗
n(xi)e

−iEn(tf−ti) . (1.10)

∗ For completeness, we note that by combining Eqs. (1.5)-(1.8), one can also write the propagator
in a corresponding hamiltonian path integral representation

D(xf , tf ;xi, ti) = lim
N→∞

∫
dp0
2π

dx1
dp1
2π

dx2 . . . dxN−1
dpN−1

2π

× e
i
∑N

ℓ=1

(
pℓ(xℓ−xℓ−1)−

(
p2
ℓ

2m
+V (xℓ)

)
ϵ

)
≡
∫
D [x(t)]D [p(t)] e

i
∫

dt (pẋ−H(p,x))
.

This form is useful when one is dealing with non-cartesian variables or with constrained systems.
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In addition, other quantum mechanical amplitudes can be found by use
of the identity†

⟨xf , tf |T (x(t1) . . . x(tn)) |xi, ti⟩ =∫
D [x(t)] x(t1) . . . x(tn) e

i
∫ tf

ti
dt(m

2 ẋ
2(t)−V (x(t)))

,
(1.11)

where ‘T ’ is the time-ordered product.

External sources

An important technique involves the addition of an external source. In
the quantum mechanical case this is added like an arbitrary external
‘force’ j(t),

⟨xf , tf |xi, ti⟩j(t) =
∫
D [x(t)] e

i
∫ tf

ti
dt[m2 ẋ

2(t)−V (x(t))+j(t)x(t)]
. (1.12)

The amplitude is now a functional of the source j(t). From this quantity
one can obtain all matrix elements using functional differentiation, which
can be defined by means of the relation

j(t) =

∫
dt′δ(t− t′)j(t′) ⇒ δj(t)

δj(t′)
= δ(t− t′) (1.13)

and yields the result we seek,

⟨xf , tf |T (x(t1) . . . x(tn)) |xi, ti⟩

= (−i)n δn

δj(t1) . . . δj(tn)
⟨xf , tf |xi, ti⟩j(t) |j=0 .

(1.14)

For many applications it is necessary only to consider matrix elements
between the lowest energy states (vacuum) of the quantum system. This
can be accomplished in either of two ways. First it is possible to explicitly

† One can prove this relation by choosing a particular ordering, say

ti < t1 < t2 < . . . < tf ,

and noting that⟨
xf , tf |T (x(t1) . . . x(tn)) |xi, ti

⟩
=
⟨
xf , tf |x(tn)x(tn−1) . . . x(t1)|xi, ti

⟩
=

n∏
k=1

∫ ∞

−∞
dxk
⟨
xf , tf |xn, tn

⟩
xn ⟨xn, tn|xn−1, tn−1⟩xn−1 . . . x1 ⟨x1, t1|xi, ti⟩

where we have used completeness and have defined xk = x(tk) (k = 1, 2, . . . , n) . The amplitudes
⟨xk, tk|xk−1, tk−1⟩ are simply free propagators as in Eq. (1.1), and can be evaluated by means
of the time-slice methods outlined above. Thus the above expression is identical to the right-
hand side of Eq. (1.11). In the case of a different time ordering the same result goes through
provided one always places the times such that the later time always appears to the left of an
earlier counterpart. However, this is simply the definition of the time ordered product and hence
the proof holds in general.
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project out this amplitude using the ground state wavefunction

⟨x, t|0⟩ = ψ0(x)e
−iE0t , (1.15)

which implies

⟨0|T (x(t1) . . . x(tn)) |0⟩ ≡
∫ ∞
−∞

dxf

∫ ∞
−∞

dxi ψ
∗
0(xf ) e

iE0tf

⟨xf , tf |T (x(t1) . . . x(tn)) |xi, ti⟩ψ0(xi) e
−iE0ti .

(1.16)
However, this amplitude can be isolated in a simpler fashion. If we
consider the amplitude ⟨xf , tf |xi, ti⟩ in the unphysical limit tf → −iτf ,
ti → +iτi we find for large τf + τi,

⟨xf , tf |xi, ti⟩ →
∑
n

ψn(xf )ψ
∗
n(xi) e

−En(τf+τi)

−→
τf+τi→∞

ψ0(xf )ψ
∗
0(xi) e

−E0(τf+τi) .
(1.17)

Generalizing, we have

lim
tf→−i∞
ti→i∞

eiE0(tf−ti)

ψ0(xf )ψ
∗
0(xi)

⟨xf , tf |T (x(t1) . . . x(tn)) |xi, ti⟩

= ⟨0|T (x(t1) . . . x(tn)) |0⟩

(1.18)

which is operationally a much simpler procedure than Eq. (1.16).

The generating functional

We may combine all these techniques in the so-called generating func-
tional, defined by

Z[j] = lim
tf→−i∞
ti→+i∞

⟨xf , tf |xi, ti⟩j(t) . (1.19)

This has the path integral representation

Z[j] = lim
tf→−i∞
ti→i∞

∫
D [x(t)] e

i
∫ tf

ti
dt (m

2 ẋ
2(t)−V (x(t))+x(t)j(t))

. (1.20)

Noting that for ti = iτi and tf = −iτf ,

⟨xf , tf |xi, ti⟩ → ψ0(xf )ψ
∗
0(xi) e

−E0(τf+τi) −→
τi,τf→∞

Z[0] , (1.21)

we find that ground state matrix elements as in Eq. (1.16) can be given
in terms of the generating functional Z[j],

⟨0|T (x(t1) . . . x(tn)) |0⟩ = (−i)n 1

Z[0]

δn

δj(t1) . . . δj(tn)
Z[j]|j=0 . (1.22)
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It often happens with path integrals that formal procedures are best de-
fined, as above, by using the imaginary time limits t→ ±i∞. However, in
practice it is common instead to express the theory in terms of Minkowski
spacetime. Thus, the generating functional will involve the real time lim-
its t→ ±∞. Does the dominance of the ground state contribution, as in
Eq. (1.21), continue to hold? The answer is ‘yes’. At an intuitive level,
one understands this as a consequence of the rapid variation of the phase
e−iEnt in the limit t→∞. The more rapid phase variation accompanying
the increased energy En of any excited state washes out its contribution
relative to that of the ground state. In a more formal sense, the real-time
limit is defined by an analytic continuation from imaginary time. To
properly define the continuation, one must introduce appropriate ‘iϵ’ fac-
tors into the Greens functions in order to deal with various singularities.
Beginning with the next section, we shall often employ the Minkowski
formulation and thus explicitly display the ‘iϵ’ terms in our formulae.

