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Non-local quantum effects in cosmology 1: Quantum memory, non-local FLRW

equations and singularity avoidance

John F. Donoghue and Basem Kamal El-Menoufi
Department of Physics, University of Massachusetts

Amherst, MA 01003, USA

We discuss cosmological effects of the quantum loops of massless particles, which lead to temporal
non-localities in the equations of motion governing the scale factor a(t). For the effects discussed
here, loops cause the evolution of a(t) to depend on the memory of the curvature in the past with
a weight that scales initially as 1/(t− t′). As one of our primary examples we discuss the situation
with a large number of light particles, such that these effects occur in a region where gravity may
still be treated classically. However, we also describe the effect of quantum graviton loops and the
full set of Standard Model particles. We show that these effects decrease with time in an expanding
phase, leading to classical behavior at late time. In a contracting phase, within our approximations
the quantum results can lead to a bounce-like behavior at scales below the Planck mass, avoiding
the singularities required classically by the Hawking-Penrose theorems. For conformally invariant
fields, such as the Standard Model with a conformally coupled Higgs, this result is purely non-local
and parameter independent.

1. INTRODUCTION

Massless particles can propagate over long distances, and loops involving massless particles generate nonlocal
effects. In cosmology, where the evolution of the scale factor depends only on time, this means that loops can
generate temporal non-localities. There will be modifications to the FLRW (Friedmann, Lemâıtre, Robertson, Walker)
equations governing the scale factor a(t), which in the classical theory are local differential equations. The effects of
loops will generate new contributions where the equation for the scale factor depends on what the scale factor was
doing in the past. We refer to this effect as the quantum memory of the scale factor and it is the subject of the present
paper. Such non-local effects are calculable, even if we do not know the full theory of quantum gravity, because they
come from the low energy portion of the effective field theory [1] where the interactions are those of general relativity.
Quantum non-local effects produce modifications to standard cosmological behavior at scales below, but approach-

ing, the Planck scale. In an expanding universe, we explore how classical behavior emerges from the quantum regime.
In a contracting universe, singularities are inevitable in the classical theory, as shown by the Hawking-Penrose singu-
larity theorems [2]. We study whether quantum effects could lead to the avoidance of singularities. Our work contains
some approximations, described below, but within the context of those approximations it does seem that quantum
effects do lead to non-singular bounce solutions in at least some situations.
We will provide results for all forms of matter. However, two cases are of particular importance. One is obviously

pure gravity, studying the effects of graviton loops. The other is the case of a large number of matter fields. Con-
ceptually this situation is distinctive because when the number (N) of matter fields is large, the non-local quantum

effects become important at a scale MP /
√
N , at which point general relativity itself can be treated classically. For

example, in such a theory the effect of the graviton vacuum polarization from N scalar particles diagram of Fig. 1
can be summed to produce a modification to the graviton propagator

1

q2
→ 1

q2 − GNq2

120π log(−q2/µ2)
. (1)

The logarithmic term is crucial for restoring unitarity to scattering amplitudes in this theory [3, 4]. It is the momentum
space equivalent of the non-local terms that we will be studying in this paper. We are interested in the effect of this
loop, not in scattering amplitudes but in cosmology. The large N limit is also relevant for the physical universe, as
the Standard Model has roughly a hundred effective degrees of freedom (fermions, vectors and scalars, as defined in
Sec. 4) producing quantum effects that are larger than graviton loops. We also display results for the Standard Model
set of particles.
The study of quantum field theory and gravity is a vast subject - many fundamental developments can be traced

in the references of books such as [5–7]. In connection with non-localities, we should mention some previous work in
particular. Barvinsky, Vilkovisky and collaborators [8–12] have developed powerful heat kernel techniques to uncover
non-local effects. We use some of their results in Sec. 4. Espriu and collaborators [13, 14] have made important
preliminary investigations of possible non-local effects during inflation. We are building on these earlier results. In
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FIG. 1: Vacuum polarization graph.

addition there are a wide variety of works in non-local models (see for example [15] and references therein) which
however are of a quite different character than the quantum effects that we study.
The plan of the paper is as follows. In Sec. 2 and 3, we first treat simple perturbation theory around flat space.

This is useful to show the nature of the non-locality in time, and to show how one obtains causal behavior in the
equations of motion. We then provide a non-linear form of this result, matching to the heat kernal methods in Sec.
4, with the corresponding non-linear FLRW equations of motion being displayed in Sec. 5. The expanding universe
emerging from the quantum regime is studied in Sec. 6, while Sec. 7 is devoted to the exploration of singularity
avoidance in a collapsing phase. Comments, caveats and further work are discussed in the summary.

2. PERTURBATIVE ANALYSIS

We first start with a perturbative treatment of the graviton vacuum polarization. This provides us with a basis for
later treatment of the non-linear equations, separating the non-local effect from the renormalization of the local terms
in the action. It also allows us to explore the impact of using the appropriate field theoretic formalism to generate
causal behavior for cosmology in the next section.
We compute perturbatively the effective action for a massless free scalar field minimally coupled to gravity with

the Lagrangian

L =
1

2

√
ggµν∂µφ∂νφ . (2)

After performing the functional integral, the operator of interest reads

D =
√
g(✷)

=
√
ggµν

(
∂µ∂ν − Γα

µν∂α
)
. (3)

The last equality holds because the covariant d’Alembertian acts on a scalar field. The metric is expanded around
flat space (we use the mostly minus signature)

gµν = ηµν + hµν . (4)

Likewise, the differential operator can be expanded in powers of hµν to yield

D = ∂2 + δ(1) + δ(2) +O(h3) (5)

where,

∂2 = ηµν∂µ∂ν , δ(1) = −hµν∂µ∂ν +
1
2h∂

2 − ηµνΓα
µν∂α (6)

