
Last section - end of Lecture 4

6 October 2016

1 An Introduction to Non-local Effective Actions

In this final segment, I would like to describe some aspects of the gravita-
tional effective field theory which need to be developed more fully in the
future. We have seen how to quantize the theory and make quantum field
theoretic predictions within general relativity. The most straightforward
amplitudes to calculate are scattering matrix elements - this is what quan-
tum field theory does well. But most applications of general relativity are
not scattering amplitudes. In order to address quantum effects more gen-
erally one needs to be able to treat the non-linear classical solutions. One
way to address such settings is to use non-local effective actions expressed
using the curvatures.

Why use an effective action? While most quantum calculation are done
in momentum space, for general relativity it is best to work in coordinate
space. In particular, we know how to write the curvatures and covariant
derivatives in terms of the field variables. Using an effective action allows
one to summarize quantum effects in a generally covariant fashion.

Why non-local? As has been stressed here, locality is the key to the effec-
tive field theory treatment, as non-local effects correspond to long distance
propagation and hence to the reliable predictions at low energy. The local
terms by contrast summarize - in a few constants - the unknown effects from
high energy. Having both local and non-local terms allow us to implement
the effective field theory program using an action built from the curvatures.

1.1 Anomalies in General

My starting point may seem a bit unexpected, but I would like to begin by
a discussion of anomalies. We are used to thinking of an anomalies as a
UV phenomenon. For example, in a path integral context, anomalies can be
associated with the non-invariance of the path integral measure [1]. This is
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regularized by adding a UV cutoff, and finding finite effects as the cutoff is
removed.

Superficially this should bother an effective field theorist. If the anomaly
can only be found by treating the UV sector of the theory, how can we be
sure about it as we do not have complete knowledge about UV physics?
Could we change something about the high energy part of the theory and
make the anomaly go away? What has happened to the argument that UV
effects are local and are encoded in local effective Lagrangians?

But there is also an IR side to anomalies. For example, both the axial
anomaly and the trace anomaly can be uncovered by dispersion relations,
with the dominant contributions coming from low energy[2, 3, 4]. And direct
calculation can reveal non-local effect actions which encode the predictions
of the anomalies.

Indeed, we have already seen one such example. In the section on the
background field method, I calculated the effect of integrating out a massless
scalar field coupled to photons. After renormalization, the result was an
effective action of the form

S = −1

4

∫
d4x FµνF

µν + βe2
∫
d4xd4y Fµν(x)L(x− y)Fµν(y) , (1)

where the function L(x− y) is the Fourier transform of log q2,

L(x− y) =

∫
d4q

(2π)4
e−iq·(x−y) ln

(
−q2

µ2

)
(2)

Using the notation

L(x− y) ≡ 〈x| ln
(
�
µ2

)
|y〉 (3)

and making a conventional rescaling of the photon field, this non-local action
can be put in the form

S =

∫
d4x − 1

4
Fρσ

[
1

e2(µ)
− b ln

(
�/µ2

)]
F ρσ . (4)

One sees immediately the connection of this action to the running of the
electric charge, with b being related to the beta function.

The fundamental action for QED with massless particles is scale in-
variant, i.e. it is invariant under the transformations Aµ(x) → λAµ(λx),
ψ(x)→ λ3/2ψ(λx), φ(x)→ λφ(λx). We can define an associated concerved
current Jµ = Tµνx

ν with the conservation condition ∂µJµ = 0 implying the
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tracelessness of Tµν , Tµµ = 0. However, the scale symmetry has an anomaly,
and after quantum corrections the trace does not vanish.

An infrared demonstration of this can come from the non-local effective
action derived above. Under rescaling we have

L(x− y) = λ4L(λx− λy) + lnλ2δ4(x− y) (5)

and the rescaling is no longer a symmetry of the quantum action. Using
this, one readily finds (in the conventional normalization) the trace anomaly
relation

T νν =
be2

2
FρσF

ρσ . (6)

The relation of the anomaly to the running coupling is apparent. The trace
anomaly cannot be derived from any gauge invariant local action, but it
does follow from the calculated non-local effective action.