The prescription given in Eq. (1.22) represents a powerful but for-
mal procedure for the generation of matrix elements in the presence
of an arbitrary potential V (x). Unfortunately, an explicit evaluation is
no more generally accessible via this route than is an exact solution of
the Schrödinger equation. In practice, aside from an occasional special
case, the only path integrals which can be performed exactly are those in
quadratic form. However, approximation procedures are generally avail-
able.

One of the most common of these is perturbation theory. Suppose that
the full potential V (x) is the sum of two parts V1(x) and V2(x), where
V1(x) is such that the generating functional can be evaluated exactly
while V2(x) is in some sense small. Then we can write

Z[j] = lim
tf→−i∞
ti→i∞

∫
D[x(t)]e

i
∫ tf

ti
dt[m2 ẋ

2(t)−V1(x(t))−V2(x(t))+x(t)j(t)]

= lim
tf→−i∞
ti→i∞

e
−i
∫ tf

ti
dt V2

(
−i δ

δj(t)

)
Z(0)[j]

= lim
tf→−i∞
ti→i∞

∞∑
n=0

(−i)n

n!

[∫ tf

ti

dt V2

(
−i δ

δj(t)

)]n
Z(0)[j]

(1.23)

where

Z(0)[j] = lim
tf→−i∞
ti→i∞

∫
D[x(t)] e

i
∫ tf

ti
dt[m2 ẋ

2(t)−V1(x(t))+x(t)j(t)]
(1.24)

is the generating functional for V1(x) alone. Obviously Eq. (1.23) defines
an expansion for Z[j] in powers of the perturbing potential V2(x).
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A–2 The harmonic oscillator

It is useful to interrupt our formal development by considering the har-
monic oscillator as an example of these methods. This treatment turns
out to reproduce known oscillator properties with the use of functional
methods, which are very similar to corresponding field theory techniques.

It is most convenient to address the problem by employing Fourier
transforms,

x(t) =

∫ ∞
−∞

dE

2π
e−iEtx̃(E) , (2.1)

whereby for ti = −∞ and tf = +∞,

Sj [x(t)] =

∫ ∞
−∞

dt

(
m

2
ẋ2(t)− mω2

2
x2(t) + x(t)j(t)

)
=

∫ ∞
−∞

dE

2π

[
m

2
(E2 − ω2)x̃(E)x̃(−E) +

1

2
j̃(E)x̃(−E) +

1

2
j̃(−E)x̃(E)

]
=

∫ ∞
−∞

dE

2π

{
m

2
(E2 − ω2)x̃′(E)x̃′(−E)− 1

2m
j̃(E)

1

E2 − ω2 + iϵ
j̃(−E)

}
.

(2.2)
with the definition x̃′(E) ≡ x̃(E) + j̃(E)/

(
mE2 −mω2 + iϵ

)
. An infin-

tesimal imaginary part iϵ has been introduced to make the integration
precise. Upon taking the inverse Fourier transform

x′(t) =

∫ ∞
−∞

dE

2π
e−iEtx̃′(E) = x(t) +

1

m

∫ ∞
−∞

dt′D(t− t′)j(t′) , (2.3)

where

D(t− t′) =
∫ ∞
−∞

dE

2π
e−iE(t−t′) 1

E2 − ω2 + iϵ
= − i

2ω
e−iω|t

′−t| , (2.4)

we have

Sj [x(t)] =

∫ ∞
−∞

dt

(
m

2
ẋ′2(t)− mω2

2
x′2(t)

)
− 1

2m

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ j(t)D(t− t′)j(t′) .

(2.5)

Finally, changing variables from x(t) to x′(t) we obtain the generating
functional

Z[j] =

∫
D
[
x′(t)

]
e
i
∫∞
−∞

dt

(
m
2 ẋ

′2(t)−mω2

2 x′2(t)

)
× e−

i
2m

∫∞
−∞

dt
∫∞
−∞

dt′j(t)D(t−t′)j(t′)
(2.6)

= Z[0]e
− i

2m

∫∞
−∞

dt
∫∞
−∞

dt′j(t)D(t−t′)j(t′)
.
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Note that the above change of variables has left the measure invariant
(
∫
D [x(t)] =

∫
D [x′(t)]).

We can use this result to calculate arbitrary oscillator matrix elements.
Thus for t2 > t1, we have for the ground state

⟨0|T (x(t2)x(t1)) |0⟩ = (−i)2 1

Z[0]

δ2Z[j]

δj(t2)δj(t1)

∣∣∣∣
j=0

=
i

m
D(t2 − t1) =

e−iω(t2−t1)

2mω

(2.7)

which, in the limit t2 → t1, reproduces the familiar result⟨
0|x2|0

⟩
=

1

2mω
. (2.8)

Although only ground state expectation values have been treated thus
far, it is also possible to deal with arbitrary oscillator matrix elements
with this formalism by generalizing the operator relation

|n⟩ = 1√
n!

(
a†
)n
|0⟩ , (2.9)

where

a† =

√
mω

2

(
x− i

mω
p

)
(2.10)

is the usual creation operator. First, however, it is convenient to use the
classical relation p = mẋ to rewrite the operator a† as

a† =

√
mω

2

(
1− i

ω

d

dt

)
x(t) . (2.11)

In a simple application, we calculate that

⟨0|x|1⟩ = lim
t2→t+1

√
mω

2

(
1− i

ω

∂

∂t1

)
⟨0|x(t2)x(t1)|0⟩

= lim
t2→t+1

(−i)2
√
mω

2

(
1− i

ω

∂

∂t1

)
1

Z[0]

δ2

δj(t2)δj(t1)
Z[j]

= lim
t2→t+1

√
mω

2

(
1− i

ω

∂

∂t1

)
i

m
D(t2 − t1)

=
1√
2mω

(2.12)

which agrees with the result obtained by more conventional means,

⟨0|x|1⟩ =
√

1

2mω

⟨
0|
(
a+ a†

)
|1
⟩
=

1√
2mω

. (2.13)
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More complicated matrix elements can also be found, as with⟨
1|x2|1

