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1 Infrared properties of General Relativity

Early work on the quantum field theory of general relativity focused on its
UV properties. For example, we discussed in detail divergences arising from
loops in pure gravity and with matter. More recently, the effective field
theory approach showed how to obtain quantum predictions at low energy.
Here we want to explore the lowest energy limit and describe the IR structure
of GR. Early developments in this field go back to works by Weinberg [1],
Jackiw [2], Gross and Jackiw [3]. However, the most intriguing results, as
well as new insights into the old studies, have been obtained very recently,
with the development of new powerful techniques allowing to handle the
complicated structure of gravity amplitudes. Below we will briefly describe
some of these classical and new results, focusing mainly on pure gravity in
four-dimensional space-time.

1.1 IR divergences at one loop

We start with the discussion of IR divergences in one-loop diagrams. As an
example, consider the graviton-graviton scattering process. The amplitude
of this process depends on helicities of incoming and outgoing particles. At
tree level, summing up all diagrams contributing to the scattering, we have
[4]

iMtree(++; ++) =
i

4
κ2 s

3

tu
, iMtree(−+;−+) = − i

4
κ2u

3

st
, (1)

iMtree(++; +−) = iMtree(++;−−) = 0 . (2)

In these expressions, the first pair of signs in Mtree denotes the helicities of
incoming gravitons, and the second pair — those of outgoing gravitons.

To go to one loop, we insert a virtual graviton propagator into the tree
diagrams, in all possible ways. Not all diagrams, obtained in this way, give
rise to IR divergences. To illustrate this point, consider the scattering of
massless scalar particles at one loop. In four dimensions, the measure of the
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loop integral, d4q ∼ |q|3d|q|, suppresses the soft divergence unless at least
three adjacent propagators vanish simultaneously. Indeed, in the latter case,

q

p2

p1

∼
∫
d4q

1

(p1 + q)2q2(p2 + q)2
, (3)

and this expression diverges in the limit q → 0 provided that p2
1 = p2

2 = 0.
To see this, one evaluates the integral in dimensional regularization, which
gives

−irΓ

(4π)2−ε(−(p1 + p2)2)1+ε

1

ε2
, (4)

where rΓ = Γ2(1 − ε)Γ(1 + ε)/Γ(2 − ε). Going back to the four-graviton
scattering, we conclude that one-loop diagrams, in which both ends of the
virtual graviton propagator are attached to the same external line, do not
contribute to the IR divergent part of the amplitude. Hence, to capture the
IR divergence, it is enough to consider the diagrams of the form

+ + ... (5)

Let us look at the specific helicity configuration (−+;−+). Summing over
all pairs of lines, to which the internal propagator is attached, one gets the
expected IR divergence [5]

irΓ
κ2

(4π)2−ε

(
s log(−s) + t log(−t) + u log(−u)

2ε

)
×Mtree(−+;−+) . (6)

This reproduces the full structure of divergences of the corresponding one-
loop amplitude [6],

M1-loop(−+;−+) = irΓ
stuκ2

4(4π)2−εMtree(−+;−+)

×
(

2

ε

(
log(−u)

st
+

log(−t)
su

+
log(−s)
tu

)
+ finite terms

)
, (7)

since in pure gravity at one loop there are no divergences from the UV
regime. A similar divergence is present inM1-loop(++; ++). The amplitudes
with other helicity configurations contain no infinities.
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Adding matter does not change qualitatively the soft behavior of one-
loop amplitudes. For example, massless scalar-graviton scattering ampli-
tudes experience the same kind of IR divergences from the virtual graviton
propagator. Note, however, that the scalar loops do not contribute to soft
infinities [4]. Hence, IR structure of gravity amplitudes is universal. Know-
ing this structure helps understand other properties of these amplitudes. For
example, using the unitarity method outlined above, one can extract the in-
formation about infinities present in the amplitude. However, this method
does not distinguish between IR and UV infinities. Knowing the form of IR
divergences, therefore, allows to identify the remaining UV ones [5].

