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1 The second quantization of weak gravitational
field

1.1 The second quantization

In this section we assume the gravitational field to be weak and apply the
following ansatz,

gµν = ηµν + hµν . (1)

In (1), the field hµν is to be quantized. Note that the decomposition (1) is
not uniqe due to GCT covariance of the theory 1. To make it unique, one
should fix the gauge. The convenient choice is the harmonic gauge which is
given by

gµνΓρµν = 0 . (2)

Note that the expression (2) is exact in hµν and it reduces to

∂µh
µν − 1

2
∂νhλλ = 0 (3)

in the weak field limit. Let us now expand Einstein equations in powers of
hµν . Let the matter EOM be Tµν , then

Gµν = 8πTµν , Gµν = Rµν −
1

2
gµνR. (4)

Denote by G
(i)
µν the part of Gµν containing the i’s power of hµν , then up to

the second order
Gµν ≈ G(1)

µν +G(2)
µν . (5)

Define the tensor tµν as follows

tµν = − 1

8πG
G(2)
µν . (6)

1To be more precise, Eq.(1) is covariant with respect to those GCT that preserve the
condition |hµν | � 1. Later on, speaking about tensorial quantities like hµν or tµν , we will
imply that GCT are restricted to the transformations that keep them small.
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Substituting (6) and (5) into (4) gives

�hµν ≈ 8πG(Tµν + tµν), (7)

where we have used G
(1)
µν = �hµν . Hence higher–order powers of hµν serve

as a source of hµν itself, in complete agreement with the EP. The tensor
tµν provides us with the triple graviton vertex, and Tµν represents the tree
graviton correction to the matter propagator. For completeness, we quote
the explicit expression for tµν ,

tµν = −1

4
hαβ∂µ∂νh

αβ +
1

8
h∂µ∂nuh

+
1

8
ηµν

(
hαβ�hαβ −

1

2
h�h

)
−1

4
(hµρ�h

ρν + hνρ�h
ρµ− hµν�h)

+
1

8
∂µ∂ν

(
hαβh

αβ − 1

2
hh

)
− 1

16
ηµν�

(
hαβh

αβ − 1

2
hh

)
−1

4
∂α

[
∂ν

(
hµβh

αβ
)

+ ∂µ

(
hνβh

αβ
)]

+
1

2
∂α

[
hαβ(∂νhµβ + ∂µhνβ)

]
, (8)

where h ≡ hµµ. In this expression, the last three lines are actually a total
derivative, while the second and the third lines vanish on–shell.

Let us now implement the second quantization procedure to the field hµν .
To this end, one should write down the general solution to the linearized
equation of motion in the absence of matter. Two possible polarizations of
the graviton are captured by introducing the polarization tensor εµν . The
latter can be composed from the usual polarization vectors,

εµ(λ) =
1√
2

(0, 1,±i, 0), λ = ±. (9)

These vectors satisfy the following relations,

ε∗µ(λ)εµ(λ) = −1, εµ(λ)εµ(λ) = 0. (10)

We can now form the polarization tensor,

εµν(λ1λ2) = εµ(λ1)εν(λ2). (11)

The plane–wave decomposition of hµν is then written as

hµν =
∑

λ=++,−−

∫
d3p

(2π)3
1√
2ωp

[
a(p, λ)εµν(p, λ)e−ipx + h.c.

]
. (12)
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From here, the canonical Hamiltonian of the gravitational field can be readily
derived,

H =

∫
d3xt00 =

∑
λ

∫
d3p

(2π)3
ωp

[
a†(p, λ)a(p, λ) +

1

2

]
. (13)

To treat hµν as a quantum field, we promote the coefficients a(p, λ) and
a†(p, λ) to operators with the canonical commutation relations

[a(p, λ), a†(p′, λ′)] = δ(p− p′)δλλ′ . (14)

1.2 Propagator

We start by expanding the action SEH + Sm to the second order in hµν . It
is convenient to introduce the quantity

h̄µν = hµν −
1

2
ηµνh. (15)

The Lagrangian is given by

√
−gL =

√
−g
(
− 2

κ2
R+ Lm + LGF

)
. (16)

Here LGF is the gauge–fixing part of the Lagrangian. To the second order
in hµν ,

−
√
−g 2

κ2
R = − 2

κ2
(∂µ∂νh

µν−�h)+
1

2

[
∂λhµν∂

λh̄µν − 2∂λh̄µλ∂σh̄
µσ
]
, (17)