⟩
=
mω

2
lim

t2→t−

t1→t+

(
1 +

i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

) ⟨
0|x(t1)x2(t)x(t2)|0

⟩
=

(−i)4

Z[0]
lim

t2→t′−,t1→t+

t′→t−

(mω
2

)(
1 +

i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

)
δ4

δj(t1)δj(t2)δj(t)δj(t′)
Z[j]

∣∣∣∣
j=0

=
mω

2

(
i

m

)2

lim
t2→t−

t1→t+

(
1 +

i

ω

∂

∂t1

)(
1− i

ω

∂

∂t2

)

× [D(t1 − t2)D(0) + 2D(t1 − t)D(t− t2)] =
3

2mω
(2.14)

which agrees with⟨
1|x2|1

⟩
=

1

2mω

⟨
1|
(
a+ a†

)(
a+ a†

)
|1
⟩
=

3

2mω
. (2.15)

In this manner, arbitrary oscillator matrix elements can be reduced to
ground state expectation values, which in turn can be determined from
the generating functional Z[j]. The ground state amplitude in the pres-
ence of an arbitrary source j(t) contains all the information about the
harmonic oscillator.

One should note the analogy of the above methods to those of quantum
field theory. The ‘one-particle’ matrix elements involving | 1⟩ have been
reduced to vacuum matrix elements by use of Eq. (2.9). This is similar
to the LSZ reduction of fields. As a result, all that one needs to deal with
are the vacuum Green’s functions. The generating functional is ideal for
this purpose, as we shall see in our development of functional techniques
in field theory.

A–3 Field theoretic formalism

One of the advantages of the functional approach to quantummechanics is
that it can be taken over with little difficulty to quantum field theory. An
important difference is that instead of trajectories x(t) which pick out a
particular point in space at a given time, one must deal with fields φ(x, t)
which are defined at all points in space at a given time t. Also, instead of
a sum

∫
D [x(t)] over trajectories one has instead a sum

∫
[dφ(x)] over all

possible field configurations. Nevertheless the analogy is rather direct.
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Path integrals with fields

The formal transition from quantum mechanics to field theory can be
accomplished by dividing spacetime, both time and space, into a set of
tiny four-dimensional cubes of volume δt δx δy δz. Within each cube one
takes the field

φ (xi, yj , zk, tℓ) (3.1)

as a constant. Derivatives are defined in terms of differences between
fields in neighboring blocks, e.g.,

∂tφ|xi,yj ,xk,tℓ ≃
1

δt
(φ (xi, yj , zk, tℓ + δt)− φ (xi, yj , zk, tℓ)) . (3.2)

The lagrangian density is easily found,

L(φ, ∂µφ)|xi,yj ,zk,tℓ ≃ L (φ (xi, yj , zk, tℓ) , ∂µφ (xi, yj , zk, tℓ)) , (3.3)

and the action is written as

S ≃
∑
i,j,k,ℓ

δxδyδzδt L (φ (xi, yj , zk, tℓ) , ∂µφ (xi, yj , zk, tℓ)) . (3.4)

The field theory analog of the path integral can then be constructed by
summing over all possible field values in each cell

D ∼
∏
i,j,k,ℓ

∫ ∞
−∞

dφ (xi, yj , zk, tℓ) e
iS[φ(xi,yk,zk,tℓ), ∂µφ(xi,yj ,zk,tℓ)] . (3.5)

Formally, in the limit in which the cell size is taken to zero this is written
as ∫

[dφ(x)] eiS[φ(x), ∂µφ(x)] . (3.6)

By analogy with the quantum mechanical case (cf. Eq. (1.18)), it is clear
that, since the time integration for S in Eq. (3.4) is from −∞ to +∞,
this amplitude is to be identified with the vacuum-to-vacuum amplitude
of the field theory,

⟨0|0⟩ = N

∫
[dφ(x)] eiS[φ(x),∂µφ(x)] . (3.7)

Generally, quantum field theory is formulated in terms of vacuum expec-
tation values of time ordered products of the fields

G(n)(x1, . . . , xn) = ⟨0|T (φ(x1) . . . φ(xn)) |0⟩ (3.8)

i.e., the Green’s functions of the theory. By analogy with the quantum
mechanical case, one is naturally led to the path integral definition

G(n)(x1, . . . , xn) = N

∫
[dφ(x)]φ(x1) . . . φ(xn)e

iS[φ(x),∂µφ(x)] , (3.9)
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where N is a normalization factor. Again we emphasize that all quantities
here are c-numbers and no operators are involved. In terms of a functional
representation, we then have from Eqs. (3.7), (3.9),

G(n)(x1, . . . , xn) =

∫
[dφ(x)] φ(x1) . . . φ(xn)e

iS[φ(x),∂µφ(x)]∫
[dφ(x)] eiS[φ(x),∂µφ(x)]

. (3.10)

Generating functional with fields

These Green’s functions can most easily be evaluated by use of the gen-
erating functional

Z[j] = N

∫
[dφ(x)] e

(
iS[φ(x),∂µφ(x)]+i

∫
d4x j(x)φ(x)

)
(3.11)

Functional differentiation for fields is defined by

δφ(y)

δφ(x)
= δ(4)(x− y) , (3.12)

which lets us obtain (cf. Eq. (3.9))

G(n)(x1, . . . , xn) = (−i)n 1

Z[0]

δn

δj(x1) . . . δj(xn)
Z[j]

∣∣∣∣
j=0

. (3.13)

As an example of this formalism consider the free scalar field theory

L(0)(x) = 1

2
∂µφ∂

µφ− m2

2
φ2 . (3.14)

In general we have

Z(0)[j] = Z(0)[0]
∞∑
n=0

in

n!

[
n∏
k=1

∫ ∞
−∞

dxk j(xk)

]
G(n)(x1, x2, . . . , xn) , (3.15)

where the generating functional Z(0)[j] is given by

Z(0)[j] = N

∫
[dφ(x)] e

i
∫
d4x

(
1
2∂µφ∂

µφ−m2

2 φ2+jφ

)
. (3.16)

There exist two common ways in which to handle the issue of convergence
for such functional integrals, i.e. to ensure acceptable behavior for large
φ2. One is to give the mass to give the mass an infinitesimal negative
imaginary part, m2 → m2 − iϵ. This is the approach we shall employ in
the discussion to follow. The second involves a continuation to euclidean
space by means of t→ −iτ wherein the functional integral becomes

⟨0|0⟩ = N

∫
[dφ(x)]e

−
∫
d4xE

(
1
2∂µφ∂µφ+

m2

2 φ2

)
, (3.17)
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and is now convergent due to the negative argument of the exponential.
Continuation back to Minkowski space then yields the desired result.

