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1 Constructing GR as a gauge theory – QFT point
of view 1

1.1 Preliminaries

Suppose that Einstein had never existed. Then, if we wanted to build grav-
ity in quantum field theory (QFT) framework, we would proceed as with
theories of other interactions. At classical level, the Newtonian potential
acting between two bodies of masses m1 and m2 is given by

V = −Gm1m2

r
, (1)

where G is Newton’s gravitational constant, G = M−2P = (1.22·1019GeV )−1,
and we use natural units. The law (1) is analogous to that of Coulomb
interaction, and we know that the photon field serves as a mediator of elec-
tromagnetic interaction. Hence, we can ask: what is the mediator of the
gravitational interaction? A little contemplation reveals immediately that
this should be a particle of spin 0 or 2. Spin–1 particles are not appropri-
ate since, as we know from electrodynamics, they lead to repulsive as well
as attractive force between objects, and we know no examples of repulsive
gravity 2. Higher spin particles cannot be consistently included into QFT
framework. The simplest option is, therefore, the Higgs–like force mediated
by spin–0 particle. Indeed, consider the interaction of the form

Lint ∼
∑
i

mi

(
1 +

h

v

)
ψ̄iψi. (2)

Then, one can write the amplitude of interaction as

1For early works about gravity as a gauge theory see, e.g., [1],[2].
2Except, maybe, that acting at very large distances.
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h = −iM =
−im1

v

i

q2 −m2

−im2

v
, (3)

where q is the momentum carrying by the h–particle and m is its mass.
From this amplitude, one derives the following potential,

V (r) = − 1

πv2
m1m2

e−mr

r
. (4)

Taking the limit m = 0, we recover the Newtonian potential (1).
There are reasons, however, why this choice of gravity mediator cannot

be accepted. First, we know that the bare mass of an object is not a unique
source of the gravitational field. For example, the constituent mass of the
proton is given by

mp = 〈P |Tµµ |P 〉 = 〈P |βF 2 +muūu+mdd̄d|P 〉, (5)

with overall contribution from the quarks being only around 40MeV , the
rest coming from strong interactions represented by the first term in the
r.h.s. of (5). Next, in nuclei, binding energy gives an essential contribution
to the total mass. Not to mention the massless photon fields that, under this
assumption, would not be coupled to gravity at all. Hence we conclude that
the source of the gravitational field must be the total energy represented by
the Energy–Momentum Tensor (EMT) T ab 3.

The second observation is based on Einstein’s claim of equality of iner-
tial and gravitational masses, from which the universality of free–fall follows.
The latter can be formulated as follows : the pathway of a particle in the
gravitational field depends only on the initial position and velocity of that
particle. In other words, the geodesic equation does not contain any quanti-
ties depending on internal structure of the particle. Furthermore, we recall
the second part of Einstein’s Equivalence Principle (EP) that claims the
physical equivalence of freely falling frames, with its generalization claim-
ing the equivalence of all coordinate frames. The EP implies that for every
observer at any moment of proper time one can choose a coordinate frame
in which the gravitational field vanishes. Mathematically, this implies the
vanishing of the Levi–Civita connection terms Γµνρ 4. In particular, from the
EP it follows that the light must be bent by gravity in the same way as it is
bent in accelerating frames. But let us account for this effect within scalar

3By small Latin letters we denote the Lorentzian indices.
4Note that Γµνρ can be made zero not only at a given point, but also along a given

world–line.
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gravity framework. Assuming universal coupling — the necessary ingredient
for the EP to hold, — the only way to couple the scalar field φ to the EMT
is through the term of the form

Lint ∼ φT aa . (6)

But for the electromagnetic field T aa ∼ E2 − B2 = 0. Hence, scalar gravity
cannot obey the Einstein’s EP. We arrive at conclusion that gravity must
be mediated by the spin–2 field, and T ab must be the source of that field.