1.2 Conformal Anomalies in Gravity

The couplings of massless particles to gravity can have a conformal symme-
try which is similar to the scale symmetry described above. This involves
the local transformation

g′µν(x) = e2σ(x)gµν(x) φ′(x) = e−pσ(x)φ(x) (7)

with p = 1 for scalar fields, p = 0 for gauge fields and p = 3/2 for fermions.
With massless scalars there needs to be an extra term in the action −Rφ2/6
in order to have conformal symmetry, but for massless fermions and gauge
field the symmetry is automatic. When this is a symmetry of the matter
action Sm, one must have

δSm = 0 =

[
δSm
δφ

δφ+
δSm
δgµν

δgµν

]
. (8)

The first term here vanishes by the matter equation of motion. In the
second one, the variation with respect to gµν gives the energy momentum
tensor, and δgµν = 2σ(x)gµν , so that the condition of conformal invariance
requires Tµµ = 0. The gravitational part of the action is itself not conformally
invariant, as R′ = e2σ[R+ 6�σ].

However, the conformal symmetry of the massless matter sector is anoma-
lous. In the path integral treatment this can be traced to the Jacobean of

3



the transformation. This can be regularized in an invariant way using the
heat kernal expansion. For the scalar field transformation of Eq. 7 we have

J = det[e−σ] = lim
M→∞

exp
[
Tr log

(
−σe−D2/M2

)]
= exp [−σa2(x)] . (9)

The consequence of this non-invariance can be translated into an anomalous
trace

Tµµ =
1

16π2
a2 =

1

16π2
1

18

[
RµναβRµναβ −RµνRµν + �R

]
(10)

The expression in terms of a2 is generic, and the second form is specific to
scalar fields. Much more detail about the conformal anomaly can be found
in the books by Birrell and Davies [5] and by Parker and Toms [6].

1.3 Non-local Effective Actions

Deser Duff and Isham [7] were the first to argue that the conformal anomaly
was connected to a non-local effective action. Having seen the QED example
in the previous section, this should not surprise us. However, the importance
of the effective action technique goes well beyond just anomalies. It allows
the low energy quantum effects to be summarized in a covariant fashion.
This latter aspect has been developed especially by Barvinsky, Vilkovisky
and collaborators (here called BV) [8, 9, 10]. The presentation here is only
introductory.

The basic idea of the BV program is to express one loop amplitudes in
terms of curvatures and covariant derivatives. For example, much like the
QED example above we could expect a term of the form∫

d4x
√
−g R log∇2R (11)

where log∇2 is a covariant object which reduces to log� in flat space1.
Another possible term could be∫

d4x
√
−g R2 1

∇2
R (12)

where 1/∇2 represents the covariant massless scalar propagator. We note
that both of the terms just mentioned are of the same order in the derivative
expansion.

One loop Feynman diagrams can be expressed in terms of scalar bubble,
triangle and box diagrams. The bubble diagram is UV divergent, and we

1The discussion of possible forms for log∇2 is too extensive for the present context.
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have seen how the heat kernel method encodes these divergences in terms
of the curvatures. Along with the divergence comes a factor of log q2 in mo-
mentum space which becomes log∇2 in the non-local effective action. From
this we see that the terms of order R log∇2R come with coefficients which
are fixed from the one-loop divergences (as was true in the QED example
also). These can be calculated in a non-local version of the heat kernel
method [8, 11], or simply matched to the perturbative one-loop calculations
[12]. The results, taken from Ref. [12] in two different bases are

SNL =

∫
d4x
√
g

(
αR log

(
�
µ2α

)
R+ βRµν log

(
�

µ2β

)
Rµν + γRµναβ log

(
�
µ2γ

)
Rµναβ

)
(13)

or

SNL =

∫
d4x
√
g
[
ᾱR log

(
�

µ21

)
R+ β̄Cµναβ log

(
�

µ22

)
Cµναβ

+ γ̄
(
Rµναβ log (�)Rµναβ − 4Rµν log (�)Rµν +R log (�)R

)]
.

(14)

Here the coefficients of the various terms are displayed in Table 1. In the
second version, Cµναβ is the Weyl tensor

Cµναβ = Rµναβ −
1

2
(Rµαgνβ −Rναgµβ −Rµβgµα +Rνβgµα)

+
R

6
(gµαgνβ − eναeµβ) . (15)

The second form also emphasizes a useful point. As described previously,
the local Lagrangian comes with two independent terms, because the Gauss-
Bonnet identity tells us that one combination of curvatures is a total deriva-
tive. The non-local action can have three terms because that third curva-
ture combination can have non-trivial effects when the non-local function
log∇2 occurs between the curvatures. The two coefficients in the local
action include functions of the renormalization scale in the form ci(µ

2).
The logarithms also come with a scale factor logµ2 which is itself local -
< x| logµ2|y >= logµ2 δ4(x − y)/

√
−g. The total combination is indepen-

dent of µ. In the second version of the non-local action, the last combination
has no µ dependence because the local combination vanishes.

