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Abstract: We explore the properties of non-local effective actions which include grav-
itational couplings. Non-local functions originally defined in flat space can not be easily
generalized to curved space. The problem is made worse by the calculational impossibility of
providing closed form expressions in a general metric. The technique of covariant perturba-
tion theory (CPT) has been pioneered by Vilkovisky, Barvinsky and collaborators whereby
the effective action is displayed as an expansion in the generalized curvatures similar to
the Schwinger-De Witt local expansion. We present an alternative procedure to construct
the non-local action which we call non-linear completion. Our approach is in one-to-one
correspondence with the more familiar diagrammatic expansion of the effective action. This
technique moreover enables us to decide on the appropriate non-local action that generates
the QED trace anomaly in 4D. In particular we discuss carefully the curved space general-
ization of ln�, and show that the anomaly requires both the anomalous logarithm as well
as 1/� term where the latter is related to the Riegert anomaly action.
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1 Introduction

While the fundamental Lagrangians describing our known physical theories are all local,
quantum loops of massless or nearly massless particles yield non-local effects. It is often use-
ful to arrange those loop effects into a non-local effective action which enables a systematic
investigation of the quantum effects on the classical background fields. For theories where
the symmetries relate the couplings of different types of particles, such as chiral theories or
general relativity, the evaluation of a single loop using the background field method allows
the loop corrections to a large number of processes to be calculated at once. For example in
chiral perturbation theory, the renormalized non-local effective action [1] is useful for many
different reactions.

In general relativity, Barvinsky, Vilkovisky and collaborators (hereafter referred to
collectively as BV) have developed techniques for calculating and displaying the non-local
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gravitational effective actions that arise due to graviton loops or those of other massless
fields [2–11]. The results are presented using an expansion in the curvature. In effective
field theory we are used to an expansion in the curvature for local Lagrangians. This
corresponds to an energy or derivative expansion in which operators are suppressed by a
mass scale which is typically the mass of the ’integrated out’ field. If the light fields present
in the effective action are slowly varying, each term in the expansion is correspondingly
smaller. Quantum mechanically, this corresponds to low energies. However, with non-local
actions the curvature expansion has a different nature. Because non-local operators such
as the inverse d’ Alembertian 1/∇2 can appear, higher powers of the curvature such as
[(1/∇2)R]n are not automatically suppressed at low energy and the curvature expansion
is not the same as the energy expansion. Instead, it is a way to describe the (calculable)
infrared physics from quantum loops. The effects of these infrared non-local effects from
loops are just starting to be explored [12–21].

In this paper we explore the non-local curvature expansion in a relatively simple setting
- that of photons coupled to a massless charged scalar and to gravity. We also display the
results relevant for massless fermions to highlight interesting features of the non-local action.
Both the spacetime metric and the gauge field are treated as classical background fields.
In a recent paper [22], we focused on obtaining the flat-space non-local effective action
and the associated energy-momentum tensor that gives rise to the trace anomaly. Here
we are concerned with generalizing the flat-space results to curved backgrounds. This is
achieved via a technique that we refer to as the non-linear completion of the action where,
similar to CPT, the action is displayed as an expansion in the curvatures. The non-local
effective actions are a relatively unexplored topic and there remain interpretive issues that
we explore here.

Most notable is the issue of the covariant nature of the non-local form factors such as
ln∇2. In particular, we pay special attention to the generalization of the flat d’ Alembertian
to curved space which turns out to be a non-trivial aspect of the effective action. Moreover,
direct use of the Feynman graph expansion of the effective action allows us to identify the
terms which is related to the beta function of the theory and those which are not related
to the latter. Our exploration leads to a better understanding of the non-local action that
generates the QED trace (conformal) anomaly. To the best of our knowledge, this is an
unsettled issue in the literature and the procedure of non-linear completion yields interesting
insight into the correct form.

The plan of the paper is the following. In section 2 we provide an overview of the
main problem discussed in the paper and also present our results. In section 3 we discuss
some of the methodological issues with this program, pointing out the main difficulties of
constructing non-local actions in curved spaces and in section 4 we describe the non-linear
completion matching technique. Section 5 is devoted for the non-linear completion of the
quadratic action while the cubic action is displayed in section 6. We then move in section
7 to show how the terms in the effective action generates the trace anomly. Finally, we
summarize and conclude in section 8.
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2 The problem of ln�

In flat-space the one loop effective action for a photon, obtained by integrating out a
massless charged scalar or fermion, has the form

S =

∫
d4x − 1

4
Fµν

[
1

e2(µ)
− bi ln

(
�/µ2

)]
Fµν (2.1)

where bi is the leading coefficient of the beta function, bs = 1/(48π2) for a charged scalar
and bf = 1/(12π2) for a charged fermion, and � = ∂2. Here the action is expressed in
quasi-local form and the ln�/µ2 operator is a shorthand for the fully non-local realization

〈x| ln
(
�
µ2

)
|y〉 ≡ L(x− y) =

∫
d4q

(2π)4
e−iq·(x−y) ln

(
−q2

µ2

)
. (2.2)

When one desires a formulation in curved spacetime, one requires that the logarithm
generalizes to the covariant form, with tensor indices raised and lowered with the metric,
and the � operator also being covariant. We will reserve the notation � for the flat-space
d’Alembertian and use ∇2 for the covariant version. That is, one requires

bi
4

∫
d4x ηµαηνβFµν ln

(
�/µ2

)
Fαβ →

bi
4

∫
d4x
√
−g gµαgνβFµν ln

(
∇2/µ2

)
Fαβ (2.3)