Before exploring this possibility, let us remind some basic properties of
EMT. As an example, consider the theory of the real massive scalar field,
with the Lagrangian density

L =
1

2
ηab∂aφ∂bφ−

1

2
m2φ2. (7)

The translational invariance of (7) implies the existence of a conserved cur-
rent,

Tab =
∂L
∂∂aφ

∂bφ− ηabL, (8)

or, explicitly,

Tab = ∂aφ∂bφ−
1

2

(
ηabη

cd∂cφ∂dφ−m2φ2
)
. (9)

It then follows that on equations of motion ∂aT
ab = 0. One can also intro-

duce the charges

H =

∫
d3xT00, Pi =

∫
d3xT0i, (10)

that are time–independent, ∂tH = ∂tPi = 0.
Going back to QFT, we derive the following potential for the two body

graviton exchange,

V ∼ 1

2

κ

2
Tab

1

4πr

κ

2
T ab ∼ κ2

32π

m1m2

r
, (11)

where κ is a constant determining the strength of the gravity coupling. In
obtaining this result, we have used the following normalization for T ab:

〈p|p′〉 = 2Eδ(3)(~p− ~p′), (12)

〈p|Tab|p′〉 =
1√

2E 2E′

[
(pap

′
b + p′apb)− ηab(p · p′ −m2)

]
. (13)

We see that considering EMT as a source and spin–2 field as a mediator
of the gravitational interaction is a reasonable suggestion. Now we want to
obtain this prescription from the first principles of QFT.
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1.2 Gauge theories — short reminder

In the next two subsections we remind some basic properties of Yang–Mills
(YM) gauge theories. Our interest in these theories is based on the observa-
tion that the gauge field mediates forces between matter fields, and it couples
to the currents of the corresponding global symmetry. Since we know from
the preceding discussion that EMT is the natural source of gravity, it is
tempting to construct gravity as a gauge field resulting from gauging the
global symmetry the EMT corresponds to.

1.2.1 Abelian Case

Consider a theory invariant under some (global) symmetry group. As an
example, we will use the theory of massive Dirac field ψ with the Lagrangian

L = ψ̄(i/∂ −m)ψ. (14)

It possesses the invariance under the global transformations ψ → e−iθψ,
where θ is a constant. Applying Noether’s theorem gives the current

ja = ψ̄γaψ, ∂aj
a = 0, (15)

and the charge

Q =

∫
d3j0. (16)

Now we want to make (14) invariant with respect to local transformations:

ψ → e−iθ(x)ψ. (17)

The way to do this is to introduce new field Aµ, which is called a gauge
field, and rewrite the Lagrangian in the form

L = ψ̄(i /D −m)ψ, Da = ∂a + ieAa. (18)

To ensure the invariance of (18) under (17), the covariant derivative of the
field, Daψ, must transform as

Daψ → e−iθ(x)Daψ. (19)

In turn, this implies that the gauge fields transforms as

Aa → Aa +
1

e
∂aθ(x). (20)

The next step is to make the gauge field dynamical. To this end, one should
introduce a kinetic term for Aa. The latter can be built as a bilinear com-
bination of the field strength tensor,

− 1

4
FabF

ab, (21)
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where Fab is defined through the relation

[Da, Db] = ie(∂aAb − ∂bAa) = ieFab. (22)

The expression (21) is positive–definite and invariant under the local trans-
formations (17). The modified Lagrangian is written as

L = −1

4
FabF

ab + ψ̄(i /D −m)ψ, (23)

from which we observe that the coupling of the gauge field Aa to fermions
takes the form jaAa. Hence the current (15) acts as a source of the field Aa.