δ(2) = hµνhα
ν ∂µ∂α − 1

2hh
µν∂µ∂ν +

(
1
4hµνh

µν + 1
8h

2
)
∂2 +

(
hµν + 1

2hη
µν
)
Γα
µν∂∂ − ηµνΓα

µν
∂α . (7)

The indices are raised and lowered using the flat metric, and we have defined

Γα
µν =

1

2

(
∂µh

α
ν + ∂νh

α
µ − ∂αhµν

)
(8)

Γα

µν
= −1

2
hαβ (∂µhνβ + ∂νhµβ − ∂βhµν) . (9)

To find the effective action, we take the logarithm of the differential operator and expand in powers of hµν to find

Tr(logD) = Tr(log ∂2) + Tr

(
Gδ(1) +Gδ(2) − 1

2
Gδ(1)Gδ(1)

)
+O(h3) . (10)
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In the above, G is the Feynmann propagator of a massless scalar. Terms with one propagator vanish when regularized
dimensionally. The first non vanishing contribution is at second order in hµν . We find at this order

Tr(logD) = −1

2

∫
d4k

(2π)4
hµν(k)hαβ(−k)

∫
d4p

(2π)4
Vµν(k, p)Vαβ(k, p)

(p2 + i0)((p+ k)2 + i0)
(11)

where

Vµν(k, p) = pµpν − 1

2
ηµνp

2 +
1

2
kµpν +

1

2
kνpµ − 1

2
ηµνk · p . (12)

This can be calculated straightforwardly, with the final result

Tr(logD) = −1

2

∫
d4k

(2π)4
hµν(k)hαβ(−k)Tµναβ(k) (13)

where

Tµναβ(k) =
i

3840π2

(
1

ǭ
− log

(−k2

µ2

))
[k4 (6ηµνηαβ + ηµαηνβ + ηµβηνα) + 8kµkνkαkβ

−k2 (6kµkνηαβ + 6kαkβηµν + kµkαηνβ + kµkβηνα + kνkαηµβ + kνkβηµα)]
(14)

and

1

ǭ
≡ 1

ǫ
− γ + log

√
4π (15)

with 2ǫ = 4− d.
In order to write the effective action, we transition back to position space. The momentum factors turn into

derivatives acting on the external field. For example, the divergent term can be written as

Sdiv =
1

3840π2

1

ǭ

∫
d4x

(
2∂µ∂νh

µν∂α∂βh
αβ +

3

2
∂2h∂2h+

1

2
∂2hµν∂

2hµν − 3∂µ∂νh
µν∂2h− ∂µ∂

νhαν∂
µ∂βh

βα

)
.

(16)

The divergent contribution to the effective action goes into the renormalization of local operators in the gravitional
action. Counting the number of derivatives in the above expression shows that the local operator we seek is composed
of terms proportional to R2. Hence, we seek the expansions of the different invariants up to second order in h.

R = −∂µ∂νh
µν + ∂2h

R2 = ∂µ∂νh
µν∂α∂βh

αβ − 2∂2h∂µ∂νh
µν + ∂2h∂2h (17)

and

Rµν =
1

2

(
−∂µ∂

αhαν − ∂ν∂
αhαµ + ∂2hµν + ∂µ∂νh

)

2RµνR
µν =

1

2
∂2h∂2h+

1

2
∂2hµν∂

2hµν + ∂µ∂νh
µν∂α∂βh

αβ − ∂2h∂µ∂νh
µν − ∂µ∂νh

µα∂β∂νhβα . (18)

Note that we have freely integrated by parts in these expressions. The gravitational effective Lagrangian is

S =

∫
d4x

√
g

(
1

16πG
R+ c1R

2 + c2RµνR
µν

)
. (19)

Matching with the perturbative calculation allows us to identify the renormalized coupling constants as

c1 = cr1(µ)−
1

3840π2

(
1

ǫ
− γ + log

√
4π

)
(20)

c2 = cr2(µ)−
1

1920π2

(
1

ǫ
− γ + log

√
4π

)
. (21)
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Notice the explicit scale-dependence of the renormalized parameters which ensures the scale-independence of the
effective action.

The non-local part of the effective action follows closely from the divergent part because the coefficient of log(−k2)
is uniquely tied to the divergent 1/ǭ term. Following the logarithm in the transition to coordinate space, we find

Snon−local =
1

3840π2

∫
d4x

∫
d4y[∂2h(x)L̄(x− y)∂2h(y) + ∂µ∂νh

µν(x)L̄(x− y)∂α∂βh
αβ(y)− ∂2h(x)L̄(x− y)∂µ∂νh

µν(y)

−∂µ∂νh
µν(x)L̄(x − y)∂2h(y) + ∂µ∂

νhνα(x)L̄(x− y)∂µ∂βh
αβ(y) + ∂µ∂

νhνα(x)L̄(x− y)∂α∂βh
µβ(y)

−∂µ∂
νhνα(x)L̄(x− y)∂2hµα(y)− ∂µ∂

νhνα(x)L̄(x − y)∂µ∂αh(y)− ∂2hµν(x)L̄(x− y)∂µ∂βh
νβ(y)

−∂µ∂νh(x)L̄(x− y)∂µ∂βh
νβ(y) +

1

2
∂2hµν(x)L̄(x− y)∂2hµν(y) +

1

2
∂2hµν(x)L̄(x− y)∂µ∂νh(y)

+
1

2
∂µ∂νh(x)L̄(x− y)∂2hµν(y) +

1

2
∂µ∂νh(x)L̄(x− y)∂µ∂νh(y)] (22)

where

L̄(x− y) = −
∫

d4k

(2π)4
e−ik·(x−y) log

(−k2

µ2

)
. (23)