1.2 Cancellation of IR divergences

As we have just seen, some of one-loop gravity amplitudes contain IR diver-
gences from virtual gravitons. Going to higher loops makes these divergences
worse. However, there is another source of divergences, coming from the di-
agrams, where soft gravitons are radiated away from the hard particle lines.
In general, such diagrams must be taken into account when computing any
scattering process, since there is no possibility to distinguish experimen-
tally the process, in which an arbitrary soft zero-charge particle is emitted,
from the process without such particle. Hence, the question arises about
the possible cancellation of IR divergences arising in diagrams with virtual
and real soft gravitons. As was shown by Weinberg in [1], such cancellation
indeed occurs, order by order in perturbation theory, in close analogy with
QED. Consider, for example, some process involving hard scalar particles,
and let the rate of this process without real or virtual soft gravitons taken
into account be Γ0. Then, including the possibility to emit soft gravitons
with energies below some threshold E modifies Γ0 as follows [1],

Γ(E) =

(
E

Λ

)B
b(B)Γ0 , (8)

where

B =
κ2

64π2

∑
i,j

ηiηjmimj

1 + β2
ij

βij(1− β2
ij)

1/2
log

(
1 + βij
1− βij

)
, (9)

b(x) =
1

π

∫ ∞
−∞

dy
sin y

y
ex

∫ 1
0

dω
ω

(eiωy−1) ' 1− π2x2

12
+ ... , (10)

the scale Λ defines our notion of “infrared”, βij is the relative velocity of ith
and jth particles,

βij =

(
1−

m2
im

2
j

(pi · pj)2

)1/2

, (11)
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mi and pi are the ith particle mass and momentum, and

ηi =

{
−1 for incoming ith particle,
+1 for outgoing ith particle.

(12)

The expression (8) is, in fact, universal in the sense that its form does not
depend on masses and spins of hard particles. In particular, in remains valid
if some of the masses mi vanish, since an apparent singularity in B in this
limit is removed due to momentum conservation. This fact makes gravity
different from QED, where the charged massless hard particles do lead to
additional divergences.

The proof of cancellation of IR divergences is based on a crucial obser-
vation that diagrams in which a soft real or virtual graviton line is attached
to another soft real graviton line do not contribute to the divergent part
of the amplitude. Indeed, the effective coupling for the emission of a soft
graviton from another soft graviton of energy E is proportional to E, and
the vanishing of this coupling prevents simultaneous IR divergence from the
one graviton line attached to another. We observe another difference from
the case of QED, where such diagrams are forbidden due to the electrical
neutrality of the photon.

Let us go back to the four-graviton scattering process studied previously.
After taking into account both radiative and one-loop corrections to the tree-
level amplitude, the answer becomes finite. For example, for the differential
cross-section we have [7](
dσ

dΩ

)
tree

+

(
dσ

dΩ

)
rad.

+

(
dσ

dΩ

)
nonrad.

=

κ4s5

2048π2t2u2

{
1 +

κ2s

16π2

[
log
−t
s

log
−u
s

+
tu

2s2
f

(
−t
s
,
−u
s

)
−
(
t

s
log
−t
s

+
u

s
log
−u
s

)(
2 log(2π2) + γ + log

s

Λ2
+

∑
ij ηiηjF (1)(γij)∑
ij ηiηjF (0)(γij)

)]}
,

(13)

where

f

(
−t
s
,
−u
s

)
=

(t+ 2u)(2t+ u)(2t4 + 2t3u− t2u2 + 2tu3 + 2u4)

s6

(
log2 t

u
+ π2

)
+

(t− u)(341t4 + 1609t3u+ 2566t2u2 + 1609tu3 + 341u4)

30s5
log

t

u

+
1922t4 + 9143t3u+ 14622t2u2 + 9143tu3 + 1922u4

180s4
. (14)

1.3 Weinberg’s soft theorem and BMS transformations

The modification of an on-shell diagram obatined by attaching a soft real
graviton line to some external hard line leads to the appearance of an ad-
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ditional pole in the amplitude corresponding to this diagram. It turns out
that in general the contribution from this pole can be separated from the
rest of the amplitude, and that the amplitude of some process with one real
soft graviton is given by the amplitude of the process without such graviton
times a universal “soft factor”. This is essentially the statement of the soft
theorem proven by Weinberg in [1]. As an illustrative example, consider
the on-shell diagram whose external lines are massless scalar particles with
momenta pi, i = 1, ..., n,

iM(p1, ..., pn) = . (15)

Now we want to attach an outgoing soft graviton with momentum q to this
diagram in all possible ways. The dominant contribution to the modified
amplitude in the limit q → 0 is then given by

iMµν(p1, ..., pn, q) =

q

=
∑ q

+
∑ q

.