This can be made more usable through the definition of the log as

ln
(
∇2/µ2

)
= −

∫ ∞
0

dm2

[
1

∇2 +m2
− 1

µ2 +m2

]
(2.4)

which then involves propagators that can be covariantly defined. Even here the result is
not simple as the inverse operator is acting on the tensor indices of Fαβ and itself becomes
a bitensor [23]. Later in the paper we expand the covariant form in eq. (2.3) to first order
in the expansion gµν = ηµν + hµν , for photons satisfying p2 = p′2, resulting in∫

d4x
√
g Fαβ ln

(
∇2

µ2

)
Fαβ =

∫
d4x

[
Fαβ ln

(
�/µ2

)
Fαβ + hµν (Oµν1 +Oµν2 )

]
(2.5)

where

Oµν1 =
1

2
ηµνFαβ ln(�/µ2)Fαβ − 2Fµα log(�/µ2)F να

Oµν2 = ∂µ∂νFαβ
1

�
Fαβ + ∂µ∂νFαβ

1

�
Fαβ − ηµν∂λFαβ

1

�
∂λFαβ (2.6)

and indices are raised and lowered with the flat metric. We note that near the mass shell,
p2 = p′2 = λ2 ≈ 0, the F (1/�)F terms are particularly dangerous as they involve the
inverse photon “mass”. Notice also that the logarithms in eq. (2.6) are infrared singular.

On the other hand, in our previous work [22], we have explicitly calculated the hµν
corrections to the effective action for a conformally coupled scalar field and on-shell photons,
and have extracted the fermionic analogy from the work of [24]. Interestingly, none of the
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above hµν terms in eq. (2.5) are found in the result. Instead we get a relatively simple
answer, in that the terms that are proportional to the beta function coefficient1 are

bi
4

{
Fαβ ln

(
�/µ2

)
Fαβ + hµν

[
2 ln(�)Tµνcl −

2

3

1

�
Aµν

]}
(2.7)

with
T clµν = −FµσF σ

ν +
1

4
gµνFαβF

αβ (2.8)

and

Aµν = ∂µFαβ∂νF
αβ + Fαβ∂µ∂νF

αβ − ηµν∂λFαβ∂λFαβ (2.9)

This result is itself generally covariant to this order in hµν , although different in structure
from eq. (2.5). One can easily check that the full result is invarint under local coordinate
transformations hµν → hµν + ∂(µξν). In contrast to eq. (2.5) we see that eq. (2.7) does not
contain any of the dangerous F (1/�)F terms - the inverse photon mass does not arise in
perturbation theory.

Both of the O(hµν) terms in eq. (2.7) are required by trace anomaly considerations
and hence must be proportional to the beta function coefficient bi. The terms with the
logarithm yield the correct trace anomaly for a pure scale transformation

x′ = λx, A′µ(x′) = λ−1Aµ(x), h′µν(x′) = hµν(x), ln�′ = ln�− lnλ2, (2.10)

where the non-invariance of ln� leads to

T µ
µ =

bi
2

(
ηµαηνβFµνFαβ + 2hµνT clµν

)
(2.11)

which is the correct expansion of the covariant density √gF 2. Under this rescaling the
last term in eq. (2.7) is invariant. However, under a conformal transformation (gµν →
exp (2σ(x))gµν) restricted to flat-space

hµν → hµν + 2σηµν (2.12)

the first two terms in eq. (2.7) are invariant while the last term is not. Using the on-shell
condition �Aµ = 0 we have that2

∂λFαβ∂
λFαβ =

1

2
� (FµνF

µν) , ηµν
1

�
Aµν = −3

2
FµνF

µν (2.13)

and we see that last term yields the correct trace anomaly. The two related transformations,
rescaling the coordinates and rescaling the metric, act differently in the effective action yet
both yielding the same anomaly relation. We see that both types of non-locality, i.e. the
logarithm and the massless pole in eq. (2.7) are required by direct calculation as well as by
anomaly considerations.

1There is also a term independent of the beta function which we include below.
2The details of these steps are carefully presented in [22].
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We seek the covariant curvature expansion which reproduces the perturbative results.
For nomenclature, the term of order F 2 is referred to as second order in the curvature, while
that with an extra gravitational curvature, e.g. F 2R, is called third order in the curvature.
The details of the matching will be given in the body of the paper, while here we summarize
the results.

The mismatch of the two expressions eqs. (2.5) and (2.7) makes the expansion in the
curvature relatively complicated. Because one is starting out with the F ln∇2F expression
as the covariant form which is second order in the curvature, one needs to add and subtract
correction terms in order to reproduce the actual calculated result. These counter-terms are
third order in the curvarure as we show below. This does not modify the covariance of the
result - both expressions are covariant. Nevertheless it does make the resulting expression
at third order quite complicated. This matching procedue, which we refer to as non-linear
completion, occupies most of the work described below. We find that the result to this
order in the curvature is3

Γlog =
bi
4

∫
d4x
√
g

{
Fαβ ln

(
∇2/µ2

)
Fαβ − 1

3
FαβF

αβ 1

∇2
R

+ 4Rµν
1

∇2

[
log(∇2)

(
−FµσF σ

ν +
1

4
gµνFαβF

αβ

)
+ Fµσ log(∇2)F σ

ν −
1

4
gµνFαβ log(∇2)Fαβ

]
+

1

3
RFαβ

1

∇2
Fαβ − CαβµνF β

α

1

∇2
Fµν

}
(2.14)

where Cαβµν is the Weyl tensor. Note that the logarithms within the square brackets [...]

do not need a factor of µ2 as the logµ2 would cancel between the two terms. In particular,
these terms are scale invariant as we will discuss later on.

We will show that eq. (2.14) has the correct anomaly properties. The way that this
is accomplished is interesting. For a scale transformation as in eq. (2.10), it is the first
term - the logarithm - which yields the anomaly. However for a local Weyl (conformal)
transformation it is the second term - F 2 1

∇2R - which is the active ingredient. This latter
term appears as one of the portions of the Riegert anomaly action [25] when appropriately
displayed in a curvature expansion. Finally for a global rescaling of the metric gµν → e2σgµν ,
with σ being a spacetime constant, there is a simpler path that again involves the logarithm.
The latter is equivalent to a scale trasnformation as in eq. (2.10). We conclude that both
the logarithm and the Riegert term (massless pole) are required by anomaly considerations.
We comment on this dichotomy in regard to the geometric program to classify anomalies
set forth by Deser and Schwimmer [26].