Integrating by parts, we have from Eq. (3.16)

Z(0)[j] = N

∫
[dφ] e−i

∫
d4x[12φ(x)Oxφ(x)−φ(x)j(x)]

= N

∫ [
dφ′
]
e
− i

2

[∫
d4x φ′(x)Oxφ

′(x)+
∫
d4x
∫
d4y j(x)∆F (x−y)j(y)

]
(3.18)

where Ox = x +m2 − iϵ and

φ′(x) = φ(x) +

∫
d4y ∆F (x− y)j(y) ,

i∆F (x− y) =
∫

d4k

(2π)4
e−ik·(x−y)

i

k2 −m2 + iϵ
,

( x +m2)∆F (x− y) = −δ(4)(x− y) .

(3.19)

Note that we have used invariance of the measure
(∫

[dφ] =
∫
[dφ′]

)
. Fi-

nally, we recognize a factor of Z(0)[0] in Eq. (3.18), thus leading to the
expression

Z(0)[j] = Z(0)[0]e−
i
2

∫
d4x
∫
d4y j(x)∆F (x−y)j(y) . (3.20)

We can now determine the Green’s functions for the free field theory, e.g.,

G(2)(x1, x2) =
(−i)2

Z(0)[0]

δ2

δj(x1)δj(x2)
Z(0)[j]

∣∣∣∣
j=0

= i∆F (x1 − x2) ,

G(4)(x1, x2, x3, x4) =
(−i)4

Z(0)[0]

δ4

δj(x1)δj(x2)δj(x3)δj(x4)
Z(0)[j]

∣∣∣∣
j=0

= G(2)(x1, x2)G
(2)(x3, x4) +G(2)(x1, x3)G

(2)(x2, x4)

+G(2)(x1, x4)G
(2)(x2, x3) .

(3.21)
More interesting is the case of a self-interacting field theory for which

the lagrangian density becomes

L(x) = 1

2
∂µφ∂

µφ− 1

2
m2φ2 + Lint(φ) ≡ L(0)(φ) + Lint(φ) . (3.22)

The theory is no longer exactly soluble, but one can find a perturbative
solution by use of the generating functional

Z[j] = N

∫
[dφ(x)] ei

∫
d4x (L(0)(φ)+Lint(φ)+j(x)φ(x))

= Ne
i
∫
d4x Lint

(
−i δ

δj(x)

)
Z(0)[j] .

(3.23)
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As before, the Green’s functions of the theory are given by

G(n)(x1, . . . , xn) =
1

Z[0]

[
n∏
k=1

−iδ
δj(xk)

]
e
i
∫
d4xLint

(
−i δ

δj(x)

)
Z(0)[j]

∣∣∣∣
j=0

.

(3.24)
For most purposes one requires only the connected portions of the

Green’s function, i.e. those diagrams which cannot be broken into two or
more disjoint pieces. This is illustrated in Fig. A–1 which can be found
by dividing the full Green’s function

G(n)(x1, . . . , xn) = ⟨0|T (φ(x1) . . . φ(xn))|0⟩ (3.25)

into products of connected particle sectors and dividing by the vacuum-
to-vacuum amplitude ⟨0|0⟩ in each sector.

Mathematically one eliminates the disconnected diagrams by defining

Z[j] = eiW [j] . (3.26)

Then one can show that W [j] is the generating functional for connected
Green’s functions,

iW [j] =

∞∑
n=0

in

n!

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn j(x1) . . . j(xn)G
(n)
conn(x1, . . . , xn)

(3.27)
where

G(n)
conn(x1, . . . , xn) = (−i)n−1 δn

δj(x1) . . . δj(xn)
W [j]

∣∣∣∣
j=0

. (3.28)

A–4 Quadratic forms

The most important example of a soluble path integral is one that is
quadratic in the fields because, at least formally, it can be solved exactly.

Let us consider an action quadratic in the fields,

S =

∫
d4x φ(x)Oφ(x) , (4.1)

Fig. A–1. Contributions to the four-point Green’s function in φ4 theory: (a)-(b)
connected, (c)-(d) disconnected.
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where O is some differential operator which may contain fields distinct
from φ within it. The general result for the quadratic path integral is
given by

Iquad =

∫
[dφ(x)]e−i

∫
d4x φ(x)Oφ(x) = N [det O]−1/2 , (4.2)

where det O is the determinant of the operator O. In order to prove this,
one can expand φ(x) in terms of eigenfunctions of O,

φ(x) =
∑
n

anφn(x) , (4.3)

where φn(x) satisfies

Oφn(x) = λnφn(x) and

∫
d4x φn(x)φm(x) = δnm . (4.4)

The sum over all field values can then be performed by summing over all
values of the expansion coefficients an,

Iquad = N

[∏
n

∫ ∞
−∞

dan

]
e−i
∫
d4x
∑∞

k=1
akφk(x)

∑∞
ℓ=1

aℓφℓ(x)λℓ

= N
∏
n

∫ ∞
−∞

dan e
−iλna2n = N ′ (det O)−1/2

(4.5)

where N,N ′ are normalization constants and

det O =

∞∏
n=1

λn (4.6)

denotes, as usual, the product of operator eigenvalues.
In general, some effort is required to evaluate the determinant of an

operator. One valuable relation, easily proven for finite dimensional ma-
trices and generalizable to infinite dimensional ones is∗

det O = exp( tr lnO) . (4.7)

This trace now denotes a summation over spacetime points, i.e.

tr lnO =

∫
d4x ⟨x | lnO | x⟩ , (4.8)

which is the most commonly used form in practice.