(16)

Note that the diagrams with the external graviton attached to internal lines
do not contribute to the soft pole. The leading term of the expansion of
iMµν around q = 0 is written as follows [1],

iMµν(p1, ..., pn, q) =
iκ

2

n∑
i=1

ηipiµpiν
pi · q

M(p1, ..., pn) , (17)

where ηi is defined in (12). The soft factor, that gives a pole in this ex-
pression, is universal in the sense that it does not depend on the spins of
hard particles. A similar soft theorem is known to hold for color-ordered
amplitudes in the YM-theory.

Eq.(17) relates two amplitudes to the leading order in the soft graviton
energy. It can be verified straightforwardly without much effort, though its
generalization to other types of hard particles is not obvious. Recently, a
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new way of thinking about such relations appeared. Whenever one has a
statement about soft behavior of the theory, it is tempting to work out some
symmetry arguments which lead to a desired consequence in the low-energy
limit. We already saw one nice example of this situation, when we studied
the low-energy behavior of the four-pion scattering amplitude in the linear
sigma-model. The vanishing of the amplitude at zero momentum transfer
is, in fact, a consequence of the degeneracy of vacua of the theory. Hence,
it is natural to assume that the Weinberg’s soft theorem (17) can also be
viewed as a consequence of some symmetry the quantum gravity S-matrix
obeys 1. This line of research was taken in [8],[9], where such symmetry was
identified as an “anti-diagonal” subgroup of BMS+×BMS− transformations
2. Let us describe briefly what these transformations are.

Describing scattering processes in quantum gravity, we restrict ourselves
with asymptotically flat space-time geometries, in which case Minkowski
space-time can be taken as both in and out vacuum state. The properties of
asymptotically flat space-times are well-known. To study their behavior at
future I+ and past I− null infinities, it is convenient to use, correspondingly,
retarded and advanced Bondi coordinates. Near I+, the metric can be
written as [12]

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 − 2Uzdudz − 2Uz̄dudz̄ + ... (18)

Here u = t− r is the retarded time, γzz̄ = 2(1 + zz̄)−2 is the metric of a unit
sphere, Czz, Cz̄z̄ are functions of u, z, z̄; Uz = −1

2D
zCzz, where the covariant

derivative Dz is defined with the metric γzz̄, and dots mean the higher-order
terms in 1/r-expansion. All future asymptotic data are encoded by the
Bondi mass aspect mB = mB(u, z, z̄), determining local energy at retarded
time u and at a given angle (z, z̄), and by the Bondi news Nzz = ∂uCzz
determining the outgoing flux of radiation. Similarly, near I− the metric
takes the form

ds2 = −dv2 + 2dvdr + 2r2γzz̄dzdz̄

+
2m−B
r

dv2 + rDzzdz
2 + rDz̄z̄dz̄

2 − 2Vzdvdz − 2Vz̄dvdz̄ + ... (19)

where Vz = 1
2D

zDzz, and the corresponding Bondi news is Mzz = ∂vDzz.
Eqs.(19) and (18) can be considered as initial and final data for the grav-
itational scattering process. To represent a valid solution to the scattering

1The soft graviton in this picture acquires a natural interpretation of a Nambu-
Goldstone boson, associated with the spontaneous breakdown of the symmetry by the
initial and final scattering data.

2The BMS transformations were first studied in [10],[11] in the context of gravitational
waves.
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problem, the initial data (m−B,Mzz) must, of course, be suitably related to
the final data (mB, Nzz).

One can Define BMS+ transformations as a subgroup of the diffeomor-
phisms that acts non-trivially on the future asymptotic data (mB, Nzz).
Similarly, define BMS− transformations as consisting of those diffeomor-
phisms that act non-trivially on the past asymptotic data (m−B,Mzz). Be-
sides the usual Poincare group, BMS± include also an infinite-dimensional
class of “large” diffeomorphisms called supertranslations. They generate ar-
bitrary angle dependent translations of retarded (advanced) time variable.