We note that each term in the momentum-space expression contributes to more than one term in the above position-
space expression, so it needs some work to pass to Eqn. (22). Using the curvature expansions listed above, we easily
realize a possible non-linear form of the non-local action

Snon−local =
1

3840π2

∫
d4x

∫
d4y (

√
g(x)

√
g(y))

1

2

[
R(x)L̄(x− y)R(y) + 2Rµ

ν (x)L̄(x− y)Rν
µ(y)

]
. (24)

We note that the perturbative calculation alone does not enable us to differentiate between alternate forms of the
non-linear completion which differ by application of the Gauss-Bonnet identity. We will remedy this issue and also
discuss the nature of the approximation implied by this expression in Sec. 4. Note that the logµ2 portion of L̄(x− y)
corresponds to a delta function and hence is a finite local addition to c1 and c2. For N scalar fields, the actions Sdiv

and Snonl−local are multiplied by a factor of N .

3. CAUSAL BEHAVIOR

The effective action of the previous section is not appropriate for generating causal effects in the equations of motion.
The reason is that the Feynman propagators involve both advanced and retarded solutions, and any variation of the
effective action with respect to a field at time t will involve the non-local effects both before and after t. This is
appropriate for scattering amplitudes but not for the equations of motion. Rather one needs to calculate the effects
of the loops on the equations of motion using the in-in (or Schwinger-Keldysh or closed-time-path) formalism [16–
22], which is designed to produce causal behavior. This is relatively more complicated and unfamiliar than usual
perturbation theory. However, Bavinsky and Velkovisky [17, 18] suggest the simple prescription - that one merely
varies the effective action (which they calculate in Euclidean space) and then afterwards imposes causal behavior or
scattering behavior on the final result when one writes the answer in Lorentzian space. We perform the calculation
below and confirm the validity of their prescription. The reader who is not interested in the details can skip to the
results of Eqs. (34), (36) and (39), which are reasonably intuitive.
The in-in formalism deals not with the effective action but with expectation values. It is well known that the

variation of the effective action yields the energy-momentum tensor of the quantum fields, and hence our strategy is
to use the in-in formalism to calculate the causal energy-momentum tensor. The set-up of the formalism is laid out
in the appendix, and our starting point is Eqn. (79)

〈O(t)〉 = I〈Φ(−∞)|S†(t,−∞)OI(t)S(t,−∞)|Φ(−∞)〉I . (25)

It is very useful to insert the identity operator in the form S†(∞, t)S(∞, t) = 1 to the left of the operator

〈O(t)〉 = I〈Φ(−∞)|S†(∞,−∞)T [OI(t)S(∞,−∞)] |Φ(−∞)〉I . (26)

One then obtains various propagators - the normal Feynman propagators associated with purely time-ordered con-
trations, and others associated with mixed contractions as will be explicitly shown below.
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For our case, we are calculating the expectation value of the energy momentum tensor to lowest order in the external
field hµν . Hence, we only have two bubble diagrams each with two propagators where one space-time point is the
observation time. The first diagram arises from the O(hµν) term in S(∞,−∞) and therefore contains the usual
Feynman propagators. One obtains the non-local part of the expectation value

〈TNL
µν (x)〉 = 1

3840π2

∫
d4k

(2π)4
e−ik·x log

(−k2

µ2

)
hαβ(−k) [8kµkνkαkβ − k2(6kαkβηµν + 6kµkνηαβ + kνkβηµα

+ kαkνηµβ + kµkβηαν + kαkµηβν) + k4(ηµαηνβ + ηµβηαν + 6ηµνηαβ)] (27)

where

hαβ(−k) =

∫
d4y eik·yhαβ(y) . (28)

This can be obtained either by direct calculation or by varying the effective action of the previous section. If we
specialize to gravitational fields hµν(x) which are independent of spatial coordinates, we have

〈TNL
µν (t)〉 = 1

3840π2

∫
dω

2π
e−iωt

[
log

(−ω2

µ2

)]
hαβ(−ω) [8kµkνkαkβ − k2(6kαkβηµν + 6kµkνηαβ

+ kνkβηµα + kαkνηµβ + kµkβηαν + kαkµηβν) + k4(ηµαηνβ + ηµβηαν + 6ηµνηαβ)] (29)

where now the momentum is purely temporal kµ = (ω,~0) and

hαβ(−ω) =

∫
dt′ eiωt′ hαβ(t′) . (30)

Note that this result displays non-causal behavior because it is sensitive to times both before and after t.
The second diagram arises from the O(hµν) term in S†(∞,−∞). To calculate such diagram, the algebra of

contractions needs a modification to Wick’s theorem to incorporate anti-time-ordered product of operators. The
details of the construction is included in the appendix. Only the last two terms in Eqn. (81) involving products of
positive-frequency Wightman functions contribute to the calculation. We denote this particular Wightman function
by an underline

φ(x)φ(y) ≡ [φ+(x), φ−(y)] = 〈0|[φ+(x), φ−(y)]|0〉 = 〈0|φ+(x)φ−(y)|0〉 = 〈0|φ(x)φ(y)|0〉 (31)

and it explicitly reads

φ(x)φ(y) = 2π

∫
d4p

(2π)4
θ(p0) δ(p2) e−ip·(x−y) . (32)

The result is a simple addition to the expectation value, with a total result that reads

〈TNL
µν (t)〉 = 1

3840π2

∫
dω

2π
e−iωt

[
log

(−ω2

µ2

)
+ 2iπθ(−ω)

]
hαβ(−ω) [8kµkνkαkβ − k2(6kαkβηµν + 6kµkνηαβ

+ kνkβηµα + kαkνηµβ + kµkβηαν + kαkµηβν) + k4(ηµαηνβ + ηµβηαν + 6ηµνηαβ)] . (33)