LGF = ξ∂µh̄
µν∂λh̄λν . (18)

The harmonic gauge corresponds to ξ = 1, and in this case the Lagrangian
(16) rewrites as

√
−gL =

1

2
∂λhµν∂

λhµν − 1

4
∂λh∂

λh− κ

2
hµνTµν . (19)

Integration by parts yields

L =
1

2
hµν�

(
Iµναβ − 1

2
ηµνηαβ

)
hαβ −

κ

2
hµνTµν , (20)

where

Iµναβ =
1

2
(ηµαηνβ + ηναηµβ). (21)

From (20) it is easy to extract the propagator for the gravitational field hµν .
The latter is given by the inverse of the expression under box, i.e.(

Iµναβ − 1

2
ηµνηαβ

)
Dαβγδ = Iµνγδ. (22)

3



Trying the ansatz Dαβγδ = aIαβγδ + bηαβηγδ yields a = 1, b = −1
2 . Hence

the propagator in the x–representation is given by

iDαβγδ(x) =

∫
d4q

(2π)4
i

q2 + iε
e−iqxPαβγδ, (23)

Pαβγδ =
1

2

[
ηαγηβδ + ηαδηβγ − ηαβηγδ

]
. (24)

1.3 Feynman rules

Now we have all necessary ingredients for deriving Feynman rules for gravi-
ton.

• The propagator reads

=
iPαβγδ

q2
. (25)

• The vertex including the matter propagator can be extracted from the
expression κ

2hµνT
µν . Consider, for example, the massive scalar field ϕ

whose EMT is given by

Tµν = ∂µϕ∂νϕ−
1

2
ηµν(∂λϕ∂

λϕ−m2ϕ2). (26)

Then, the corresponding vertex is

pµ p′ν

= i
κ

2

[
(pµp

′
ν + p′µpν)− ηµν(p · p′ −m2)

]
.

(27)

• Much more complicated structure is revealed in the triple graviton
vertex,

= iκPαβ,γδ

[
kµkν + (k − q)µ(k − q)ν + qµqν − 3

2
ηµνq2

]
+ ...

(28)

We do not quote the full result here, it can be found, e.g., in Ref. [1].
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As an example of application of Feynman rules, let us compute the scat-
tering of two scalar particles by a single graviton exchange. The amplitude
of the process is given by

p1

p3

p2

p4

= −iM

=
iκ

2

[
pµ1p

ν
2 + pµ2p

ν
1 − ηµν(p1 · p2 −m2)

] i
q2
Pµναβ

iκ

2

[
pµ3p

ν
4 + pµ4p

ν
3 − ηµν(p3 · p4 −m2)

]
.

(29)

Consider the non–relativistic limit in which pµ ≈ (m,~0). The amplitude
becomes

M = −κ
2

4

m2
1m

2
2

q2
= −16πG

m2
1m

2
2

q2
(30)

Fourier–transforming the last expression, we obtain the non–relativistic po-
tential

V (r) = −Gm1m2

r
, (31)

which is nothing but Newtonian potential. This completes building GR as
QFT at tree level.

What about loop diagrams? Consider, for example, a one–loop matter
correction to the graviton propagator. It is given by

gαβ gγδ

=

∫
d4l

(2π)2
iκ

2
[lα(l + q)β + lβ(l + q)α]

i

l2
i

(l + q)2
iκ

2
[lδ(l + q)γ + lγ(l + q)δ] .

(32)

Computing this loop, we arrive at the expression of the form, schematically,

κ2

16π2
(qγqδqαqβ)

(
1

ε
+ ln q2

)
. (33)

Note the qualitative difference of this result with that of QED,
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Aµ Aν
=

e2

16π2
(qµqν − ηµνq2)

(
1

ε
+ ln q2

)
. (34)

The divergence in the last expression can be renormalized by the term of
the form 1

εFµνF
µν . This is to be expected, since QED is the renormalizable

theory. On the contrary, the expression (33) needs terms with 4 derivatives
of hµν to be canceled, and there are no such terms in the Einstein-Hilbert
action.

2 Background field method

A particularly powerful way of computing loop corrections in gauge field
theories is the background field method.