1.2.2 Nonabelian case

As an example of a theory whose symmetry group is non–abelian, consider
the field ψ transforming in a fundamental representation of some compact
group, say, SU(N) 5

ψ → Uψ, U = e−i(ω0+
1
2
ωαλα), (24)

where λα are generators of SU(N) obeying[
λα

2
,
λβ

2

]
= ifαβγ

fγ

2
, Tr

[
λα

2

λβ

2

]
=

1

2
δαβ. (25)

The Lagrangian (14) is invariant under the transformations (24) as long as all
ω0, ωα are constant. To promote its invariance to the local transformations,

ψ → U(x)ψ, (26)

we introduce the gauge fields Aαa and covariant derivative Da,

Da = ∂a + ig
λα

2
Aαa ≡ ∂a + igAa, (27)

where we use the matrix notation Aa = λα

2 A
α
a . The transformation proper-

ties read as follows,
Daψ → U(x)Daψ, (28)

Aa → UAaU−1 +
i

g
(∂aU)U−1, Da → UDaU

−1. (29)

Dynamics for the fields Aαa is given by the field strength tensor Fαab, or, in
matrix notation, Fab. It is defined as

[Da, Db] = igFab = ig
λα

2
Fαab, (30)

and the explicit expressions are given by

Fab = ∂aAb − ∂bAa + g[Aa,Ab], (31)

Fαab = ∂aA
α
b − ∂bAαa − gfαβγAβaA

γ
b . (32)

5By ψ now we understand N–component row (ψ1, ..., ψN )T .
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1.3 Gravitational field from gauging translations

1.3.1 General coordinate transformations

Our goal is to implement the kind of reasoning outlined above in case of
gravity. To generate the field mediating the force whose sources are given
by EMT, one should gauge the global symmetry the EMT corresponds to,
i.e., one should gauge global translations

xa → xa + aa. (33)

Hence we consider the local version of (33),

xµ → xµ + aµ(x), (34)

which is equivalent to
xµ → x′µ(x). (35)

In other words, the local shifts constitute the most general transformations of
coordinate frame, and we will refer to them as General Coordinate Transfor-
mations (GCT). We observe the first qualitative difference between gravity
and usual YM–theories. In the case of gravity we gauge one of the space–
time symmetries of the original theory. This theory is composed of objects
with well defined properties under global Poincare transformations. In or-
der to be able to speak about GCT–invariance, one should define how the
components of the original theory are transformed under (34). The promo-
tion of the global Poincare group to GCT is trivial for some objects, and
non–trivial for others 6. In the case of space–time coordinates, we just re-
place the Lorentzian indices a, b, ... with the world indices µ, ν, ..., meaning
that the general transformations of coordinate frames are now admissible on
space–time manifold.

Modulo this observation, the procedure of building GCT–invariant the-
ory seems to be fairly straightforward. Let us sketch the important steps
here. By the analogy with YM–theories, we define a new field gµν such that

δLmatter
δgµν

∼ Tµν . (36)

Using this field, we promote the partial derivatives to covariant ones,

Dµ = ∂µ + Γµ(g), (37)

where Γµ(g) are some functions of gµν to be defined later. To make gµν
dynamical field, we introduce the field strength tensor, schematically,

[D,D] ∼ R. (38)

6For example, the spinors can only be defined on the Minkowski background.
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Finally, the invariant action is built from the matter action Sm and the
action Sg for the field gµν .

Before realizing this program, let us make a brief comment about EMT.
As we will find shortly, gµν is the symmetric tensor field. Canonical EMT,
however, need not be symmetric. Hence, to treat EMT as a source of the
gravitational field, one should bring it to the symmetric form without spoil-
ing the corresponding conservation law. This can be achieved by the redef-
inition [3]

T̃µν = Tµν + ∂ρB
ρµν , Bρµν = −Bµρν . (39)

It is readily seen that once ∂µT
µν = 0, then ∂µT̃

µν = 0 as well. Note that
this is the modification of the current, although it preserves the on–shell
conservation law. Note also that the choice of Bρµν tensor is not unique.