Finally in order to match the full result found in the direct one-loop calculation [22],

3The placement of the differential operators appears somewhat different than the expressions in the
body of the paper. This is allowed indeed under integration by parts as we are assuming asymptotically
flat spacetimes.
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one must add a nonanomalous term that has no relation to the beta function

ΓWeyl = niC

∫
d4x
√
g FµνF β

α

1

∇2
Cαβµν (2.15)

where

nsC = − 1

96π2
, nfC =

1

48π2
. (2.16)

This is different for fermions and scalars and is invariant under both scaling and conformal
transformations.

Our final result for the covariant one-loop effective action is

Γtot = Scl + Γlog + ΓWeyl (2.17)

where
Scl =

∫
d4x
√
g − 1

4e2(µ)
FµνF

µν (2.18)

is the classical action.

3 Covariant non-local actions: General remarks

General relativistic actions are readily described when local. Using the metric, covariant
derivatives and curvature tensors one can construct generally covariant local functions of
the field variables. The ultraviolet divergences of quantum loops are therefore simple to
treat because they are also local [27, 28]. However non-local objects are difficult to describe
in a generally covariant form because they sample the metric at a continuum of points in
spacetime. For a general metric, explicit expressions for such actions are not possible.

For massless scalar QED and after integrating out the charged scalars at one loop the
effective action must be gauge invariant and thus involves only the field strength tensor.
Up to quadratic order in the gauge field and using dimensional regularization, a general
form in curved spacetime is

Γ[g,A] =
1

e20
SEM +

∫
d4x

∫
d4y Fµν(x)Mµν

αβ (x, y;µ)Fαβ(y) (3.1)

where SEM is the classical Maxwell action, e0 is the bare electric charge and Mµν
αβ (x, y;µ)

is an antisymmetric second-rank bi-tensor density of unit weight which explicitly depends
on the renormalization scale. As we show below, this bi-tensor samples the full space-time
and not just the pair of points (x, y) since it involves the effects of massless propagators.
The practical question is what the form of this bi-tensor is and how we can best describe
it.

The divergence contained in Mµν
αβ (x, y) is local and calculable. It has the form [22]

Mµν
αβ (x, y;µ) =

1

192π2ε

√
g(x)

1/4
δ4(x− y)

√
g(y)

1/4
Iµναβ + Lµναβ(x, y;µ) (3.2)
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where

Iµναβ =
1

2

(
δµαδ

ν
β − δ

µ
βδ

ν
α

)
(3.3)

This divergence is absorbed into the renormalization of the electric charge. After removing
this divergence, the residual bi-tensor Lµναβ(x, y;µ) is finite.

One might expect that there are also local terms proportional to the geometric curva-
tures, such as FFR which would correspond toMµν,αβ ∼ gµαgνβ√

g δ4(x−y) R. Such terms are
found when one integrates out a massive charged particle [29]. However, they are absent
in our problem, that of integrating out a massless field, simply on dimensional grounds.
The curvatures involve two derivatives of the metric, and hence the coefficient of any local
term of the form FFR must have dimensions of 1/mass2. Because all fields are massless,
there is no way to obtain such a coefficient. Any factors of the curvature in the action must
be balanced by non-local factors such as 1/∇2. This tells us that once we have dealt with
charge renormalization, which is of course a local operator, the remainder of the effective
action will be purely non-local.

In flat space, the non-local function was obtained in [22]

L
(0)µν
αβ (x, y;µ) =

bse
2

4
Iµναβ L(x− y;µ) (3.4)

where bs = 1/(48π2) is the leading coefficient of the QED beta function for a charged scalar,
e is the physical charge and L(x − y;µ) is displayed in eq. (2.2). As a warm-up for later
usage, let us pause at this stage to show how one can convert from a non-local form to a
quasi-local one employing non-local form factors. The latter are the building blocks of the
curvature expansion. Through the position-space representation

〈x| ln
(
∂2

µ2

)
|y〉 ≡ L(x− y) (3.5)

one can re-write eq. (3.1) in quasi-local form as

Γ(0)[A] = SEM +
bse

2

4

∫
d4x Fµν

[
ln

(
∂2

µ2

)]
Fµν . (3.6)

To appreciate the subtleties in the construction of the bi-tensor, let us quote the effective
action linear in metric perturbation around flat space gµν = ηµν + hµν . In non-local form,
it reads [22]

Γ(1)[A, h] = −1

2

∫
d4x

∫
d4y hµν(x)

[
bs L(x− y)T clµν(y)− ibs

2
∆F (x− y)T̃ sµν(y)

]
(3.7)

where photons are taken to be on-shell, i.e. dropping factors of �Fµν . Here we have defined

T̃ sµν = 2∂µFαβ∂νF
αβ − ηµν∂λFαβ∂λFαβ (3.8)

and

T clµν = −FµσF σ
ν +

1

4
ηµνFαβF

αβ (3.9)
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is the classical energy-momentum tensor. We also have the massless propagator4

∆F (x− y) =

∫
d4q

(2π)4
i

q2 + i0
e−iq·(x−y) . (3.10)

In this case, the result is local in the relative position of the gauge fields, but contains both
logarithmic and massless-pole non-localities with respect to the gravitational field. Allowing
the gauge fields to be off-shell would lead to a non-locality in all three field variables due to
the appearence of the triangle diagram5. Let us arrange the bi-tensor density at this order
in metric perturbation, it reads