Consider now some scattering process, and let (m−B,Mzz) and (mB, Nzz)
be the initial and final data correspondingly (representing, e.g., the pulses
of gravitational radiation). A BMS− transformation maps the initial state
into another state (m̃−B, M̃zz). One can argue that there is always a trans-
formation from BMS+ that maps the final state onto (m̃B, Ñzz) in such a
way that 〈mB, Nzz|S|m−B,Mzz〉 = 〈m̃B, Ñzz|S|m̃−B, M̃zz〉. And vice versa,
given a BMS+ transformation, one can find the one from BMS− to keep the
matrix element unchanged. This means that the quantum gravity S-matrix
commutes with the infinite sequence of generators of the subgroup BMS0 of
BMS+×BMS−. In turn, this implies the existence of Ward identities associ-
ated to the BMS0-symmetry. As was shown in [9], these Ward identities lead
to the Weinberg’s soft theorem (17). And vice versa, from the expression
(17) one can deduce the Ward identities associated with some symmetry of
the S-matrix, the symmetry group being BMS0.

The symmetry arguments outlined above make manifest the universal
nature of the soft theorem: the soft-graviton limit of any gravitational scat-
tering amplitude at the leading order in a soft momentum is given by Eq.
(17).

1.4 Other soft theorems

Here we outline various generalizations of the Weinberg’s soft theorem and
its counterparts in YM-theories, that are discussed in recent literature. For
convenience, we omit the coupling constant κ in the gravity amplitudes, and
absorb the factors ηi into the momenta of hard particles.

1.4.1 Cachazo-Strominger soft theorem

One natural way to generalize the expression (17) is to extend it by including
sub-leading terms in the soft momentum expansion. For tree-level gravita-
tional single-soft graviton amplitudes the extended soft theorem takes the
form [13]

iεµνMµν(p1, ..., pn, q) = (S(0) + S(1) + S(2))iM(p1, ..., pn) +O(q2) , (20)

where εµν is the soft graviton polarization tensor obeying εµνq
ν = 0. In

Eq.(20), the term S(0) is the Weinberg’s leading-order universal soft factor,
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that we have already discussed,

S(0) =
n∑
i=1

εµνp
µ
i p

ν
i

pi · q
. (21)

Note again that the form of S(0) can be deduced from symmetry considera-
tions, namely, from the expected invariance of the S-matrix with respect to
supertranslations. The term S(1) provides a sub-leading correction to the
Weinberg’s theorem,

S(1) = −i
n∑
i=1

εµνp
µ
i (qρJ

ρν
i )

pi · q
, (22)

with Jρνi the total angular momentum of the ith hard particle. It was argued
that the term (22) can also be obtained from symmetry considerations, and
the corresponding S-matrix symmetry is the extension of BMS transforma-
tions obtained by including all Virasoro transformations (“superrotations”)
of the conformal sphere. Finally, the S(2) term is found to be

S(2) = −1

2

n∑
i=1

εµν(qρJ
ρµ
i )(qσJ

σν
i )

pi · q
. (23)

The origin of this term from symmetry arguments is also discussed in the
literature [14]. Let us comment on Eq. (20).

• It was proven to hold for all graviton tree-level amplitudes with one
real soft graviton. Hence the terms S(j) are universal, at least at tree
level.

• The gauge invariance requires that the pole terms vanish for δΛεµν =
Λµqν + Λµqν with Λ · q = 0. Indeed, δΛS

(0) = 0 due to global energy-
momentum conservation, δΛS

(1) = 0 due to global angular momentum
conservation, and δΛS

(2) = 0 because Jµνi is antisymmetric.

• When taking the soft limit q → 0, the momenta of some hard particles
must be deformed because of the momentum conservation, and this
deformation is ambiguous. Hence the expansion about the soft limit
is not unique. The expression (20) holds for a very large class of such
soft limit expansions. It remains to be verified if it holds for every
conceivable definition of the soft limit expansion.