Let us start implementing the program outlined above. In special–
relativistic field theories whose gauged versions we want to build, the most
fundamental invariant quantity is the interval

ds2 = ηabdy
adyb. (40)

We now want to express the interval through quantities that depend on world
indices and require its invariance under GCT. To this end, we introduce new
fields eaµ(x) such that

dya = eaµ(x)dxµ, (41)

and rewrite (40) as follows,

ds2 = ηabe
a
µ(x)ebν(x)dxµdxν ≡ gµν(x)dxµdxν . (42)

Here gµν(x) is a new tensor field which is manifestly symmetric, and it is
tempting to interpret it as a gauge field. Under GCT dxµ transforms as
follows,

dx′µ = Jµν (x)dxν , Jµν (x) ≡ ∂x′µ

∂xν
(x). (43)

The invariance of (42) under GCT implies that gµν(x) must transform as

g′αβ = (J−1)µαgµν(J−1)νβ, (44)

or, in short notation,

x′ = Jx, e′ = J−1e, g′ = (J−1)T gJ−1. (45)

(In the last expression, g should not be confused with the determinant of
gµν .) Eqs.(45) are analogous to those of transformations of YM–fields given
by (29).

Note that, along with (45), the interval (42) is also invariant with respect
to local Lorentz transformations

e′aµ = Λac (x)ecµ(x), ηabΛ
a
c (x)Λbd(x) = ηcd. (46)
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This is the vestage of the (global) Lorentz invariance of (40). At this step it
seems that there is no need to gauge the Lorentz transformations since the
current for them is not EMT but rather the angular–momentum tensor.

Define gµν such that gµαgαν = δµν . We can use the fields gµν , gµν to rise
and lower the world indices. For example,

xµ ≡ gµνxν , ∂µ = gµν∂ν , ∂µ ≡
∂

∂xµ
, ∂µx

ν = δνµ. (47)

It follows that the quantities with upper indices transform with J matrix,
while those with down indices transform with J−1 matrix. In particular,

g′µν = JµαJ
ν
βg

αβ. (48)

The next step in building invariant action is to define an invariant mea-
sure. In special–relativistic field theories this is 4–volume dV = d4y. Using
(36), we write

d4y = d4x

∣∣∣∣∂y∂x
∣∣∣∣ = d4x det eaµ. (49)

Since
g ≡ det gµν = det(eaµe

b
νηab) = −(det e)2, (50)

it follows that
d4y =

√
−gd4x. (51)

The r.h.s. of (51) is manifestly invariant under GCT.

1.3.2 Matter sector

Now we turn to covariantizing matter fields. As an example, consider the
real massive scalar field φ. Its transformation properties under the global
Poincare group are determined by

φ′(y′) = φ(y). (52)

The law (52) can be readily promoted to the transformation law under GCT:

φ′(x′) = φ(x). (53)

Then, the invariant action reads,

Sm =

∫
d4x
√
−g
(

1

2
gµν∂µφ∂νφ−m2φ2

)
. (54)

Its variation with respect to gµν gives,

δSm
δgµν

=
1

2

√
−g
(
∂µφ∂νφ−

1

2
gµν(gρσ∂ρφ∂σφ−m2φ2)

)
. (55)
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We see that
2√
−g

δSm
δgµν

= Tµν , (56)

where Tµν is obtained from (9) by promoting the Lorentz indices to the
world ones, and replacing ηab with gµν . Thus, Tµν is indeed the source of
the gravitational force mediated by the field gµν .

In deriving (55) we used the relations

δ(gµνg
νρ) = δ(δρν) = 0, δgµν = −gµρgνσδgρσ (57)

and
δ
√
−g

δgµν
= −
√
−g
2

gµν (58)

following from

δ detM = det(M + δM)−detM = eTr log(M+δM)− eTr logM = Tr(M−1δM).
(59)

The equation of motion for the field φ reads as follows,

1√
−g

∂µ(
√
−ggµν∂ν) +m2)φ = 0. (60)

As we will discuss later, this reduces to the Schrodinger equation in the limit
of non–relativistic φ and weak gravitational fields.