L
(1)µν
αβ (x, y;µ) =

∫
d4z hσλ(z)

[
L(z − x;µ)Jµναβσλ + ∆F (z − x)Hµν

αβσλ

]
δ(4)(x− y) (3.11)

where

Jµναβσλ =
bs
8

(
δναδ

µ
σηβλ + δναδ

µ
ληβσ − δ

µ
αδ

ν
σηβλ − δµαδνληβσ − I

µν
αβησλ

)
Hµν
αβσλ = i

bs
4
Iµναβ (2∂σ∂λ − ησλ�) . (3.12)

One immediately notices that the bi-tensor density samples the gravitational field over the
whole spacetime manifold. This is the main reason that the explicit construction of such
non-local objects is not possible in arbitrary geometries. Instead, one can use the quasi-local
form factors to express the loop correction as follows

Γ(1)[A, h] = −1

2

∫
d4xhµν

[
bs log

(
�
µ2

)
T clµν +

bs
2

1

�
T̃ sµν

]
(3.13)

where the position-space representation of the inverse d’ Alembertian is given above. In
this paper, we seek a generally covariant non-linear completion of the above results that is
accomplished by employing the non-local form factors.

4 Non-linear completion: Expansion in the curvature

The curvature expansion is a covariant method to display the effective action with arbitrary
background fields. For local actions, the heat kernel expansion is the most elegant technique
to resolve the functional determinant of any operator [5, 30–34]. Its usage encompases many
applications in physics and mathematics, but unfortunately it becomes somewhat compli-
cated when we deal with a massless operator. Moreover, the correspondance with the more
familiar perturbative expansion of the effective action in terms of Feynman graphs is not
very obvious [35, 36]. In this paper, we propose a new technique to obtain the effective
action which we call non-linear completion. The logic is very similar to the matching pro-
cedure well known in effective field theory (EFT). This procedure proceeds by perturbative
matching of the full theory onto the effective theory. What makes the construction of the

4The boundary condition imposed on the propagator depends on the application one is considering. For
instance, for time-dependent systems one should choose the retarted propagator.

5See the discussion in [22].
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EFT Lagrangian possible is the fact that it must inherent all the exact symmetries of the
full theory. This is the pathway we are going to employ in our case as well.

In our example, the symmetries of the full theory are diffeomorphsim and gauge invari-
ances and hence the non-local action must be constructed from the generalized curvartures.
As we have shown in the previous section, the form factors are an important tool as they
enable the action to be written in quasi-local form where the action is manifestly covariant.
One starts by listing the relevant curvature basis and organize it in terms of a power series.
For the example at hand, we have

R2 : FµνF
µν

R3 : FµνF
µνR, FµαF

α
ν Rµν , FµνFαβRµναβ , ∇µFµν∇αF α

ν . (4.1)

The field strength is the curvature of the gauge-connection and thus counts as one power
of the curvature. The effective action will be displayed as an expansion in these generalized
curvatures. The last operator in eq. (4.1) does not contribute when the photons are on-shell
and thus we are not going to discuss it further. Then one proposes all possible non-local
functionals of the d’ Alembertian which could possibly act on the different terms in the
curvarure basis

F2 : ln

(
∇2

µ2

)
F3 :

1

∇2
,

ln(∇2
i /µ

2)

∇2
i

. (4.2)

where the subscripts denote the curvature upon which the operator acts. As far as F3 is
concerned, one can arrange more operators such as

ln(∇2
i /∇2

j )

f(∇2)
(4.3)

where f(∇2) is some function to be determined. However, we will see that no from factor
of this kind arises in our example due to the on-shell condition. Although the above form
factors look very complicated, these are all well defined via their Laplace transform

F(∇2) =

∫ ∞
0

dsF(s)e−s∇
2
. (4.4)

The last step is perturbatively matching the full theory diagrams onto the non-local action.
The ’Wilson’ coefficients in this case only depends on the coupling constants of the full
theory and are to be adjusted via the matching procedure. Since a massless field is being
integrated out, these coefficients can not depend on any mass or renormalization scale, i.e.
the non-local action is completely insensitive to the UV.

5 The R2 action: The elusive logarithm

In this section, we discuss the non-linear completion of the flat-space action in eq. (3.6). It
reads

(2)

Γ[g,A] =
bs
4

∫
d4x
√
g gµαgνβ Fαβ log

(
∇2

µ2

)
Fµν (5.1)
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where ∇2 = gµν∇µ∇ν is the covariant d’ Alembertian. The matching onto eq. (3.6) is
immediate. Now one must raise the question: what is the expansion of the above action
around flat space? In partiuclar, the piece linear in the metric perturbation and its connec-
tion to the perturbative computation. The answer to these questions is very important in
understanding the covariant nature of the quasi-local expansion. In the remainder of this
section, we show how to consistently expand the logarthim and prove that the O(h) term
in the action is entirely absent from the perturbative computation. We start by showing
the steps for a scalar field as a toy example and then discuss the more interesting example
of a 2-form.

5.1 Toy example: A scalar field

Let us consider the following action

Γ[g, φ] =

∫
d4x
√
g φ ln

(
∇2

µ2

)
φ . (5.2)

The goal is to expand the action around flat space to linear order in the metric perturbation
gµν = ηµν + hµν . The most convenient way to accomplish this is to first vary the action
with respect to the metric and then restrict the result to flat space. Using eq. (2.4), we
find

δgΓ[η, φ] =

∫
d4x

∫ ∞
0

dm2
{
φ
(
� +m2

)−1
[δg∇2]g=η

(
� +m2

)−1
φ
}

+ ... . (5.3)

where the ellipses denote terms resulting from the variation of √g which do not matter to
our discussion. To arrive at the above expression, we have used the formal variation of an
inverse operator

δg
1

∇2 +m2
= − 1

∇2 +m2
(δg∇2)

1

∇2 +m2
. (5.4)