∗ For a discrete basis, this follows from the result

exp( tr lnO) = exp
∑
n

lnλn =
∏
n

exp(lnλn) =
∏
n

λn = detO ,

where λn are the eigenvalues of the operator O.
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Background field method to one loop

We can illustrate one use of this result by constructing an expansion about
a background field configuration (which satisfies the classical equation of
motion) and retaining the quantum fluctuations up to quadratic order.
Consider a scalar field theory with interaction Lint (φ(x)). We define φ̄
as a solution to (

+m2
)
φ̄(x)− L′int (φ̄(x)) = j(x) . (4.9)

Writing

φ(x) = φ̄(x) + δφ(x) , (4.10)

leads to the generating functional

Z[j] = e

(
iS[φ̄(x)]+i

∫
d4x j(x)φ̄(x)

)
∫

[dδφ] ei
∫
d4x(1

2∂µδφ∂
µδφ−1

2(m
2−L′′int(φ̄(x)))δφ

2) + . . .
(4.11)

where

S [φ̄(x)] =

∫
d4x

(
1

2
∂µφ̄(x)∂

µφ̄(x)− m2

2
φ̄2(x) + Lint (φ̄(x))

)
.

(4.12)
Integration by parts gives

Z[j] = e

(
iS[φ̄(x)]+i

∫
d4x φ̄(x)j(x)

) ∫
[dδφ] e−

i
2

∫
d4x δφ(x)Oxδφ(x) (4.13)

where

Ox ≡ x +m2 − L′′int (φ̄(x)) . (4.14)

The functional integration can then be performed (cf. Eq. (4.5)) and we
obtain

Z[j] = const. (detOx)
−1/2 e

(
iS[φ̄(x)]+i

∫
d4x j(x)φ̄(x)

)
. (4.15)

It is convenient to normalize the determinant somewhat differently by
defining

O0x ≡ x +m2 . (4.16)

Then, suppressing the x subscript, we write

(detO)−1/2 = const.
(
detO−10 O

)−1/2
, (4.17)

where

const. = (detO0)
−1/2 , (4.18)

and

O−10 O = 1 +∆FL′′int (φ) . (4.19)
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Using Eq. (4.2) we have

Z[j] = Ne

[
iS[φ̄(x)]+i

∫
d4x j(x)φ̄(x)−1

2 Tr ln(1+∆FL′′(φ̄))
]
. (4.20)

The generating functional for connected diagrams can now be identified
immediately as

W [j] = S [φ̄] +

∫
d4x j(x)φ̄(x) +

i

2
Tr ln

(
1 + ∆FL′′int (φ̄)

)
=

∫
d4x

[
1

2
j(x)φ̄(x) + Lint (φ̄)−

1

2
φ̄(x)L′int (φ̄)

]
+
i

2
Tr ln

(
1 + ∆FL′′int (φ̄)

)
.

(4.21)

The trace ‘Tr’ includes the integration over spacetime variables and can
be interpreted as follows,

Tr ln
[
1 + ∆FL′′int (φ̄)

]
= Tr

∞∑
n=1

(−)n+1

n

(
∆FL′′int (φ̄)

)n
,

Tr
[
∆FL′′int (φ̄)

]
=

∫
d4x ∆F (x− x)L′′int (φ̄) , (4.22)

Tr
[
∆FL′′int (φ̄)∆FL′′int (φ̄)

]
=

∫
d4x

∫
d4y ∆F (x− y)L′′int (φ̄(y))

×∆F (y − x)L′′int (φ̄(x)) .

In this manner, one-loop diagrams containing arbitrary numbers of
L′′int (φ̄) factors are generated. The physics associated with this approxi-
mation can be gleaned from counting arguments. The overall power of h̄
attached to a particular diagram can be found by noting that associated
with a propagator and a vertex are the powers h̄ and h̄−1 respectively.
There is also an overall factor of h̄ for each diagram. Then with the
relation

No. internal lines−No. internal vertices = No. loops− 1 ,

we see that this approximation corresponds to an expansion to one loop.
The classical phase generates the tree diagram

(
O(h̄0)

)
contribution and

the determinant yields the one-loop
(
O(h̄1)

)
correction to a given ampli-

tude.

A–5 Fermion field theory

Thus far, our development has been performed within the simple con-
text of scalar fields. It is important also to consider the case of fermion
fields where the requirements of antisymmetry impose interesting modifi-
cations on functional integration techniques. The key to the treatment of
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anticommuting fields is the use of Grassmann variables. Thus, while or-
dinary c-number quantities (hereafter denoted by roman letters a, b, . . .)
commute with one another,

[a, a] = [a, b] = [a, c] = . . . = 0 , (5.1)

the Grassmann numbers (hereafter denoted by Greek letters α, β, . . .)
anticommute,

{α, α} = {α, β} = {α, γ} = . . . = 0 . (5.2)

It follows that the square of a Grassmann quantity must vanish,

α2 = β2 = γ2 = . . . = 0 , (5.3)

and that any function must have the general expansion

f(α) = f0 + f1α , g(α, β) = g0 + g1α+ g2β + g3αβ . (5.4)

Differentiation is defined correspondingly via

dα

dα
=
dβ

dβ
= . . . = 1 ,

dβ

dα
=
dα

dβ
= . . . = 0 , (5.5)

so that in the notation of Eq. (5.4) we have

df

dα
(α) = f1 ,

dg

dβ
(α, β) = g2 − g3α . (5.6)

Second derivatives then have the property

d2

dαdα
= 0 . (5.7)

We must also define the concept of Grassmann integration. If we demand
that integration have the property of translation invariance∫

dα f(α) =

∫
dα f(α+ β) , (5.8)

it follows that ∫
dα f1β = 0 or

∫
dα = 0 . (5.9)

The normalization in the diagonal integral can be chosen for convenience,∫
dαα = 1 ,

∫
dα f(α) = f1 . (5.10)

Let us extend this formalism to a matrix notation by considering the
discrete sets α = {α1, . . . , αn} and ᾱ = {ᾱ1, . . . , ᾱn} of Grassmann vari-
ables. A class of integrals which commonly arises in a functional frame-
work is

Z[M ] =

∫
dᾱn . . . dᾱ1 dαn . . . dα1e

iᾱMα . (5.11)
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As an example, the simple 2× 2 case is calculated to be

Z[M ] =

∫
dᾱ2 dᾱ1 dα2 dα1 [1 + iᾱiMijαj

+ ᾱ2ᾱ1α2α1 (M11M22 −M12M21)] .

(5.12)

Only the final term survives the integration, and we obtain

Z[M ] = detM . (5.13)

This result generalizes to the n×n system [Le 82] yielding essentially the
inverse of the result found for Bose fields,

Z[M ]Fermi =

∫
dᾱn . . . dᾱ1 dαn . . . dα1e

iᾱMα = detM ,

Z[M ]Bose =

∫
da∗n . . . da

∗
1 dan . . . da1e

−a∗Ma ∝ (detM)−1 .