1.3.3 Gravity sector

Let us now provide the field gµν with dynamics. Consider, for instance, the
vector field V µ(x) which transforms as

V ′µ(x′) = Jµν (x)V ν(x). (61)

Then, by the analogy with YM–theories, one should introduce the covariant
derivatives Dµ whose transformations properties under GCT are

DµV
ν → D′µV

′ν = (J−1)σµJ
ν
ρDσV

ρ. (62)

For Dµ we write,
DµV

ν = ∂µV
ν + ΓνµρV

ρ. (63)

Then, Eq.(62) is valid as long as

Γ
′λ
µν = (J−1)µ

′
µ (J−1)ν

′
ν J

λ
λ′

(
Γλ

′
µ′ν′ + (J−1)λ

′
σ ∂µ′J

σ
ν′

)
. (64)

The quantities Γλµν can be expressed in terms of gµν as follows,

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν). (65)
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Determined by Eq.(65), Γλµν are called Levi–Civita connection. The easiest
way to derive Eq.(65) is to implement the metricity condition

Dαgµν = 0. (66)

This condition is necessary for the EP to hold. Eq.(66) implies the vanishing
of the connection in the absence of the gravitational force, in which case we
must be able to recover the original Poincare–invariant theory. To get (65)
from (66), one can take a half of the combination Dαgµν −Dµgνα −Dνgαµ.

Knowing (65), one can define the action of Dµ on arbitrary tensors:

DµT
αβ...
ρσ... = ∂µT

αβ...
ρσ... + ΓαµνT

νβ...
ρσ... + ...− ΓνµρT

αβ...
νσ... − ... . (67)

Note that the connection does not transform as a tensor under GCT.
Proceeding as for YM–theories, we introduce the field strength tensor

(using again the vector field as an example):

[Dµ, Dν ]V β = RβµναV
α. (68)

This gives,

Rβµνα = ∂µΓβνα − ∂νΓβµα + ΓβµρΓ
ρ
να − ΓβνρΓ

ρ
µα, (69)

in close analogy with the YM field strength tensor. Using this tensor, one
can define

Rνα = Rµµνα, R = gναRνα. (70)

Note that the quantity R is invariant under CGT.
Which of Rβµνα, Rνα, R should we put into Sg? To answer this question,

consider the weak field approximation

gµ = ηµν + κhµν , (71)

where κ is some small constant. Then we have, schematically,

Γλµν ∼ ∂h, Rβµνα, Rνα, R ∼ (∂2h, ∂h∂h). (72)

These expressions are different from those in YM–theories, where

Fµν ∼ ∂A. (73)

Moreover, the symmetry properties of YM field strength tensor and Riemann
tensor Rβµνα are different, and it is the latter that allows us to build a
curvature scalar R, while Fµν is manifestly antisymmetric. Hence, in case of
gravity in the weak gravity limit the scalar curvature R is dominating, and
we can write

SEH =

∫
d4x
√
−g
(
− 2

κ2
R

)
, (74)
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where κ2 = 32πG, and the full invariant action is

S = SEH + Sm. (75)

Varying (75) with respect to gµν gives 7

δSEH =

∫
d4x
√
−g
(
− 2

κ2
R

)(
Rµν −

1

2
gµνR

)
δgµν , (76)

δSm =

∫
d4x
√
−g1

2
Tµνδg

µν , (77)

and the equations of motion are

δS = 0 ⇒ Rµν −
1

2
R =

κ2

4
Tµν = 8πGTµν . (78)

This completes the construction of gravity as a gauge theory. Let us sum-
marize our findings.

• We constructed GR by gauging ST translations,

• Sm gives the source of the gravitational field, namely, EMT, and

• SEH gives the dynamics of the gravitational field.

2 Fermions in General Relativity

As was mentioned in Sec.1.3, covariantizing a (global) Poincare invariant
theory may be a nontrivial task since it may not be possible to readily pro-
mote the Lorentz indices to the world ones. The example of this is the spinor
field, the reason is fairly simple — the GCT group does not have spinor rep-
resentations. Hence the procedure to embed fermions into curved space–time
must be more laborious. LetM be a space–time manifold. At each point x
ofM one can consider the tangent space Tx(M) which is Minkowskian. By
joining Tx(M) built at different x we obtain the tangent bundle overM. It
is natural to associate the spinor field with this tangent bundle. We then
allow the global Lorentz transformations act independently at each layer of
the bundle. In this way we obtain local Lorentz transformations in addition
to GCT acting in M. We then require the theory to be covariant under
these two classes of transformations.