Again we transform the above expression to real space, with momentum factors turning into derivatives. This yields

〈TNL
µν (t)〉 =

∫
dt′ L(t− t′)Dµναβh

αβ(t′) (34)

where

Dµναβ =
1

3840π2
[8∂µ∂ν∂α∂β + ∂4(ηµαηνβ + ηµβηαν + 6ηµνηαβ)

− ∂2(6∂α∂βηµν + 6∂µ∂νηαβ + ∂ν∂βηµα + ∂α∂νηµβ + ∂µ∂βηαν + ∂α∂µηβν)] (35)

and where we have identified our key non-local function

L(t− t′) =

∫ ∞

−∞

dω

2π
e−iω(t−t′)

[
log

(−ω2

µ2

)
+ 2iπθ(−ω)

]
. (36)
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In order to evaluate this integral, we first note

log

(−ω2

µ2

)
= log

(
ω2

µ2

)
− iπ, −iπ + 2iπθ(−ω) = −iπ sgn(ω) (37)

hence

L(t− t′) = − 2

∫ ∞

−∞

dω

2π
e−iω(t−t′)

[
log

(
µ

|ω|

)
+

iπ

2
sgn(ω)

]

= −2P θ(t− t′)

t− t′
. (38)

Here P denotes the principal value distribution [23] defined by

P θ(t− t′)

t− t′
= lim

ǫ→0

[
θ(t− t′ − ǫ)

t− t′
+ δ(t− t′) (log(µǫ) + γ)

]
. (39)

Unlike Eqn. (23), this function is clearly causal and real. It also provides a precise definition of how the non-local
integration is to be performed as the term with the delta function yields the desired feature that the non-local effect is
finite. This result verifies the Bavinsky-Velkovisky procedure of varying the effective action and then simply imposing
causal behavior.

4. NON-LINEAR COMPLETION AND QUASI-LOCAL FORM

The perturbative analysis gives us a reference for the form of the non-local quantum effects and the precise causal
prescription. In order to have a more complete description appropriate for application to FLRW cosmology, we can
match to the work by Barvinsky, Vilkovisky and collaborators [8–12]. These authors have explored non-local aspects
of the heat kernel expansion and expressed the results in quasi-local form. Normally the heat kernel methodology is
used to capture local quantum effects. For example, the second coefficient in the expansion of the one-loop effective
action, commonly called a2(x), gives the divergent terms that go into the renormalization of the effective Lagrangian
quadratic in curvature invariants. For massless fields, this is the only one-loop divergence. However, the asymptotic
form of the heat kernel expansion also reveals non-analytic terms. These authors study the non-analytic terms in
Euclidean space and display the results using quasi-local actions of the form

SQL =

∫
d4x

√
g

[
R log

(
✷

µ2

)
R

]
. (40)

Here, ✷ is the d’Alembertian operator as before. Despite the fact that this appears to be expressed in local form, we
show below that matching to the perturbative calculation of the preceding sections confirms that it corresponds to a
non-local effect. The quasi-local forms provide a non-linear covariant completion of the perturbative calculation.

If we resolve the operator log
(

✷

µ2

)
by introducing position space eigenstates we find

SQL =

∫
d4x

√
g(x)R(x)

∫
d4y
√
g(y) 〈x| log

(
✷

µ2

)
|y〉R(y) . (41)

Here the states are normalized covariantly

〈x|y〉 = δ(4)(x − y)
(√

g(y)
√
g(x)

)1/2 . (42)

If we also define

〈x| log
(

✷

µ2

)
|y〉 =

(√
g(y)

√
g(x)

)−1/2

L(x, y;µ) (43)
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we can write the action in explicitly non-local form

SNL =

∫
d4x

∫
d4y

√
g(x)

1/2
R(x)L(x, y;µ)

√
g(y)

1/2
R(y) . (44)

Again, we note that the logµ dependence in these equations corresponds to a local effect. Here, we see that replacing
the covariant d’Alembertian in Eqn. (44) by its Minkowski couterpart yields the first term in Eqn. (24).

There are three terms in the general non-local Lagrangian. Reverting temporarily to quasi-local form, these can be
written as

SQL =

∫
d4x

√
g

(
αR log

(
✷

µ2
α

)
R+ βRµν log

(
✷

µ2
β

)
Rµν + γRµναβ log

(
✷

µ2
γ

)
Rµναβ

)
(45)

where α, β, γ are numerical coefficients which we will display below. We allow for the possibility that the renormal-
ization scales are different for the three terms as the coupling constants of the local Lagrangian could be measured
at different scales. For local terms, there are only two quadratic invariants to be considered due to the Gauss-Bonnet
identity which holds strictly in four dimensions

∫
d4x

√
g RµναβR

µναβ =

∫
d4x

√
g [4RµνR

µν −R2] + total derivative . (46)

While Eqn. (45) is simple and easy to apply, an alternate form reveals some interesting physics. For this form we
employ the Weyl tensor in four dimensions

Cµναβ = Rµναβ − 1

2
(gµαRνβ + gµβRνα + gναRµβ − gνβRµα) +

1

6
R (gµαgνβ − gµβgνα) (47)

to rewrite

SQL =

∫
d4x

√
g
[
ᾱR log

(
✷

µ2
1

)
R+ β̄Cµναβ log

(
✷

µ2
2

)
Cµναβ + γ̄

(
Rµναβ log (✷)R

µναβ − 4Rµν log (✷)R
µν

+R log (✷)R
)]

. (48)