2.1 Preliminaries

2.1.1 Toy example: scalar QED

Let us start with a pedagogical example of quantum electrodynamics with
a massless scalar, described by the “bare” Lagrangian

L = Dµφ(Dµφ)∗ − 1

4
F 2
µν , (35)

where Dµ stands for the covariant derivative defined as,

Dµ = ∂µ + ieAµ , (36)

and Fµν denotes the strength tensor of a background electromagnetic field
Aµ. Upon integration by parts the Lagrangian (35) can be rewritten as,

L =− φ(� + 2ieAµ∂µ + ie(∂µA
µ)− e2A2

µ)φ ∗ −1

4
F 2
µν ,

≡ −φ(� + v(x))φ ∗ −1

4
F 2
µν .

(37)

We proceed by performing functional integration over the field φ treating
the potential v ∼ e, e2 � 1 as a small perturbation. The overall partition
function reads,

Z = N−10

∫
DφDφ∗DAµ exp

{
−i
∫
d4xφ(� + v(x))φ∗ − i

4

∫
d4x F 2

µν .

}
(38)
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Let us focus on the part with the scalar field,

N−1
∫
DφDφ∗ exp

{
−i
∫
d4xφ(� + v(x))φ∗

}
=

N−1

det(� + v(x))

= N−1 exp

{
−
∫
d4x〈x|Tr ln(� + v(x))|x〉

}
,

(39)

where the normalization factor is given by,

N ≡
∫
DφDφ∗ exp

{
−i
∫
d4xφ�φ∗

}
= exp

{
−
∫
d4x〈x|Tr ln�|x〉

}
.

(40)
We evaluate the operator Tr ln(� + v(x)) perturbatively,

Tr ln(�+v(x)) = Tr ln

[
�

(
1 +

1

�
v(x)

)]
= Tr ln�+Tr

[
1

�
v(x)− 1

2

1

�
v(x)

1

�
v(x) + ...

]
.

(41)
The first term above gets canceled by the normalization factor in (39), while
the second term can be computed making use of

〈x| 1
�
|y〉 = i∆F (x− y) . (42)

Then, at first order,∫
d4x〈x|Tr

1

�
v(x)|x〉 = i

∫
d4x∆F (x− x)v(x) = 0 , (43)

where we made used that in dimensional regularization ∆F (0) vanishes,

∆F (0) =

∫
d4l

(2π)d
1

l2 − iε
∼ 1

4− d
→ 0 . (44)

This contribution corresponds to the tadpole Feynman graphs. Then, at
second order, one gets,

1

2

∫
d4x〈x|Tr

(
1

�
v(x)

1

�
v(x)

)
|x〉 =

i2

2

∫
d4xd4y∆F (x−y)v(y)∆F (y−x)v(x) .

(45)
This contribution represents the loop correction into the photon propaga-
tor, see (34). Next we go to the Lorentz gauge ∂µAµ = 0 and use the
representation

∆F (x− y)∂µ∂ν∆F (x− y) = (d∂µ∂ν − gµν�)
∆2
F (x− y)

4(d− 1)
. (46)

Then, after some integration by parts we obtain the 1-loop effective La-
grangian for the gauge field,

∆L = −1

2

∫
d4x〈x|Tr

(
1

�
v(x)

1

�
v(x)

)
|x〉

= −e2
∫
d4xd4yFµν(x)

∆2
F (x− y)

4(d− 1)
Fµν(y) .

(47)
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Then we evaluate ∆2
F (x− y) in Dim. Reg:

∆2
F (x− y) =

∫
ddk

(2π)d
eik(x−y)

(
− 1

16π2

)[
2

4− d
− γ + ln 4π − ln(k2/µ2)

]
=

(
− 1

16π2

)[
2

4− d
− γ + ln 4π

]
δ
(4)
D (x− y) +

1

16π2
L(x− y) ,

(48)

where the first (local) contribution stands for the divergent part and the last
contribution denotes the Fourier transform of the finite part ∼ ln(k2/µ2),
which is non-local in space. Putting all together, the one loop effective
action for the gauge field takes the following form,

S = −1

4

∫
d4xFµνF

µνZ ′−13 + βe2
∫
d4xd4yFµν(x)L(x− y)Fµν(y) , (49)

where β denotes the beta function, and Z ′−1 is the wavefunction renormal-
ization constant.

The above result can be generalized to an arbitrary set of fields and non-
abelian gauge field theories. The only one step which is non-trivial is the
introduction of the Faddeev-Popov ghosts, which we discuss now in detail.