To make the theory GCT covariant, one should be able to relate the
Lorentz coordinates of the original theory to the world coordinates of the
curved manifold. In Sec.1.3 we introduced the objects that can make the

7If we impose non–trivial boundary conditions, the appropriate boundary term must
be added to the action (74).
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required relations. These are tetrads eµa(x). In the geometric picture out-
lined above they naturally correspond to a change of a basis of vector fields
in the tangent bundle from one coordinate frame to another,

∂a = eµa(x)∂µ. (79)

From Eq. (42) we see that

ηab = eµa(x)eνb (x)gµν(x). (80)

Chosen in this way, the quantities {eµa(x)} are said to form an orthonormal
Vielbein basis. We observe the following properties of the tetrad fields 8,

eaµe
µ
b = ηab, eaµe

a
ν = gµν . (81)

Moreover, under local Lorentz transformations they transform as

e′µb (x) = Λab(x)eµa(x) . (82)

From (79) it is clear that whenever one has an object with Lorentz indices,
say, Aa, one can build an object with world indices Aµ by multiplying Aa
by eaµ(x) 9.

We now require the local Lorentz covariance of the theory. This step is
made in full analogy with the YM–theories discussed above. As an example,
consider the theory of the Dirac field in flat four–dimensional space–time,

L = ψ̄(iγa∂a −m)ψ . (83)

The field ψ transforms as
ψ → Sψ (84)

under (global) Lorentz transformations, where the matrix S has to satisfy
the following conditions:

γ0S
+γ0 = S−1 ,

S−1γaΛbaS = γb,
(85)

where γa are four–dimensional Dirac matrices. The first condition above is
dictated by the invariance of the mass term in (83), while the second — by
that of the kinetic term.

The solution to Eqs. (85) is given by

S = exp
{
− iJabα

ab

2

}
, (86)

8The Lorentz indices are raised and lowered with the metric ηab.
9Note that this procedure can equally well work when covariantizing the usual ten-

sor quantities. With the appropriate choice of connection, however, there would be no
difference from the results obtained in Sec.1.
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where αab = −αba is the antisymmetric matrix of transformation parameters
and Jab are the generators of the Lorentz group in the spinorial representa-
tion,

Jab =
σab
2

= i
[γa, γb]

2
. (87)

Notice that the spin generators defined in this way are antisymmetric and
satisfy the usual commutation relations of the Lorentz algebra,

[Jab, Jcd] = i [ηadJbc + ηbcJad − ηacJbd − ηbdJac] . (88)

Now we upgrade the theory (83) of free fermions by gauging the Lorentz
group. We require the invariance under the transformations (86), where αba

are now functions of space–time coordinates. We introduce a gauge field Aµ
and a covariant derivative,

Dµψ ≡ (∂µ − igAµ)ψ ≡ (∂µ − i
g

2
JabA

ab
µ )ψ . (89)

The covariant derivative must transform homogeneously with respect to the
gauge transformations,

(Dµψ)(x)→ S(x)(Dµψ)(x) , (90)

which implies the following transformation law:

A′µ = SAµS
−1 − 2i

g
(∂µS)S−1 . (91)

In what follows, we will call Aµ the “spin connection”.
Making use of tetrads and covariant derivatives we can rewrite the La-

grangian (83) in a covariant form,

L = ψ̄(iγaeµa(x)Dµ −m)ψ . (92)

Note that the procedure outlined above can be generalized straightfor-
wardly to general representations of the Lorentz group. In the general case
the covariant derivative reads,

DµBi = (δji ∂µ − i
g

2
[J

(R)
ab ]jiA

ab
µ )Bj , (93)

where [J
(R)
ab ]ij are the generators of the Lorentz group in some representation.