(5.14)

We can now extend this formalism to the case of fermion fields ψ(x) and
ψ̄(x). Since such quantities always enter the lagrangian quadratically, the
functional integral can be performed exactly to yield

Z[O] =

∫
[dψ]

[
dψ̄
]
ei
∫
d4x ψ̄(x)Oψ(x) = N detO . (5.15)

The remaining development proceeds parallel to that given for scalar
fields. Given the free field lagrangian density

L0
(
ψ̄, ψ

)
= ψ̄(x) (i/∂ −m)ψ(x) , (5.16)

the generating functional for the noninteracting spin one-half field be-
comes

Z[η, η̄] =

∫
[dψ]

[
dψ̄
]
ei
∫
d4x[ ψ̄(x)Oxψ(x)+η̄(x)ψ(x)+ψ̄(x)η(x)] , (5.17)

where Ox ≡ i/∂x−m+iϵ and η̄(x), η(x) are Grassmann fields. Introducing
the change of variables

ψ′(x) = ψ(x)−
∫
d4y SF (x, y)η(y) ,

ψ̄′(x) = ψ̄(x)−
∫
d4y η̄(y)SF (y, x) ,

iSF (x− y) =
∫

d4k

(2π)4
e−ik·(x−y)

i

k/−m+ iϵ

(i∂/x −m)SF (x− y) = δ(4)(x− y) ,

(5.18)
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we find that an alternative form for the generating functional is

Z[η, η̄] =

∫ [
dψ′
] [
dψ̄′
]
ei
∫
d4x ψ̄′(x)Oxψ

′(x)−i
∫
d4x
∫
d4y η̄(x)SF (x,y)η(x) ,

= Z[0, 0]e−i
∫
d4x
∫
d4y η̄(x)SF (x,y)η(x) .

(5.19)
Thus the generating functional for connected diagrams is

W [η, η̄] = −
∫
d4x

∫
d4y η̄(x)SF (x, y)η(y) , (5.20)

and the only non-vanishing connected Green’s function is

G(2)
conn(x1, x2) = (−i)2 δ2W

δη(x2)δη̄(x1)

= SF (x1, x2) =

∫
d4k

(2π)4
e−ik·(x1−x2)

i

k/ −m+ iϵ

(5.21)

which is the usual Feynman propagator.

A–6 Gauge theories

For our final topic, we examine gauge theories within a functional frame-
work. We shall employ QED as the archetypical example, for which the
action is

S[Aµ] = −
1

4

∫
d4x FµνF

µν =
1

2

∫
d4x (Aµ xA

µ −Aµ∂µx∂νxAν)

≡ 1

2

∫
d4x AµO

µν
x Aν ,

(6.1)

where the second line follows from the first by an integration by parts
and

Oµν
x ≡ gµν x − ∂µx∂νx . (6.2)

In the presence of a source jµ, the generating functional is then

Z[jµ] = N

∫
[dAµ]e

iS[Aµ]+i
∫
d4x jµA

µ

. (6.3)

Due to the bilinear form of Eq. (6.1), it would appear that one could
perform the functional integration as usual, resulting in

Z[jµ] = Z[0]e−
i
2

∫
d4x
∫
d4y jµ(x)DFµν(x,y)j

ν(y) , (6.4)

where the inverse operator DFµν(x, y) is defined as

Oλµ
x DFµν(x, y) ≡ δλν δ(4)(x− y) . (6.5)
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However, this is illusory since the inverse does not exist. That is, acting
on Eq. (6.5) from the left with the derivative ∂xλ yields

0×DFµν(x, y) = ∂xν δ
(4)(x− y) , (6.6)

implying that DFµν must be infinite. An alternative way to demonstrate
that Oµν

x is a singular operator is to observe that

Oµν
x ∂

x
να = 0 . (6.7)

Thus any four-gradient ∂xνα is an eigenfunction of Oµν
x having eigenvalue

zero, and an operator having zero eigenvalues does not possess an inverse.

Gauge fixing

The occurrence of such a divergence in the generating functional of a
gauge theory can be traced to gauge invariance. For QED, any gauge
transformation of vector potentials (cf. Eq. (II–1.3)),

Aµ(x)→ A′µ(x) = Aµ(x) +
1

e
∂µα(x) , (6.8)

leaves the action invariant,

S[A′µ(x)] = S[Aµ(x)] . (6.9)

If we partition the full field integration [dAµ] into a component [dĀµ]
which includes only those configurations which are not related by a gauge
transformation and a component [dα] which denotes all possible gauge
transformations, then we have∫

[dAµ] e
iS[Aµ] =

∫
[dĀµ] e

iS[Āµ] ×
∫

[dα] . (6.10)

But
∫
[dα] is clearly infinite and this is the origin of the problem. The

solution, first given by Faddeev and Popov [FaP 67], involves finding
a procedure which somehow isolates the integration over the distinctly
different vector potentials Āµ(x). In order to understand this technique,
we shall first examine a finite-dimensional analog [Ra 89].

Consider the functional

Z[A] =

[
N∏
i=1

∫ ∞
−∞

dxi

]
e
−
∑

k,l
xkAklxl , (6.11)

where A is an N ×N matrix. Suppose that A is brought into diagonal
form AD by linear transformation R,

AD ≡ RAR−1 . (6.12)
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Letting y⃗ = Rx⃗ denote the coordinates in the diagonal basis, we have

Z[A] =

[
N∏
i=1

∫
dyi

]
e
−
∑

k,l
ykA

D
kl
yl =

[
N∏
i=1

∫
dyi

]
e−
∑

k
y2
k
AD
kk

=

N∏
i=1

(
π

ADii

)1/2

= πN/2[detA]−1/2 .

(6.13)

Suppose that the last n of the N eigenvalues belonging to A vanish. The
exponential factor in Eq. (6.13) is then independent of the co-ordinates
yN−n+1, . . . , yN and the corresponding integrations

∫
dyN−n+1 . . .