2.1.2 Faddeev-Popov ghosts

Formally, integral likes
∫
DAµ are to be performed over all configurations

of A, including the ones that are equivalent up to a gauge transformation.
Thus, we integrate over an infinite set of copies of just one configuration.
Thus, the choice of the measure DAµ seems to miss the information about
the gauge invariance. The Faddeev-Popov method is aimed at fixing the
correct integration measure in the partition function of gauge theories.

As an example, we start with the abelian gauge theory with the trans-
formation rule,

Aµ → A(θ)
µ = Aµ + ∂µθ , (50)

and the gauge condition which can be expressed in the form,

f(Aµ) = F (x) . (51)

The Faddeev-Popov method amounts to inserting the identity,

1 =

∫
Dθ δD(f(A(θ)

µ )− F )∆(A), where

∆(A) ≡ det

(
∂f

∂θ

)
,

(52)

in the partition function. Note that ∆(A) is called the Faddeev-Popov de-
terminant and it is, in general, independent of θ. The partition function
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then takes the following form:

Z = N ′−1
∫
DθDAµ δD(f(A(θ)

µ )− F (x))∆(A)eiS . (53)

Since the above expression does not depend on F (x), we can use another
trick and multiply it by a unity obtained from the Gaussian integral over F ,

1 = N(ξ)

∫
DFe−

i
2ξ

∫
d4xF (x)2

, (54)

where N(ξ) is a constant. Inserting this into our partition function yields,

Z = N ′−1N(ξ)

∫
DθDAµDF δD(f(A(θ)

µ )− F (x))∆(A)e
iS− i

2ξ

∫
d4xF (x)2

.

(55)
Performing the integral over θ and F (x) we get,

Z = N−1
∫
DAµ ∆(A)e

iS− i
2ξ

∫
d4xf(Aµ)2 . (56)

The piece i
2ξ

∫
d4xf(Aµ)2 above is the familiar gauge fixing term.

The Faddeev-Popov determinant can be expressed as an integral over an
artificial fermion field c,

∆(A) = det

(
∂f

∂θ

)
=

∫
DcDc̄ exp

{
i

∫
d4x c̄

∂f

∂θ
c

}
. (57)

This field is called the ghost field, it does not correspond to any physical
asymptotic states; it appears only inside loops in calculations. In QED
∂f/∂θ in independent on Aµ, thus the Faddeev-Popov determinant is just
a constant and can be dropped. In the non-abelian case, however, ghosts
cannot be neglected and moreover, are essential for a correct quantization.

In conclusion, it should be pointed out that the results obtained in our
toy model of scalar QED can be generalized to a more generic setup. For
instance, in the case of the theory with the following “bare” Lagrangian with
the background field gauge field Γ,

L = φ∗[dµd
µ + σ(x)]φ−

Γ2
µν

4
, (58)

where φ = (φ1, ...) is some multiplet,

dµ = ∂µ + Γµ(x) ,

Γµν = ∂µΓν − ∂νΓµ + [Γµ,Γν ] ,
(59)

the 1-loop correction to the “bare” action reads,

∆S =

∫
d4xd4y Tr

[
Γµν(x)

∆2
F (x− y)

4(d− 1)
Γµν(y) +

1

2
σ(x)∆2

F (x− y)σ(y)

]
.

(60)

9



Thus, the divergences are local,

∆Sdiv =

∫
d4x

1

16π2

(
1

ε
− γ + ln 4π

)
Tr

[
1

12
Γ2
µν(x) +

1

2
σ(x)2

]
. (61)

To sum up, the main advantages of the background field method are,

• it deals directly with the action

• it retains symmetries

• it makes the renormalization of nonlinear field theories easy

• it allows to account for many scattering amplitudes at once

The background field and the “quantum” field can coincide and yet the
formalism will work in a completely similar manner. One just has to formally
decompose this field into the background and the “quantum” modes,

φ = φ̄+ δφ . (62)

2.2 Background field method in GR

We start to compute the 1-loop effective action in GR by decomposing the
metric into the backround and quantum pieces as discussed above,

gµν = ḡµν + κhµν . (63)

This decomposition will be considered as exact, i.e. for the inverse metric
we have,

gµν = ḡµν − κhµν + κ2hµλhνλ + ... . (64)

In what follows the indices will be raised and lowered using the background
metric ḡµν . Now we straightforwardly expand the connection and the Ricci
scalar,

Γµνρ = Γ̄µνρ + Γµ (1)
νρ + Γµ (2)