In this notation the infinitesimal transformations of the field Bi take the
form

δBi = − i
2

[J
(R)
ab ]jiα

ab(x)Bj . (94)

The next step in building the covariant theory is to define the field
strength tensor,

[Dµ,Dν ] = −igJabRabµν , (95)
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where
Rabµν = ∂µA

ab
ν − ∂νAabµ + g(AaµcA

cb
ν −AaνcAcbµ ) . (96)

The obvious candidate for the gauge field Lagrangian is

L = − 1

4g2
RabµνR

µν
ab . (97)

If we studied usual non–abelian gauge theories, this would be the end of the
story. In our case, however, we also have the tetrad field at hand. Using it
we can construct new scalars for the Lagrangian density. For instance, we
can contract both indices of the strength tensor with the tetrads to obtain
10

R(A) = eµae
ν
bR

ab
µν . (98)

We have now two ways to proceed. The first is to impose the first
Vielbein postulate 11

Dµeaν = 0 = ∂µe
a
ν − Γαµνe

a
α − g[Aµ]acηcbe

b
ν , (99)

where we used the generators of the Lorentz group in the vector represen-
tation,

[J
(V )
ab ]ij = −i(δiaηbj − δibηaj) . (100)

Eq. (99) allows to relate the spin and world connections,

gAabµ = eνa(∂µe
b
ν − Γαµνe

b
α) = eνaDµe

b
ν . (101)

Notice that the above relation can be used to uniquely define the Levi-Civita
connection on M. Had we used a more general connection, this condition
would not completely fix it. In this case,

Γαµν = eαb ∂µe
b
ν − gAabµ eaνeαb ≡ Γα (LC)

µν − gÃabµ eaνeαb , (102)

where Γ
α (LC)
µν is the symmetric Levi-Civita connection and Ãabµ is an arbi-

trary function. Then one can define the Riemann tensor,

Rµνλρ = eaλebρR
ab
µν , (103)

and the rest of GR follows.
The second way is go is to write down the following action,

S = const×
∫
d4x
√
−g eµaeνbRabµν . (104)

10Note that the constant g can be absorbed into the normalization of the gauge field A.
11It can be motivated by the requirement to be able to convert the Lorentz into world

indices inside the total covariant derivative, e.g., eaµ∇νV
µ = DνV a.
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Let us vary this action with respect to the spin connection. One has,

δS = const×
∫
d4x
√
−g eµaeνb δRabµν = const×

∫
d4x
√
−g eµaeνbDµδAabν ,

⇒ Dµeνa = 0 ,

(105)

so we again arrived at Eq. (99). The choice of the action (104) seems to be
a big simplification though. We can get the same results considering a more
generic action,

S =

∫
d4x
√
−g[aR(g) + bR(A) + cDµebνDνe

µ
b − Λ] . (106)

The higher order terms, however, are forbidden since their variation with
respect to the spin connection will not yield a constraint like (105), but
rather a dynamical equation.

3 Weak field gravity

Let us study some basic features of gravity in the weak field limit. This
amounts to expanding the metric around the Minkowski background,

gµν = ηµν + κhµν , (107)

where κ2 ≡ 32πG. Then the Ricci tensor and the Ricci scalar read,

Rµν =
κ

2

[
∂µ∂λh

λ
ν + ∂ν∂λh

λ
ν − ∂µ∂νhλλ −�hµν

]
+O(h2) ,

R = κ
[
∂µ∂λh

µλ −�hλλ
]

+O(h2) .
(108)

The Einstein equation reads,

Rµν −
1

2
ηµνR ≡

κ

2
Oµναβh

αβ =
κ2

4
Tµν . (109)

It is convenient to introduce the following “identity” tensor,

Iµναβ ≡
1

2
(ηµαηνβ + ηµβηνα) , (110)

making use of which the equation defining the Green function of Eq. (109)
can be written as,

O αβ
µν Gαβγδ(x− y) =

1

2
Iµνγδδ

(4)
D (x− y) , (111)

where,

Oµναβ ≡ (δ(µα δ
ν)
β − η

µνηαβ)�− 2δ
(µ
(α∂

ν)∂β) + ηαβ∂
µ∂ν + ηµν∂α∂β . (112)