This form has several theoretical advantages. Here the last term, similar in structure to the Gauss-Bonnet term, does
not have any µ dependence because its local form does not contribute to the equations of motion. The FLRW metric
that we use below is conformally flat and thus its Weyl tensor vanishes. Thus the second term will not contribute
to our cosmological application. In turn this tells us that the cosmology study dependence on local short distance
physics comes through the first term only, and there is only one parameter µ1 ≡ µ which describes this local term.
In addition this first term is not generated by conformally invariant field theories (fermions, photons and conformally
coupled scalars) and their quantum effects will be purely non-local. The coefficients in these two different bases are
related by

α = ᾱ+
β̄

3
+ γ̄, β = −2β̄ − 4γ̄, γ = β̄ + γ̄ . (49)

We can identify the coefficients in the non-local Lagrangian because the logarithms are tied to the divergences
in the one-loop effective action, as shown by the perturbative calculation. The latter have been calculated in the
background field method, and results are known before the Gauss-Bonnet identity has been applied1. For example,
the divergent effective Lagrangian for a massless field reads

Ldiv =
√
|g| a2(x)

16π2 ǫ
. (50)

1 This background field method resolves the problem of identifying the complete form of the non-linear completion that we had in
discussing Eq. (24).
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α β γ ᾱ β̄ γ̄
Scalar 5(6ξ − 1)2 −2 2 5(6ξ − 1)2 3 −1
Fermion −5 8 7 0 18 −11
Vector −50 176 −26 0 36 −62

Graviton 430 −1444 424 90 126 298

TABLE I: Coefficients of different fields. All numbers should be divided by 11520π2.

The coefficient a2(x) is known for scalars, fermions and photons [5, 24]

aS2 (x) =
1

180

(
5

2
R2 −RµνR

µν +RµναβR
µναβ

)
(51)

aF2 (x) =
1

360

(
−5R2 + 8RµνR

µν + 7RµναβR
µναβ

)
(52)

aV2 (x) =
−1

180

(
20R2 − 86RµνR

µν + 11RµναβR
µναβ

)
. (53)

Here, the result for fermions assumes a four-component spinor field. The result for the massless vector field also
includes the ghost contribution, which is twice the scalar field result with an appropriate minus sign. Finally, the
classic paper by ’t Hooft and Veltman [25] gave the result for gravitons only after using the Gauss-Bonnet relation,
but the general result has since been calculated, see e.g. [26]. This enables us to read off the result for gravitons
which also includes the ghost contribution

aG2 (x) =
215

180
R2 − 361

90
RµνR

µν +
53

45
RµναβR

µναβ . (54)

In table (I), we collect the coefficients of different fields.
The results are shown for a scalar with a coupling ξRφ2 and the parameter ξ enters the α couplings

α = ᾱ =
(6ξ − 1)2

2304π2
(55)

with β, γ, β̄, γ̄ independent of ξ. Unless stated otherwise, our results are presented for a minimally coupled scalar
(ξ = 0), while a conformally coupled scalar has ξ = 1/6. For conformally invariant fields the coefficient ᾱ will
vanish. Because the FLRW metric is conformally flat, the coupling β̄ does not contribute to our analysis as mentioned
previously. This leaves only the coefficient γ̄ as the active parameter. For NS scalars, Nf fermions and NV gauge
bosons, this coupling has the value

γ̄ = − 1

11520π2
[NS + 11Nf + 62NV ] . (56)

Note that all conformally invariant matter fields carry the same sign of γ̄ and will have similar effects, differing just
in magnitude. Moreover, this case is independent of the parameter µ because the Gauss-Bonnet non-local term (the
one proportional to γ̄) has no local contribution to the equations of motion.
Finally, we can also add up the contributions of all the SM particles (plus the graviton) to find effective SM

coefficients which are calculated as follows

αSM = NSαS +NlαF +NcNqαF +NV αV + αG (57)

and likewise for β and γ. Here, we have broken the fermion contribution up into quark and lepton terms Nf =
Nl +NcNq where Nl is the number of leptons, Nq and Nc are the numbers of quarks and colors respectively. For the
standard model with a minimally coupled Higgs, these numbers read

NS = 4, Nl = 6, Nc = 3, Nq = 6, NV = 12 . (58)

Hence, for this case we find

αSM =
−7

1152π2
, βSM =

287

1440π2
, γSM =

−17

1440π2
(59)
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for the Standard Model particles alone, or also including gravitons

αSMG =
−3

128π2
, βSMG =

71

960π2
, γSMG =

1

40π2
. (60)

For a conformally coupled Higgs field we find the conformally invariant result (without gravitons) ᾱc = 0 and

γ̄c = − 253

2880π2
. (61)

Of course, we recognize that we expect to find new particles between the weak scale and the Planck scale, and so
these numbers would likely be modified when the formalism is applied near the Planck scale.

5. NON-LOCAL FLRW EQUATIONS

The equations of motion can be obtained by varying the effective action, specializing to the FLRW metric and then
imposing causal prescription. We do that in this section, displaying the corresponding non-local effects in the FLRW
equations.
However, this procedure cannot be done exactly because we do not know the full dependence of the non-local

function L(x, y;µ) on the background metric. We could employ a procedure like the Riemann normal coordinates
expasnion [5], in which propagators are expanded in powers of the curvature. A calculation of the loop diagram could
then be used to provide an expansion of L(x, y;µ) involving further powers of the curvature through triangle and box
diagrams. However, since the quasi-local action is already quadratic in the curvature, we will proceed by dropping
such higher curvature terms and employing the approximation

L(x, y;µ) ≈ L̄(x − y) (62)

when we pass to the non-local form of the action. This approximation confines our study to quadratic corrections
to the gravitational action. Because the non-local function L̄(x − y) falls as 1/(t − t′) our approximation captures
the behavior where the integrand is the largest, but will differ past the Hubble time where the integrated curvature
becomes large. With this approximation, the non-local function depends only on |x− y| so that