∫
dyN

diverge. This is reflected in the vanishing of detA, and causes the quan-
tities in Eq. (6.13) to diverge. The infinity is removed if the integration is
restricted to only variables associated with nonzero eigenvalues, in which
case we obtain the finite result

Zf [A] =

[
N−n∏
i=1

∫
dyi

]
e
−
∑

k,l
ykA

D
kl
yl . (6.14)

It is possible to express Zf [A] as an integral over the full range of
indices 1 ≤ i ≤ N by defining variables

zi =

{
yi (1 ≤ i ≤ N − n) ,
arbitrary (N − n+ 1 ≤ i ≤ N) ,

(6.15)

and writing for the generating functional

Zf [A] =

[
N∏
i=1

∫
dzi

]
δ(zN−n+1) . . . δ(zN )e

−
∑

k,l
zk(x)Aklzl(x) . (6.16)

Upon tranforming back to an arbitrary set of coordinates {xi}, we obtain
the useful expression

Zf [A] =

[
N∏
i=1

∫
dxi

]
det

∣∣∣∣∂z⃗∂x⃗
∣∣∣∣ N∏
j=N−n+1

δ (zj(x⃗)) e
−
∑

k,l
xkAklxl . (6.17)

Let us now return to the subject of gauge fields, broadening the scope
of our discussion to include even nonabelian gauge theories. By analogy,
corresponding to the variables zN−n+1, . . . , zN will be the gauge degrees of
freedom and the prescription of Faddeev and Popov becomes for generic
gauge fields Aaµ(x),

Zf =
∏
a

∫
[dAaµ]

n∏
b=1

δ(Gb(A
a
µ)) det |δGb/δαa| eiS[A

a
µ] , (6.18)

where the {αa} are gauge transformation parameters (cf. Sect. I–4) and
the

{
Gb(A

a
µ)
}
are functions which vanish for some value of Aaµ(x). Since
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the {Gb} serve to define the gauge, such contributions to the generating
functional are referred to as gauge-fixing terms. The variation δGb/δαa
signifies the response of the gauge-fixing function Gb to a gauge transfor-
mation parameter αa.

For any gauge theory, there are a variety of choices possible for the
gauge-fixing function G. In QED, one defines the axial gauge by

G(Aµ) = nµA
µ , (6.19)

where nµ is an arbitrary spacelike four-vector. Due to the presence of the
four-vector nµ, one must forego manifestly covariant Feynman rules in
this approach. Thus, one often employs a covariant gauge-fixing condition
such as

G(Aµ) = ∂µAµ − F , (6.20)

where F is an arbitrary constant. Under the gauge transformation of
Eq. (6.8), we find

G(Aµ)→ G(Aµ) + α , (6.21)

so that

δG/δα = . (6.22)

Referring back to the general formula of Eq. (6.18), we see in this case that
det |δG/δα| is independent of the gauge field and thus may be dropped
from the functional integral. The QED generating functional then be-
comes

Z[jµ] = N

∫
[dAµ] δ(∂

µAµ − F ) ei
∫
d4x (12Aµ xA

µ−1
2Aµ∂

µ
x ∂

ν
xAν+jµA

µ)

= N

∫
[dAµ]e

i
∫
d4x (12Aµ xA

µ+jµA
µ)

= Z[0]e−
i
2

∫
d4x
∫
d4y jλ(x)D

λν
F (x,y)jν(y) .

(6.23)
Note that, as promised, this result is finite and leads to a photon propa-
gator in Feynman gauge

Dνλ
F (x, y) =

1

Z[0]

δ2Z[jµ]

δjν(x)δjλ(y)
|jµ=0 = −i

∫
d4q

(2π)4
e−iq·(x−y)

gνλ

q2 + iϵ
.

(6.24)
The result is independent of the choice of F . Consequently, even if the
constant F is evaluated to the status of a field F (x), one can functionally
integrate over F (x) with an arbitrary weighting factor since this will only
affect the overall normalization of the generating functional. A common
choice is∫

[dF ] δ(∂µAµ − F (x))e−
i
2ξ

∫
d4x F2(x) = e−

i
2ξ

∫
d4x (∂µAµ)

2

, (6.25)
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where ξ is a real-valued parameter. In this case, the generating functional
becomes

Z[jµ] = N

∫
[dAµ] e

i
∫
d4x(12Aµ( gµν−∂µ∂ν)Aν− 1

2ξ (∂
µAµ)

2+jµA
µ) . (6.26)

The integrand of the above spacetime integral can be regarded as the
effective lagrangian of the theory, and the gauge-fixing term appears as
one of its contributions. At this point, the functional integration can be
carried out with impunity to obtain

Z[jµ] = Z[0]e−
i
2

∫
d4x
∫
d4y jµ(x)D

µν
F

(x,y)jν(y) , (6.27)

where Dµν
F is defined as(
xg

µν − (1− ξ−1)∂µx∂νx
)
DFνλ(x− y) = δµλδ

(4)(x− y) . (6.28)

We find in this way the form of the photon propagator in an arbitrary
gauge, as appearing in Eq. (II–1.17).

Ghost fields

In the path integral formalism, if the generating functional can be written
in purely exponential form, then one can read off the lagrangian of the
theory from the exponent. However, the general formula in Eq. (6.18) for
a gauge-fixed generating functional contains a seemingly nonexponential
factor, the determinant factor det |δGb/δαa|. A fruitful procedure, due
to Faddeev and Popov, for expressing the determinant as an exponential
factor is motivated by the identity (cf. Eq. (5.15)),

det M = N

∫
[dc][dc̄] eic̄Mc , (6.29)

where c, c̄ are Grassmann fields. This identity suggests that we replace
the determinant factor with an appropriate functional integration over
Grassmann variables.

For QED, the generating functional can then be written in the concise
form

Z[jµ] = N

∫
[dAµ][dc][dc̄] e

i
∫
d4x (Aµ( gµν−∂µ∂ν)Aν− 1

2ξ (∂
µAµ)

2+c̄ xc+jµA
µ) .