As usual in gauge field theories, the operator O αβ
µν cannot be inverted. For

that one has to do gauge–fixing.
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3.1 Gauge transformations

Consider an infinitesimal coordinate transformation

x′µ = xµ + κξµ(x) . (113)

Then, the transformed metric h′µν takes the following form

h′µν = hµν − ∂µξν − ∂νξµ . (114)

Note that the curvature invariants do not transform, e.g. R′ = R. Now
let’s choose a gauge. A particularly convenient is the de Donder (harmonic)
gauge, defined as,

∂µh
µ
ν −

1

2
∂νh

λ
λ = 0 . (115)

In order to go to this gauge one has to choose ξµ : �ξµ = −(∂µh
µ
ν − 1

2∂νh
λ
λ).

One can introduce the field

h̄µν = hµν −
1

2
ηµνh

λ
λ , (116)

using which Eq. (109) can be rewritten as,

�h̄µν = −κ
2
Tµν . (117)

The Green function of Eq. (111) then reads,

Gµναβ =
1

2�
(ηµαηνβ + ηµβηνα − ηµνηαβ) δ

(4)
D (x− y) . (118)

3.2 Newton’s law

Eq. (109) can also be rewritten as,

�hµν = −κ
2

(Tµν −
1

2
ηµνT

λ
λ ) . (119)

For a point source with T00 = Mδ(3)(x), Tij = 0,

Tµν −
1

2
ηµνT

λ
λ =

1

2
Mδ(3)(x)× diag(1, 1, 1, 1) . (120)

Plugging an ansatz κhµν = 2Φgdiag(1, 1, 1, 1) we obtain the solution,

Φg = −κ
2M

32π

1

r
= −GM

r
. (121)
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3.3 Gauge invariance for a scalar field

Take a look at the Lagrangian for a free minimally coupled scalar field,

L =
1

2

[
gµν∂µφ∂νφ−m2φ2

]
. (122)

For small gauge transformations one has,

g′µν = gµν + ∂µξν + ∂νξµ ,

∂′µ = ∂µ − (∂µξ
ν)∂ν ,

φ′(x′) = φ(x) .

(123)

Then it is straightforward to obtain that the Lagrangian does not change
under the gauge transformations.

3.4 Schrödinger equation

Let’s look at the Klein-Gordon-Fock equation,

(� +m2)φ = 0 (124)

In the harmonic coordinates the d’Alembertian reads,

� =
1√
−g

∂µ(
√
−ggµν∂ν) = gµν∂µ∂ν +

1√
−g

∂µ(
√
−ggµν)∂ν = gµν∂µ∂ν ,

(125)
where in the last equality we made use of Eq. (107) and the definition of the
harmonic gauge,

∂µ(
√
−ggµν) = −κ∂µ

(
hµν − 1

2
ηµνh

λ
λ +O(h2)

)
' 0 . (126)

We will use the metric for a static external gravitational field,

g00 = 1− 2Φg , gij = −(1 + 2Φg)δij , Φg � 1 . (127)

Let’s perform a non-relativistic reduction for the wavefunction of the filed
φ,

φ = e−imtψ(t,x) (128)

Plugging this into Eq. (124) we find,

[(1 + 2Φg)(−m2 − 2im∂0 + ∂20)− δij∂i∂j +m2]ψ(t,x) = 0 . (129)

One observes that the mass term cancels to the leading order in Φg, and
we are left with the usual Schrödinger equation for a particle in an external
gravitational field,

i∂0ψ =

[
− ∆

2m
+mΦg

]
ψ . (130)
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Note that one can consistently compute corrections to the Schrödinger equa-
tion. For instance, the Lagrangian for a two body system (so-called Einstein-
Infeld-Hoffman Lagrangian) reads [4]

L =
m1v

2
1

2
+
m2v

2
2

2
+
m1v

4
1

8
+
m2v

4
2

8

+
Gm1m2

2r

[
3(v1 + v2)

2 − 7(v1 · v2)−
(v1 · r)(v2 · r)

r2
− G(m1 +m2)

r

]
.

(131)
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