The variation of the d’ Alembertian depends on the tensor field in the action. For a scalar
field, we have

(δg∇2)Ψ =
(
δgµν∂µ∂ν − δgµνΓαµν∂α − gµνδΓαµν∂α

)
Ψ (5.5)

where

δΓαµν =
1

2
gαβ (∂µδgβν + ∂νδgβµ − ∂βδgµν) . (5.6)

It is advisable at this stage to express eq. (5.3) in a non-local form which is accompliahed
via the identity

1

� +m2
Ψ =

∫
d4y∆(x− y)Ψ(y) (5.7)

where

(� +m2)∆(x− y) = δ(4)(x− y) . (5.8)
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If we recall that δgµν = −hµν around flat space, we find

δgΓ[η, φ] =

∫
d4xd4yd4z

∫ ∞
0

dm2 φ(x)∆(x− y)(
−hµν∂µ∂ν − ∂µhµν∂ν +

1

2
∂αh∂α

)
∆(y − z)φ(z) (5.9)

where

∆(x− y) = −
∫

d4l

(2π)4
e−il·(x−y)

l2 −m2
. (5.10)

Although the above must be defined with some boundary condition, this is not going to
affect our discussion. Notice that one could obtain the same result using the more explicit
variation of the propagator

δG(x, x′)

δgµν(z)
= −

∫
d4y G(x, y)

[
δ∇2

δgµν(z)

]
G(y, x′) . (5.11)

To facilitate comparison with the perturbative calculation, we can Fourier transform the
above expression and find∫

d4p

(2π)4
d4p′

(2π)4
φ(p)φ(p′)hµν(q)Pµν

ln p′2 − ln p2

p2 − p′2
, q = −p− p′ (5.12)

where

Pµν =
1

2
p′µp
′
ν +

1

2
pµpν +

1

4
qµp
′
ν +

1

4
qνp
′
µ +

1

4
qµpν +

1

4
qνpµ −

1

4
q · p′ηµν −

1

4
q · pηµν (5.13)

5.2 2-forms

We now turn to the treatment of 2-forms which is our main interest. There are two distinct
pieces that arise from the variation procedure. The first comes from varying the explicit
factors of the metric tensor in eq. (5.1) while the second comes from varying the logarithm
and the procedure is almost identical to the scalar example aside from some differences
related to the tensor rank that we now discuss. First, we generalize eq. (5.5) to the
variation of the d’ Alembertian when it acts on a 2-form

(δg∇2Aµν)|g=η =
(
−hαβ∂α∂β − ηαβδΓσαβ∂σ

)
Aµν − ∂β

(
δΓσβµAσν + δΓσβνAσµ

)
− δΓσβµ∂βAσν − δΓσβν∂βAµσ . (5.14)

Second, we need to generalize eq. (5.7)

1

� +m2
Aµν =

∫
d4y∆αβ

µν (x− y)Aαβ(y), ∆αβ
µν = Iαβµν ∆(x− y) . (5.15)

We recognize in eq. (5.14) a structure identical to the scalar field and the result is the same
as before but with the difference that both transversality and on-shellness are taken into
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account as described in eq. (A.7). We now show how to treat the new structures in eq.
(5.14). In position-space, we have the following piece∫

d4xd4yd4z

∫ ∞
0

dm2Aµν(x)∆(x− y)

[
− 2δΓσλµ(y)(∂λ∆(y − x))Aσν(z)

− (∂λδΓσλµ(y))∆(y − z)Aσν(z)

]
(5.16)

where we used eq. (5.15). We now have all ingredients and after a laborious computation
in momentum-space one finds

(2)

Γ[g,A] = Γ(0)[A] +
bs
4

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q) (Dαβµν −Nαβµν) +O(h2)

(5.17)

where

Dµναβ =
1

2
(q2ηµν − qµqν −QµQν)(p · p′ηαβ − p′αpβ)

ln p′2 − ln p2

p2 − p′2
(5.18)

Nµναβ =M0
µναβ log

(
−p2

µ2

)
(5.19)

and M0
µν,αβ is the tensor is the lowest-order matrix element describing the local coupling

of photons to gravity. Explicitly, it reads

M0
µν,αβ = p′µpνηαβ + pµp

′
νηαβ + ηµνp

′
αpβ − pµp′αηνβ − p′µpβηαν − pνp′αηµβ

− p′νpβηαµ + p · p′(ηµαηβν + ηµβηνα − ηµνηαβ) . (5.20)

The first tensor is the result of varying the metric tensor inside the logarithm, while the
second comes from the metric tensors in the rest of the action. Notice that we enforce both
transversality and on-shellness except in non-analytic expressions that are infrared singu-
lar. Apart from being gauge-invariant, the above tensors respects local energy-momentum
conservation

qµDµναβ = qνDµναβ = 0

qµNµναβ = qνNµναβ = 0 . (5.21)

Indeed this property is guaranteed for the tensor Nµναβ since it is the variation of a local
operator, but it is gratifying to see that the same applies for Dµναβ which is the variation
of a purely non-local object.