(6.30)
As pointed out earlier, for this case the integration over c, c̄ yields only
an unimportant constant and may be discarded. However, for nonabelian
gauge theory Eq. (6.30) generalizes to

Z[jaµ] =

∫ ∏
a,b,d

[dAaµ][dc
b][dc̄d] ei

∫
d4x [L[Aa

µ]+j
a
µA

µ
a+c̄

bMbec
e− 1

2ξ

∑
b
F2
b
(Aa

µ)] ,

(6.31)
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where repeated indices are summed over. The quantities

Mbe ≡
δFb(A

a
µ)

δαe
(6.32)

will generally depend upon the fields Aaµ themselves. Thus, the fields
{ca} , {c̄a} will appear as degrees of freedom in the defining lagrangian of
the theory. However, although coupled to the gauge fields Aaµ through
c̄Mc, they do not interact with any source terms and therefore can only
appear in closed loops inside more complex diagrams.∗ Since these Grass-
mann quantities are unphysical, they are often called Faddeev-Popov ghost
fields. They are scalar, anticommuting variables which transform as mem-
bers of the regular representation of the gauge group, e.g. for the gauge
group SU(n), there are n2 − 1 of the {ca} and {c̄a} fields.

To complete the discussion, let us determine the ghost-field contribu-
tion to the QCD lagrangian. We choose Fb = ∂µA

µ
b and note the form of

a gauge transformation (cf. Eqs. (I–5.12),(I.–5.17) with αa infinitesimal),

Aµb → A′µb = Aµb +
1

g3
∂µαb − fbaeAµaαe . (6.33)

Then we find from a direct evaluation of ∂Fb/∂αc followed by the rescaling
−g−13 c̄c→ c̄c,

Lgh = −c̄b∂ν [δbe∂ν − g3fbaeAνa]ce . (6.34)

Upon performing an integration by parts in the first term and relabeling
the indices in the second, we obtain the ghost contribution to the QCD
lagrangian of Eq. (II–2.25).

Problems

1) The van Vleck Determinant
The semiclassical approximation to the propagator (valid as h̄ → 0)
can be derived by expanding about the classical path. Writing

x(t) = xcl(t) + δx(t) ,

we have

D(xf , tf ;xi, ti) = eiS[xcl(t)]
∫
D[δx(t)]e

i
2

∫
dtdt′ δx(t) δ2S

δx(t)δx(t′) δx(t
′)
,

where

δ2S

δx(t)δx(t′)
= −

(
∂2

∂t2
+
∂2V [xcl(t)]

∂x2cl(t)

)
δ(t− t′)

∗ Such loops must include a multiplicative factor of −1 to account for the anticommuting nature
of these variables.
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and we have dropped the term linear in δx(t) by Hamilton’s condition.
Performing the path integration we have then

D(xf , tf ;xi, ti) = N

[
det

δ2S

δx(t)δx(t′)

]−1
2

eiS[xcl(t)] ,

where N is a normalization constant and the quantity inside the square
root is called the van Vleck determinant.
a) Show that this can be written in the form

N

[
δ2S

δx(t)δx(t′)

]−1
2

=

[
1

2πi

∂2S[xcl(t)]

∂xf∂xi

]1
2

Hint: The following argument is hardly rigorous but leads to the
correct answer. Write

D(xf , tf ;xi, ti) ≡ A(xf , xi; tf − ti)eiScl(xf ,xi;tf−ti)

and use completeness to show that at equal times

δ(xf − xi) = D(xf , ti;xi, ti) =∫
dx A(xf , x;T )A

∗(xi, x;T )e
i(Scl(xf ,x;T )−Scl(xi,x;T )) ,

where T is an arbitrary positive time. Now define ρ(xi, x;T ) ≡
∂Scl(xi, x;T )/∂xi so that

Scl(xf , x;T )− Scl(xi, x;T ) ≃ (xf − xi)ρ(xi, x;T ) .

Finally, change variables from x to ρ and compare with the free
particle result to obtain

A(xf , xi;T ) =

[
1

2πi

∂2Scl
∂xf∂xi

]1/2
.

b) Show that

Scl(xf , xi;T ) = −ET +

∫ xf

xi

dx
√

2m(E − V (x))

and verify that[
1

2πi

∂2Scl
∂xf∂xi

]1
2

=

[
m

2πiẋcl(tf )ẋcl(ti)
∫ xf
xi

dx ẋ−3cl (x)

]1
2

Hint: Recall that t is an independent variable, so that

0 =
∂t

∂xf
=

∂t

∂ti
.
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We thus have the result for the semiclassical propagator

D(xf , tf ;xi, ti) =

[
m

2πiẋcl(ti)ẋcl(tf )
∫ xf
xi

dx ẋ−3cl (x)

]1/2
eiScl ,

which is identical to that found from WKB methods.
2) Propagator for the Charged Scalar Field

The lagrangian density for a charged scalar field φ of mass m and
charge e in the presence of an external (c-number) potential Aµ is

L = Dµφ∗Dµφ−m2φ∗φ ,

where Dµ = ∂µ + ieAµ is the covariant derivative.
a) Show that the full Feynman propagator,

DF (x
′;x) =

∫
[dφ][dφ∗]φ(x′)φ∗(x)ei

∫
d4x L(x)∫

[dφ][dφ∗]ei
∫
L(x)

,

can be written as

DF (x
′;x) = −i⟨x′|(DµDµ +m2 − iϵ)−1|x⟩ .

Suggestion: This is a quadratic form. Use the generating func-
tional to integrate it.

b) By expanding DF (x
′;x) as a power series in Aµ(x), show that an

alternative representation for the propagator is

DF (x
′;x) = ⟨x′|

∫ ∞
0

ds e−is(D
µDµ+m

2−iϵ)|x⟩ .

3) Functional Methods and φ4 Theory
Consider a scalar field theory with the self-interaction

Lint = −
λ

4!
φ4(x) .

a) Show that the generating functional can be written as

Z[j] = Ne
−i λ4!

∫
d4z

(
δ4

δj4(z)

)
e−

1
2

∫
d4x
∫
d4y j(x)i∆F (x,y)j(y)

where the free field Feynman propagator i∆F (x, y) is as in Eq. (C–
2.12).

b) Evaluate the two-point function to O(λ2). Associate a Feynman
diagram with each term of this expansion and separate the con-
nected and disconnected diagrams.

c) Calculate the connected generating functional via

W [j] =W0[j]− i ln
[
1 + e−iW

(0)[j]

(
e
−i λ4!

∫
d4z δ4

δj4(z) − 1

)
eiW (0)[j]

]
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where

W (0)[j] =
1

2

∫
d4x

∫
d4y j(x)i∆F (x, y)j(y) .

d) Compare the connected diagrams found in parts (b) and (c).