∂

∂x
L̄(x− y) = − ∂

∂y
L̄(x− y) (63)

allowing derivatives acting on L̄ to be transferred to derivatives acting on the scale factor a(t′).
The non-linear FLRW equations can be derived in one of two ways. One can vary gµν in general and then specialize

to the FLRW metric. Equivalently one may use the general metric ds2 = f2(t)dt2 − a2(t)d2x, varying with respect to
both f and a and then setting f = 1 at the end. Either way we obtain the 0− 0 component of the modified equations
of motion

3aȧ2

8π
+N

[
6(
√
a ä)t

∫
dt′ L(t− t′)R1 + 6

(
ȧ2√
a

)

t

∫
dt′ L(t− t′)R2 + 12(

√
aȧ)t

∫
dt′ L(t− t′)

dR3

dt′

]
= a3ρ . (64)

Here, N represents the number of particles and the different functions read

R1 = −
√
aä(6α+ 2β + 2γ)− ȧ2√

a
(6α+ β) (65)

R2 = −
√
aä(12α+ β − 2γ)− ȧ2√

a
(12α+ 5β + 6γ) (66)

R3 =
√
aä(6α+ 2β + 2γ) +

ȧ2√
a
(6α+ β) . (67)

For mixed combinations of particles, N can be absorbed in the definitions of αtot, βtot, γtot as described in the
previous section. As described in Sec. 3, the equations of motion must use the causal non-local function

L(t− t′) = lim
ǫ→0

[
θ(t− t′ − ǫ)

t− t′
+ δ(t− t′) log(µR ǫ)

]
(68)

obtained therein and we absorbed Euler’s constant into the renormalization scale µR. We finally remind that in a
covariant theory the space-space equation of motion is not an independent equation. This is not true in our case since
we employed an approximation for the function L(x, y;µ) that manifestly breaks general covariance.
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6. EMERGENCE OF CLASSICAL BEHAVIOR

In assessing the effects of the non-local behavior, we treat the new terms as a perturbation in the equation of motion.
They have certainly been calculated as perturbations to the leading behavior, so this is a conservative approach. We
will address the limits of such perturbative treatment in the final section.
In an expanding universe, the quantum effects are expected to be felt most in the early phases of expansion when the

curvature is largest. In principle, these effects could change the character of the expansion, perhaps by an instability.
In addition, the memory effect which is sensitive to past values of the curvature with the weight 1/(t − t′) could
have an effect which builds up with time. Within our approximation, neither of these happens. We will explore the
situation by ’switching on’ the non-local effect at the Planck time. The evolution of the scale factor is influenced by
the non-local effect very close to the Planck time. However, subsequent evolution turns essentially classical and the
effect of non-local terms fades away.
We will treat both a dust-filled universe and a radiation-filled universe. We set G = 1 in the numerical evaluation.

The lower limit of the integrals is then taken to be t0 = 1 which corresponds to the Planck time as mentioned
earlier. In treating the new terms as a perturbation, we use the known classical solutions as input to the integrands,
integrating up to the observation time t. This allows the integrals over time to be done by hand and converts the
integro-differential equation into a simpler differential equation, albeit one with a reference back to a starting time t0.
For a scalar field, we use the coefficients listed in the previous section to find the functions

R1 =
−1

π2

(√
aä

384
+

7ȧ2

2880
√
a

)
, R2 =

−1

π2

(
3
√
aä

640
+

31ȧ2

5760
√
a

)
, R3 =

1

π2

(√
aä

384
+

7ȧ2

2880
√
a

)
. (69)

If we treat the matter input as dust, the classical solution is a(t) = (t/t0)
2/3 and thus the 0 − 0 equation of motion

reads

aȧ2 − NS

2430π

(
19E1(t; t0)

t20t
+

26E2(t; t0)

t20

)
=

8πρ0
3

. (70)

We note that the normalization time is chosen to coincide with the initial time t0, and hence the energy density is
ρ0 = 1/(6πt20). We also defined the functions

E1(t; t0) =
log(µRt) + log(t/t0 − 1)

t
, E2(t; t0) =

log(µRt) + log(t/t0 − 1) + (t/t0 − 1)

t2
. (71)

Results are shown in Figs. 2-4 for different numbers of scalar fields. In each case, the quantum correction provides
an initial deviation from the straight classical behavior. However, as the scale factor evolves, the curvature decreases
and the evolution is driven by the lowest order FLRW equation with the usual classical form. This is perhaps expected
but indicates, at least within our approximations, that the quantum terms do not destabilize the evolution of the
scale factor. One can see that increasing the number of scalars increases the magnitude of the quantum effect, but
does not change the character of the effect. For these plots we have used µR = 1, but a reasonable range of other
values of µR leads to qualitatively similar results.
We also show the case of pure graviton loops in Fig. 5. This is qualitatively similar to that of scalars, with the

graviton making a somewhat larger effect than would an individual scalar.
For a radiation dominated universe the situation is also interesting,

aȧ2 − NS

1152π

(
E5/4(t; t0)

t
3/2
0 t5/4

− E9/4(t; t0)

t
3/2
0 t1/4

)
=

8πρ0
3a

. (72)

In this case the energy density is ρ0 = 3/(32πt20). The expansion functions read

E5/4(t, t0) =
1

t5/4

[
log(µRt) + log

(
t1/4 − t

1/4
0

t1/4 + t
1/4
0

)
+ 4

(
t

t0

)1/4

+ 2 arctan

(
t0
t

)1/4

+ log(8)− 4− π

2

]
(73)

E9/4(t, t0) =
1

t9/4

[
log(µRt) + log

(
t1/4 − t

1/4
0

t1/4 + t
1/4
0

)
+ 4

(
t

t0

)1/4

+
5

4

(
t

t0

)5/4

+ 2 arctan

(
t0
t

)1/4

+ log(8)− 21

4
− π

2

]
.