6 The R3 action

In this section, we perform the matching procedure outlined in section 4. It is more conve-
nient to work in momentum space, and so we list the momentum-space expansions of the
different curvature invariants in an appendix.
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6.1 Terms including 1/∇2

Here we display the non-linear completion of the anomalous contribution to the effective
action. At the linear level, we had [22]

Γpole[A, h] =

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q) 1

q2
Ms

µναβ (6.1)

where

Ms
µναβ =

1

192π2
(p′αpβ − p · p′ηαβ)(QµQν − qµqν + q2ηµν) . (6.2)

The non-linear completion commences by proposing the ansatz
(3)

Γ pole[g,A] =

∫
d4x
√
g

(
PSFµνF

µν 1

∇2
R+ PRicF βµF

αµ 1

∇2
Rαβ

+ PRiemF β
α Fµν

1

∇2
Rαβµν

)
(6.3)

where the choice of the form factor is easily motivated by the presence of the massless pole

1

−q2
→ 1

�
. (6.4)

Using the expansions provided in the appendix, one can form a linear system to solve
for the three coefficients. It naively appears that the system is overdetermined since the
expansion of the curvature invariants contain tensor structures that do not appear in eq.
(6.2). Nevertheless, one only finds exactly three independent equations which uniquely
yields

PS = − 1

192π2
, PRic =

1

48π2
, PRiem = − 1

96π2
. (6.5)

We can use the Weyl tensor to change the curvature basis which is very useful to discuss
the conformal (non)-invariance of the effective action. In 4D, the Weyl tensor reads

Cµναβ = Rµναβ −
1

2

(
gµαRνβ − gµβRνα − gναRµβ + gνβRµα

)
+
R

6

(
gµαgνβ − gµβgνα

)
.

(6.6)

Hence, eq. (6.3) becomes

(3)

Γ pole[g,A] =

∫
d4x
√
g
(
P̄SFµνF

µν 1

∇2
R+ PCF β

α Fµν
1

∇2
Cαβµν

)
(6.7)

where

P̄S = − 1

576π2
, PC = − 1

96π2
. (6.8)

In fact, the coefficient of the Ricci scalar piece is indeed related to the beta function of the
theory as could easily be checked by consulting the effective action in fermionic QED [22].
One finds

P̄S = − bi
12
, bboson =

1

48π2
, bfermion =

1

12π2
. (6.9)
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6.2 Terms including (log∇2)/∇2

In the linear action, we also found a logarithmic non-locality which reads [22]

Γ[A, h] = −bi
4

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q) log

(
−q2

µ2

)
M0

µναβ (6.10)

where M0
µν,αβ has been given previously in eq. (5.20). Although the appearance of M0

might suggest that the above action could be matched onto the quadratic basis, this is in
fact impossible. We show next that the action can only be matched onto the cubic basis
with the following form factor

(3)

Γ log[g,A] =

∫
d4x
√
g

(
LSFµνF

µν log(∇2/µ2)

∇2
R+ LRicF βµF

αµ log(∇2/µ2)

∇2
Rαβ

+ LRiemF β
α Fµν

log(∇2/µ2)

∇2
Rαβµν

)
. (6.11)

The 1/� is inserted for dimensional consistency at this stage as it comprises the only possible
non-local object one can employ. The matching procedure is the only way to decide on the
consistency of the ansatz. Once again, using the curvature expansions in the appendix one
ends up with three independent equations which uniquely fixes the coefficients

LS =
bs
4
, LRic = −bs, LRiem = 0 . (6.12)

The 1/q2 factor which results from inserting the inverse d’ Alembertian cancels out against
factors of q2 in the curvarure invariants. Using eq. (3.9), one can rewrite the above action in
a more transparent form which will prove useful in discussing the conformal (non)-invariance
of the action

(3)

Γ log[g,A] = bs

∫
d4x
√
g T clµν

log(∇2/µ2)

∇2
Rµν (6.13)

6.3 Counterterms for the logarithm

Here we display the counterterms that we need to cancel out the O(h) piece that appears
in the expansion of the quadratic action eq. (5.17). As we show next, these are third order
in the curvature. There are two independent tensors in eq. (5.17) which should be matched
onto two different ansatz. For the tensor Nµναβ , the ansatz is the following

(3)

Γ ct.1[g,A] =

∫
d4x
√
g

[
CSFµν log(∇2/µ2)Fµν

1

∇2
R+ CRicF βµ log(∇2/µ2)Fαµ

1

∇2
Rαβ

+ CRiemF β
α log(∇2/µ2)Fµν

1

∇2
Rαβµν

]
. (6.14)

A straightforward matching as before yields

CS = −bs
4
, CRic = bs, CRiem = 0 . (6.15)
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Moving to the tensor Dµναβ , we first notice that in the limit p2 = p′2 the non-analytic
structure becomes

lim
p′2→p2

ln p′2 − ln p2

p2 − p′2
= − 1

p2
(6.16)

which enables us to propose the following ansatz

(3)

Γ ct.2[g,A] =

∫
d4x
√
g

[
TSFµν

1

∇2
FµνR+ TRicF βµ

1

∇2
FαµRαβ

+ TCF β
α

1

∇2
FµνCαβµν

]
. (6.17)

We choose to work directly in the conformal basis, since it is more convenient. The matching
yields

TS =
bs
12
, TRic = 0, TC = −bs

4
. (6.18)

The same result holds for fermions, substituting bf for bs.

7 Remarks on the trace anomaly

In this section we explore the conformal transformation properties of the different terms
in the action6. We find an interesting dichotomy regarding the terms that give rise to the
anomaly in response to conformal transformations. This requires a separate treatment of
scale (global) and Weyl (local) transformations. Since the seminal work of Deser, Duff
and Isham [37], there has been a consistent effort to understand the precise form of the
non-local effective action that gives rise to gravitational anomalies. In [26], anomalies
were geometrically classified to fall into two types. Type A anomalies arise from scale-
invariant actions, i.e. invariant under a global Weyl rescaling. These are unique and strictly
proportional to the Euler density of the dimension. On the other hand, type B anomalies
arise from scale-dependent actions7 but the local anomaly itself when denstized is invariant
under local Weyl tranformations. For example, for a massless minimally coupled scalar in
2D the anomaly reads

T µ
µ =

1

24π
R (7.1)

whose density √gR is indeed the Euler density in 2D. So this is a type A anomaly, and one
can check easily that the non-local Polyakov action [38] giving rise to the anomaly is scale-
invariant. Reigert, following Polyakov, constructed a non-local action in 4D by integrating
the anomaly [25]. However, the Riegert action was criticized in [26, 39, 41] based on several
reasons while others [42, 43] argued for its validity.