The phenomenology of these non-local actions are just begining to be
explored. I did not have time in the lectures to describe these early works,
but I can here refer the reader to some examples in [13, 14, 12, 15, 16, 17].
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α β γ ᾱ β̄ γ̄

Scalar 5(6ξ − 1)2 −2 2 5(6ξ − 1)2 3 −1

Fermion −5 8 7 0 18 −11

Vector −50 176 −26 0 36 −62

Graviton 430 −1444 424 90 126 298

Table 1: Coefficients in the non-local action due to different fields. All
numbers should be divided by 11520π2.

The gravitational conformal anomalies have also been uncovered in the non-
local actions [18, 10].

At third order in the curvature, very many more terms are possible,
having forms similar to Eq. 12. Interested readers are invited to peruse the
194 page manuscript describing these, Ref. [9]. These are so complicated
that they will probably never be applied in full generality. However, we
eventually will need to understand what type of effect they could have and
if there is any interesting physics associated with them.

It is important to be clear that the usual local derivative expansion,
which for gravity is also a local expansion in the curvature, is quite different
from this non-local expansion in the curvature. In the local expansion, each
subsequent term is further suppressed in the energy expansion at low energy.
With the non-local expansion, the terms are all technically at the same order
in the energy expansion. However, they represent different effects - at the
very least representing bubble diagrams vs triangle diagrams. It is expected
that there will be settings where the curvature is small that the terms third
order in the curvature can be neglected.

1.4 An Explicit Example

Because the gravity case quickly becomes complicated, it is useful to go back
to a simpler example in order to get a feel for non-local actions. To do this let
us consider the QED example with a massless scalar considered previously
but now coupled up to gravity also. This is straightforward to calculate in
perturbation theory. With the expansion gµν = ηµν + hµν and placing the
photons on-shell, we find that the linear term in the gravitational field has
the form

S =

∫
d4x hµν

[
bs log

(
�
µ2

)
T cl +

1

96π2
1

�
T̃ sµν

]
(16)
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where bs is the scalar beta function coefficient and the extra tensor structure
is given by

T̃ sµν = ∂µFαβ∂νF
αβ + ∂νFαβ∂µF

αβ − ηµν∂λFαβ∂λFαβ (17)

Here we see a logarithmic non-locality similar to those that we have already
become familiar with. There is also a 1/� non-locality, which arose from a
factor of 1/q2 in the momentum space calculation.

Let me not discuss the logarithm here - it is somewhat complicated to
put this in covariant form [15, 19]. However the new 1/� term is simple
to understand. If we want to write this in covariant fashion, we note that
we are expecting terms which are generically of the form F 2(1/�)R, with
various tensor index contractions. If we write out all possible contributions
and expand these to first order in hµν , it turns out that there is a unique
matching to the perturbative result. This is We find the following form to
be the most informative

ΓNL[g,A] =

∫
d4x
√
g

[
nRFρσF

ρσ 1

∇2
R+ nCF

ρσF γλ
1

∇2
C λ
ρσγ

]
. (18)

where again C λ
ρσγ is the Weyl tensor. The coefficients for a scalar loop

involve

nR = − β

12e
, nC = − e2

96π2
. (19)

where here β is the QED beta function.
We see in this calculation the prototype of what is happening in grav-

ity. If we think of the field strength tensor Fµν as a “curvature”, we have
curvature-squared terms with a non-local factor of log� and curvature-
cubed term with a non-local factor of 1/�. Both come from one loop di-
agrams. The pure log� comes from bubble diagrams which are also asso-
ciated with UV divergences. The 1/� terms come from the scalar triangle
diagram. The coefficients of each of all of these are fixed by direct calcu-
lation and are not free parameters. To tie up with our starting point for
this section, one can show that the scale anomaly is associated with the log
terms and the QED conformal anomaly is associated with the 1/� terms
[15]. That the trace relation is identical in both cases comes from the fact
that the beta function determines both terms, and indicates a beautiful
consistency within the theory.
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1.5 Summary

I have chosen to end on this topic because I feel that it is one of the frontiers
of the application of quantum field theory to general relativity. If we are to
treat quantum corrections in more complicated settings than scattering am-
plitudes, we need to treat the full non-linear structure of general relativity.
The effective actions summarize the quantum effects with full curvatures.
However, the applications of these non-local effective actions have been only
lightly explored.
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