(74)

The equation of motion shows the interesting feature that the dependence on logµR cancels out, which means that the
effect is purely non-local. The reason is that the classical solution in the case of radiation a(t) = (t/t0)

1/2 furnishes
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FIG. 2: The evolution of the scale factor and its time derivative in an expanding dust filled universe for N=10.
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FIG. 3: The evolution of the scale factor and its time derivative in an expanding dust-filled universe for N=100.

an exact solution to local quadratic gravity. We show results for the expanding radiation universe with a thousand
scalar fields in Fig. 6. The quantum effects are somewhat smaller in the radiation case, but have the same qualitative
behavior as the dust-filled universe. Situations involving fermions, photons and gravitons are also quite similar and
we do not display figures for each case.
Overall these results are satisfying in that the quantum corrections are well behaved and turn off as we enter the
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FIG. 4: The evolution of the scale factor and its time derivative in an expanding dust-filled universe with N = 104 scalar fields.
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FIG. 5: The evolution of the scale factor and its time derivative in an expanding dust-filled universe with quantum graviton
loops.
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FIG. 6: The evolution of the scale factor and its time derivative in an expanding radiation-filled universe with N = 103 scalar
fields.

period of classical evolution.

7. CONTRACTING UNIVERSE AND THE POSSIBILITY OF A BOUNCE

Of perhaps greater interest is the physics of a collapsing phase. Here the initial conditions are purely classical
and the natural evolution bring the universe into the quantum regime. The classical evolution is headed towards a
singularity - the big crunch. We will explore this case and see that within our approximation the quantum effects can
lead to an avoidance of the singularity.
Our procedures are similar to those of the previous section. We input the classical solution into the non-local

functions. For scalar fields in the case of collapsing dust, this results in

aȧ2 − NS

2430π

(
19C1(t)

t20t
+

26C2(t)

t20

)
=

8πρ0
3

. (75)

The collapse functions are defined as

C1(t) =
log(−µRt)

t
, C2(t) =

log(−µRt) + 1

t2
. (76)

We note that the initial time in this case is taken to be −∞ as there is no need to cut off the non-local integrals. The
normalization time t0 can be chosen arbitrarily but in a regime where the classical behavior remains dominant.
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FIG. 7: Collapsing dust-filled universe with µR = 1 and a single scalar field. The time derivative of the scale factor quickly
stops diverging when the quantum correction becomes active.
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FIG. 8: Varying both the scale µ and the number of scalar particles NS in a collapsing dust-filled universe. The plots from
left to right involve (NS = 1, µR = 1), (NS = 102, µR = 0.1) and (NS = 104, µR = 0.01). Note the change of scale along
the time axis in the figures. The results illustrate the similarity of the quantum corrections with an energy scale that scales as
E ∼ MP /

√
N .

As an example of what happens in a collapsing phase, consider the case NS = 1, µR = 1, shown in Fig. 7. Here we
see that ȧ(t), which is diverging classically, slows down and in fact turns around. This appears as a bouncing solution
rather than a singular one. Because of the choice µR = 1, logµR = 0 and there is no local effect in these units.
If we change the number of scalars, we can lower the energy that this behavior occurs at, in accord with the expected

N scaling. This is shown in Fig. 8 by adjusting NS and µR together such that the number of scalars changes by
a factor of 100 between firgures, while µR changes by a factor of 10. This modifies the location of the bounce in a
predictable way. The figures look similar even though the horizontal scale changes by a factor of 10 between pictures.
The physics does scale as 1/

√
NS as long as we rescale µR by this factor, and we can have this effect occur well below

the Planck scale if the number of scalars is large enough.
However, not all cases lead to singularity avoidance. There is a dependence on the scale µR and for some choices

the local terms overwhelm the effect of the non-local terms. This can be seen in Fig. 9. Here the local terms drive
the scale factor in a more singular direction and the singularity happens more rapidly.
The bounce is also seen in the case of pure gravity, Fig. 10. The non-local coefficients for the graviton are larger

than those for a single scalar and the change in the scale factor happens at a slightly earlier time than the single
scalar case.
A very interesting case is the Standard Model with a conformally coupled Higgs. As explained in Sec. 5, this

situation is purely non-local and completely independent of the parameter µR because in the basis of Eq. 48, only
the Gauss-Bonnet non-local term contributes and this has no local effect. So this prediction is particularly simple
and beautiful. The result with all the Standard Model particles is shown in Fig. 11 and demonstrates the non-local
bounce effect in a parameter independent fashion. Note that all conformally coupled fields contribute with the same
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FIG. 9: Varying the scale µR in a collapsing dust-filled universe, with µR = 0.1 on the left and µR = 10 on the right.
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FIG. 10: The effect of graviton loops on a dust-filled universe. These have µR = 0.1 on the left and µR = 1 on the right.

sign, so that increasing the number of matter fields will always enhance this effect2.
For a radiation-filled universe, the effect is always independent of the scale µR. With just graviton loops, we see a

very similar bounce, see Fig. 12. Unfortunately, matter fields have an effect in the opposite direction, and overwhelm
the effects of gravity. So with the full set of Standard Model particles plus gravitons, the net effect does not lead to
singularity avoidance, as shown in Fig. 13.