The QED trace anomaly falls into type B since its denstized version is indeed (locally)
conformally invariant, and according to the above classification the generating non-local

6See a parallel discussion in [44].
7This also means that the action carries an explicit dependence on the renormalization scale µ.
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action should be scale-dependent. We show below that the two non-local structures present
in the action are required to generate the correct trace relation whether one performs a
global or local conformal transformation. Remarkably, the different terms have completely
different behavior under both types of transformations. In particular, the trace relation is
generated from the logarithmic non-locality under a scale transformation while the massless
pole non-locality is responsible for the latter under local ones.

7.1 Weyl transformations

Let us commence by considering local transformations. Under an infinitismal transforma-
tion, we have

δσgµν = 2σ(x)gµν (7.2)

which leads to the following transformation of the Christoffel symbol

δσΓλµν = δλµ∇νσ + δλν∇µσ − gµν∇λσ . (7.3)

From these one readily determines the tranformation of the different curvature tensors. The
ones we need are

δσRµν = 2∇µ∇νσ + gµν∇2σ, δσR = 6∇2σ − 2σR . (7.4)

Another object we will need its transformation is the d’ Alembertian operator acting
on different tensors, in particular, 2-forms

δσ(∇2Aµν) = −2σ∇2Aµν − 2(∇2σ)Aµν − 2(∇µσ)∇λAλν + 2(∇νσ)∇λAµλ . (7.5)

where it is understood that Aµν is invariant. Once again, let us apply the transformation
to the quadratic action

δσ
(2)

Γ[e2σg,A] =
bs
4

∫
d4x
√
g

∫ ∞
0

dm2 Fµν(∇2 +m2)−1 (δσ∇2)(∇2 +m2)−1Fµν . (7.6)

Counting the powers of curvature is very important at this stage. The function σ(x) counts
as a power of the curvature which means that we can freely commute covariant derivatives.
For example,

[∇µ, (∇2 +m2)−1] ∼ O(R) . (7.7)

Using eq. (7.5) and integrating by parts, we find

δσ
(2)

Γ[e2σg,A] =
bs
4

∫
d4x
√
g

∫ ∞
0

dm2 Fµν(∇2 +m2)−1(∇2 +m2)−1(
−2σ∇2Fµν − 2(∇2σ)Fµν + 2σ∇λ∇µFλν − 2σ∇λ∇νFµλ

)
. (7.8)

Now we employ the Bianchi identity

∇µFλν +∇νFµλ +∇λFνµ = 0 (7.9)
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to find

δσ
(2)

Γ[e2σg,A] = −bs
2

∫
d4x
√
g (∇2σ)Fµν

1

∇2
Fµν . (7.10)

Although a prescription to integrate over (dm2) might not seem obvious with the inverse
operators present in eq. (7.8), one could easily check the above equation by linearlizing
eq. (7.8) around flat space. It is very important to notice that the above computation
clearly shows that under the local transformation the log piece does not give rise to the
anomaly as it does not possess the correct pole structure. Moreover, we show next that eq.
(7.10) cancels identocally against the contribution coming from the transformation of the
counter-term.

Indeed we need not worry about terms containing the Weyl tensor. Moreover, from the
transformation listed in eq. (7.4) one easily finds

δσ
(3)

Γ log[e
2σg,A] = δσ

(3)

Γ ct.1[e
2σg,A] = 0 (7.11)

given that the field strength is on-shell

∇µFµν = 0 . (7.12)

The other counter-term transforms as

δσ
(3)

Γ ct.2[e
2σg,A] =

bs
2

∫
d4x
√
g (∇2σ)Fµν

1

∇2
Fµν (7.13)

exactly cancelling eq. (7.10) as promised.
Lastly, the massless pole non-locality of eq. (6.7) is the piece that yields the correct

trace. To this order in the curvature we only need to keep the δσR = 6∇2σ + ... term in
the transformation of eq. (7.4), and neglect the variation of 1/∇2. Doing this yields

δσ
(3)

Γ pole[e
2σg,A] = −bs

2

∫
d4x
√
g σFµνFµν . (7.14)

which yields the desired trace. In order to see this more simply, and make contact with the
literature, we can show that all corrections to this result are higher order in the curvature
by employing the Riegert action [25]. By defining the Paneitz operator [45]

∆4 = ∇2∇2 + 2∇µ(Rµν − 1

3
gµνR)∇ν (7.15)

and

R =
√
−g
(
∇2R− 3

2
G

)
(7.16)

where G is the Gauss-Bonnet term

G = RαβγδRαβγδ − 4RαβRαβ +R2 (7.17)
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we can see that the Riegert form of this action

ΓR[g,A] =

∫
d4x
√
g
(
P̄SFµνF

µν 1

∆4
R
)

(7.18)

is equivalent to the first term of eq. (6.7) up to terms which are higher order in the curvature,

ΓR[g,A] =
(3)

Γ pole[g,A] + O(F 2R2). With this form, one can show without approximation
[45] that

δσ
1

∆4
= 0 , δσR = 6∆4σ (7.19)

yielding

δσΓR[g,A] = −bs
2

∫
d4x
√
g σFµνFµν . (7.20)

The expansion in the curvature has yielded a term which, to this order in the curvature, is
equivalent to the Reigert action.

Now we know that a conformal variation of a generic action reads

δσS = −
∫
d4x
√
g σ T µ

µ (7.21)

and thus indeed eq. (7.20) (likewise eq. (7.14)) yields the correct trace relation.

7.2 Scale transformations

A global scale transformation can take a couple of forms. One involves the scaling relations
shown in eq. (2.10). It is simple to see that this transformation leaves all terms invariant,
except the covariant logarithm. The logarithmic terms inside the square brackets [...] of
eq. (2.14) are both shifted by ln∇2 → ln∇2 − lnλ2, but lnλ2 cancels out leaving the
whole expression invariant. So in contrast to the above Weyl transformation, this form of
rescaling yields an anomaly that comes from the covariant logarithm.