1.4.2 1-loop corrections to Cachazo-Strominger soft theorem

If one takes for granted that the theorem (20) is deduced from the symmetry
arguments, a natural question is whether it is an exact statement in pertur-
bation theory. Naively, one would expect loop corrections to the sub-leading
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soft factors. Indeed, due to the dimensionful coupling in gravity, the dimen-
sional analysis requires loop corrections to be suppressed by extra powers
of soft invariants. As a result, S(0) must be exact to all orders. In [15],[16]
the one-loop corrections to the sub-leading factors were studied for particu-
lar helicity configurations. It was shown that for “all-plus” amplitudes the
terms S(1) and S(2) receive no corrections from one loop. The same is true
for “single-minus” amplitudes with the negative helicity of the soft gravi-
ton, while for the “single-minus” amplitudes with the positive helicity soft
graviton the term S(2) does require loop corrections.

1.4.3 Relation to YM-theories

As we showed in these Lectures, GR has many common properties with
other gauge theories. It is, therefore, natural to expect the analogs of the
soft theorems described above to hold in YM-theories. The expectation
is completely justified by the recent study of the soft behaviour of YM-
amplitudes. In particular, an analysis of color-ordered tree-level amplitudes
including soft gluon reveals universal soft behavior of the form [17]

MYM (p1, ..., pn, q) = (S
(0)
YM + S

(1)
YM )M(p1, ..., pn) +O(q) , (24)

where S
(0)
YM and S

(1)
YM are leading and sub-leading universal soft factors anal-

ogous to (21) and (22). The term S
(0)
YM can be understood through the

symmetry arguments similar to those in the case of GR [18]. As for S
(1)
YM ,

no such arguments are known yet. Contrary to the case of GR, both S
(0)
YM

and S
(1)
YM receive corrections at one-loop level for amplitudes with particular

helicity configurations [16].
Before we explored one nice example of a deep connection between GR

and YM-theories, by discussing how gravity amplitudes can be derived from
the corresponding YM-amplitudes, via KLT-relation. One can expect that
the soft limit of gravity amplitudes can also be deduced from that of YM-
amplitudes. As was shown in [19], the leading and sub-leading soft factors
in GR can indeed be reproduced by the leading and sub-leading soft factors
of YM-amplitudes. Schematically,

S(0) + S(1) + S(2) ∼
(
S

(0)
YM + S

(1)
YM

)2
. (25)

This expression is one more example of how apparently different theories
are related to each other in a deep and beautiful way.

Finally, we note that similar soft theorems exist for supersymmetric ex-
tensions of GR and YM-theories, as well as for theories beyond four dimen-
sions.
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1.4.4 Double-soft limits of gravitational amplitudes

One more natural generalization of the soft theorems (17) and (20) is to
consider the amplitudes with two or more soft gravitons. This direction of
studies was recently carried out in [20],[21]. The very notion of the double-
soft limit is ambiguous as it can be taken in two ways. Either one can send
both graviton momenta q1 and q2 to zero uniformly, with q1/q2 = const, or
one can take the consecutive limit q1(or q2)→ 0 after q2(or q1)→ 0. Both
ways reveal the factorization property of the double-soft amplitudes, but,
in general, with different universal soft factors. It is clear that in the case

of the soft limit taken consecutively, the leading soft factor S
(0)
2 is given by

the product of two single-soft-graviton factors. Namely, if we write (21) as

S(0) =
∑

i S
(0)
i , where i = 1, ..., n enumerates hard particle lines, then

M(p1, ..., pn, qn+1, qn+2) ∼
∑
i,j

S(0)
i (qn+1)S(0)

j (qn+2)M(p1, ..., pn) . (26)

The statement remains valid for consecutive limits of any multi-soft ampli-
tudes.

In [20], the leading and sub-leading soft factors were investigated at
tree level for different helicity configurations of the soft gravitons. It was

found that the leading factor S
(0)
2 does not depend on the way one takes

the soft limit, regardless the relative polarizations of the gravitons. Hence,
Eq. (26) expresses the universal double-soft behavior at the leading order in

soft momenta. The sub-leading factor S
(1)
2 , on the other hand, shows such

dependence in the case when the polarizations are different. It is yet to be
seen if the double- and multi-soft theorems can be thought of as originated
from some symmetries of the quantum gravity S-matrix.
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