8. SUMMARY

Quantum loops bring a unique feature to cosmology, i.e. non-locality. The local classical theory is supplemented
by effects which depend on the past behavior of the scale factor. Because of the power-counting theorems of general
relativity, these effects are small except at times of large curvature. However, with enough light fields they can become
important below the Planck scale.
We have explored the non-local effects that correspond most closely to the graviton vacuum polarization. Our

work has been perturbative, in that we treat the new non-local effects to first order only. This is appropriate for a
correction that has been calculated at one-loop order only. Actually the large N case can be used to argue that the
one-loop result is the most important in the limit of large N. The one-loop integral is proportional to GN . For matter
fields that have only gravitational interactions, higher loops would either involve extra gravitons in loops (which do
not bring extra factors of N) or would be the iteration of the simple vacuum polarization. Counting the powers of

2 Gravitons are not conformally coupled, but we have checked that their quantum effect (with µ near unity) is smaller than the effect of
the Standard Model particles, and do not change the character of Fig. 11.
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FIG. 11: Collapsing dust-filled universe with the Standard Model particles and a conformally coupled Higgs. The result is
purely non-local and hence independent of any scale µR.
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FIG. 12: Collapsing radiation-filled universe with gravitons only considered.

G and N reveals that the iteration of the one-loop diagram is the only effect of order (GN)n, with other diagrams
suppressed by at least a power of N .
In addition to the unavoidable use of perturbation theory, we have also approximated the non-local function by

its free field behavior. The use of the full propagators is not realistically tractable in a general FLRW space time.
The approximation amounts to neglecting higher powers of the curvature which appear in the propagators. This is
reasonable when paired with the general use of perturbation theory. The approximation should be good in the region
where the non-local integrand, 1/(t− t′), is the largest. We have not seen any problematic effects from the long-time
tail of this integrand.
The most interesting effect uncovered is the tendency towards singularity avoidance in collapsing FLRW universes.

The classical theory, with only the Einstein action, collapses towards an inevitable singularity. The quantum effects
can oppose this collapse and can turn around converging geodesics. Because of the perturbative treatment, we cannot
be certain of the ultimate fate of such effect, but within the limits of our approximations it appears to have the
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FIG. 13: Collapsing radiation-filled universe all the Standard Model particles included, as well as graviton loops.

characteristics of a bounce.
There is clearly much more work needed to fully understand the effects of quantum non-locality in general relativity.

We will continue our exploration in future work.
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Appendix: Some aspects of the in-in formalism

The aim of the in-in formalism is to derive an expression for the time-dependent expectation value of a Heisenberg
operator OH(t). For systems out of equilibruim, the Hamiltonian has explicit time dependence. For systems under
equilibrium, the common practice in perturbation theory is to switch to the interaction picture by splitting the
Hamiltonian into free and interaction pieces. For our case, we switch to the interaction picture by splitting the full
Hamiltonian to a time-independent piece, which might itself contain interactions, and a time-dependent interaction;
H(t) = H0 +Hint(t). Hence,

OH(t) = U†(t, 0)e−iH0t OI(t) e
iH0tU(t, 0) ≡ S†(t, 0)OI(t)S(t, 0)

where U(t, t′) is the fundamental time-evolution opertaor and we choose all pictures to coincide at t = 0. The operator
S(t, t′) is readily seen to satisfy a Schrodinger-like equation whose solution reads

S(t, t′) = T exp

(
−i

∫ t

t′
dt1HI(t1)

)
, HI(t) ≡ eiH0tHint(t)e

−iH0t . (77)

It remains to relate the states in different pictures where it is convenient for our problem to change the reference
time such that all pictures coincide at t = −∞. Hence,

|Φ〉H = |Φ(−∞)〉I . (78)

Using the fundamental unitarity property of the time evolution operator, we find the time-dependent expectation
value of an arbitrary operator

〈OH(t)〉 = I〈Φ(−∞)|S†(t,−∞)OI(t)S(t,−∞)|Φ(−∞)〉I . (79)
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As mentioned in the text, it is very useful to insert the identity operator in the form S†(∞, t)S(∞, t) = 1 to the
left of the operator

〈O(t)〉 = I〈Φ(−∞)|IS†(∞,−∞)T [OI(t)S(∞,−∞)] |Φ(−∞)〉I . (80)

One then obtains various propagators - the normal Feynman propagators associated with purely time-ordered con-
tractions, and others associated with mixed contractions. Wick’s theorem must then be generalized to include the
anti-time-ordered products of fields, which we now describe.
The goal is to modify Wick’s theorem to incorporate an anti-time-ordered product of operators. Here, we do not

prove the modified theorem but rather only derive the needed expression for our calculation which is

T̂ [AB]T [CD] = N [ABCD +ABCD + CDAB + CDAB +BCAD +BDAC +ADBC +ACBD +BC AD +BD AC] .

(81)

Here, the operators A,B,C,D may represent different fields or the same field evaluated at different spacetime points
and the hat denotes the anti-time-ordering symbol. The underline symbol denotes the positive-frequency Wightman
function defined in section 3. We also have the usual Feynmann and Dyson propagators

AB ≡ 〈0|T [AB]|0〉, AB ≡ 〈0|T̂ [AB]|0〉 . (82)

To derive Eqn. (81), we start with the simpler product

T̂ [AB]C = N [ABC + CAB +BAC +ABC] (83)

which is proved by employing

T̂ [AB] = N [AB] +AB, N [AB]C = N [ABC +ABC +BAC] . (84)

Left-multiplying Eqn. (83) by an operator, one finds

T̂ [AB]CD = N [ABCD +ABCD +AC BD +BC AD + CDAB +BDAC +ADBC + CDAB +BD AC +AD BC] .

(85)

The above expression is obtained by deriving the analog of the second equation in (84), albeit with an extra operator
to the left. Using the basic defintion of time-ordered products along with Eqn. (85) readily yields Eqn. (81).
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