Interestingly in the presence of the metric, there is another way to achieve a global
scale transformation. In this case the transformation on the metric acts as follows

gµν → e2σgµν (7.22)

where σ is a constant, not necessarily infinitesimal. This may seem like a subcase of the
Weyl transformation, but in fact it is distinct [46]. Computationally, a distinction arises
in that derivatives of σ vanish, so that many of the integration-by-parts steps from the
previous section are not available.

In this case, the transformation properties of the different curvature tensors proceeds
easily

Rµν → Rµν , R→ e−2σR, Cµναβ → Cµναβ . (7.23)
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With these relations in hand, we can apply a scale transformation to the covariant action
to recover the trace relation. We start with the quadratic action

δσ
(2)

Γ[e2σg,A] = −σ bi
2

∫
d4x
√
g FµνF

µν . (7.24)

All terms with the form factor 1/∇2 are scale invariant, hence

δσ
(3)

Γ pole[e
2σg,A] = 0, δσ

(3)

Γ ct.2[e
2σg,A] = 0 (7.25)

while terms with the form factor ln∇2/∇2 cancel each other identically as described above

δσ
(3)

Γ log[e
2σg,A] = −δσ

(3)

Γ ct.1[e
2σg,A] . (7.26)

The anomalous trace of the energy-momentum tensor is easily determined from eq. (7.21)
and hence eq. (7.24) correctly reproduces the trace relation

T µ
µ =

bi
2
FµνF

µν . (7.27)

Again it is the logarithm which is the determining factor for the anomaly.

8 Summary

We have used a method which we refer to as non-linear completion in order to match
the one-loop perturbative expansion of the QED effective action to a covariant expansion
in the generalized curvatures. Within this procedure, the matching has been unique and
relatively simple to implement. The results are given in eqs. (2.17), (2.14) and (2.15).
These summarize the one-loop perturbative calculation involving one gravitational vertex.

The effective action also encodes the anomaly structure of the theory. For the anomaly,
the important aspect is to generalize the feature that appeared as ln� in flat space. Our
generalized result Eq. 2.14 contains many terms when expressed in terms of covariant
derivatives and curvatures. All of these are required in order to both match the one loop
perturbative calculation and to respect general covariance. There is also an interplay be-
tween these terms and various forms of scale and/or conformal invariance. There is a
dispute in the literature about whether the anomaly comes from logarithmic terms or from
the Riegert action[25], e.g. see[26, 39, 41] and [42, 43]. In our explicit computation, we
showed that both forms are required in order for the action to respond properly to different
types of transformation.

Given the simplicity of the perturbative result eq. (2.7), and the complexity of the
expansion in the curvature eq. (2.14), one suspects that there is a better covariant repre-
sentation for this result. However, the expansion in the curvature is one of the few covariant
approximation schemes available and therefore needs to be well explored. We are not pre-
pared to propose an improved representation in this paper, and are only trying to match
the perturbative result to the standard form found when performing an expansion in the
curvature. We (hopefully) reserve this improved representation to a future publication.
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In addition, we note that some of the higher order terms in the curvature expansion
have the potential to be singular in the infrared, and these higher order terms have only been
lightly explored. More work is in progress to understand whether the non-local expansion
in the curvature is useful in phenomenological applications [47].
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A Momentum space representation

In this appendix, we collect all the momentum space representations of the different curva-
ture invariants. The quadratic density √gF 2 is very simple and we do not list here. Moving
to the cubic invariants, we find∫

d4x
√
gFµνF

µνR =

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q)MS

αβµν +O(h2) (A.1)

where

MS
αβµν = 2(p · p′ηαβ − pβp′α)(qµqν − q2ηµν) . (A.2)

The invariant including the Ricci tensor reads∫
d4x
√
gF βµF

αµRαβ =

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q)MRic

αβµν +O(h2) (A.3)

where

MRic
αβµν =

1

4
p · p′

[
(QµQν + qµqν)ηαβ − 2(p′µpβηαν + p′νpβηαµ + p′αpµηβν + p′αpνηβµ)

− q2(ηµαηνβ + ηναηµβ + ηβαηµν)− 2pβp
′
αηµν

]
− 1

2
qµqνpβp

′
α . (A.4)

Lastly, the invariant including the Riemann tensor reads∫
d4x
√
gF β

α FµνRαβµν =

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q)MRiem

αβµν +O(h2) (A.5)

where

MRiem
αβµν =

1

4

[
2p′αpβ(QµQν − qµqν) + q4(ηµαηνβ + ηµβηνα)

+ 2q2(pµp
′
αηνβ + pνp

′
αηµβ + pβp

′
νηµα + pβp

′
µηνα)

]
. (A.6)
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In the above, Q = p + p′ and q = p − p′. Moreover, transversality and on-shellness are
assumed

p2 = p′2 = 0, p ·A(p) = p′ ·A(p′) = 0 . (A.7)

One can easily check that the matrix elements are both gauge-invariant and satisfiy
energy-momentum conservation. For example,

pαMS
αβµν = p′βMS

αβµν = qµMS
αβµν = 0 . (A.8)

Moreover, one can use the Weyl tensor given in eq. (6.6) to get∫
d4x
√
gF β

α FµνCαβµν =

∫
d4p

(2π)4
d4p′

(2π)4
Aα(p)Aβ(−p′)hµν(−q)MC

αβµν +O(h2) (A.9)

where

MC
αβµν =

1

6
(p · p′ηαβ − pβp′α)

(
qµqν − 3QµQν − q2ηµν

)
. (A.10)

The above tensor is clearly traceless as required since it stems from a conformally invariant
Lagrangian.
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