νρ + ... ,

R = R̄+R(1) +R(2) + ... ,
(65)

where we used the notation emphasizing the power counting R(n) = O(hn).
It should be stressed that all terms in this expansion are manifestly covariant
w.r.t ḡµν , e.g.,

Γµ (1)
νρ =

1

2
ḡµλ[D̄νhλρ + D̄ρhνλ − D̄λhνρ] , (66)

which displays the gauge invariance of the formalism at each step. Notice
that the gauge transformations xµ → xµ + ξµ(x) imply the following change
of the quantum metric h,

h′µν = hµν + D̄µξν + D̄νξµ . (67)
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The net result of our expansion is,

L = − 2

κ2
√
−gR =

√
−ḡ
[
− 2

κ2
R̄− 1

κ

(
hR̄− 2R̄ανh

ν
α

)
+

1

2
D̄αhµνD̄

αhµν − 1

2
D̄αhD

αh+ D̄νhD̄
βhνβ − D̄νhαβD̄

αhνβ

− R̄
(

1

4
h2 − 1

2
hαβh

β
α

)
+ hhαν R̄

ν
α + 2hνβh

β
αR̄

α
ν

]
,

(68)

where we denote hµν ḡ
µν ≡ h. The term linear in hµν vanishes by the equa-

tions of motion. Now let’s fix the gauge. The generalization of the de
Donder gauge for a generic background can be obtained by changing partial
derivatives to covariant ones,

D̄µhµν −
1

2
D̄νh = 0 . (69)

The gauge fixing term in the action reads,

Lg.f. ≡
1

2
CνC

ν =
1

2

[
D̄µhµν −

1

2
D̄νh

]2
. (70)

Notice that the quantity Cν transforms under the gauge transformations as,

C ′ν =Cν + D̄µ(D̄νξµ + D̄µξν)− D̄νD̄µξ
µ

=Cν + D̄µD̄µξν − [D̄ν , D̄µ]ξµ ,

=Cν +
(
ḡµνD̄

2 + R̄µν
)
ξν .

(71)

The last missing step is the inclusion of Faddeev-Popov ghosts. In fact,
Feynman was first to introduce artificial particles in order that the optical
theorem be true in quantum gravity. He called them “dopey particles”. The
reader is advised to consult Ref. [2] for an amusing conversation between
DeWitt and Feynman at the conference when the “dopey particles” were
introduced.

Since in gravity the gauge fixing condition has a vector form, the ghosts
have to be “fermionic vectors”.2 Introducing ghosts along the lines of (57)
and using Eq. (71) we get,

det
∂Cν
∂ξµ

= det
[
ḡµνD̄

2 + R̄µν
]

=

∫
DηDη̄ exp

{
i

∫
d4x
√
−g η̄µ(ḡµνD̄

2 + R̄µν)ην
}
.

(72)

The action above implies the following Feynman rules upon flat space,

2Recall that in the Yang-Mills theories the ghosts are “fermionic scalars”.

11



k(ν)

q(αβ)

k′(µ)

= − iκ
2

[
ηµνkαk

′
β + ηµνkβk

′
α − ηµαqβk′ν − ηµβqαk′ν

]
.

(73)
Identifying the fields from general expressions (58) and (59) with the

background and quantum metrics (68), one can readily obtain the expression
for the 1-loop effective action in GR. This was done for the first time by ’t
Hooft and Veltman [1]. We will show this result in a moment using a different
technique: heat kernel.

In summary, we have shown that in the background field method the
partition function for quantum gravity reads,

Z =

∫
DhµνDηDη̄Dφ exp

{
i

∫
d4x
√
−g[L(h) + Lgf (h)

+ Lghosts(η, η̄, h) + Lmatter(h, φ)]
}
,

(74)

where by φ we denoted matter fields.

3 The Heat Kernel method

3.1 General considerations

The Heat Kernel is an extremely useful tool widely used in many areas of
physics and mathematics. Its application in Quantum Field Theory (QFT)
started from the paper by Fock [3] and Schwinger [4] who noticed that the
Green functions can be represented as integrals over auxiliary “proper time”
variable. Later, DeWitt made the heat kernel technique the powerful tool
of computing one–loop divergences in Quantum Gravity in the manifestly
covariant approach [5]. Here we will just sketch the main idea, meaning its
application to Quantum Gravity. An extensive review of the technique with
examples in various areas of physics can be found, e.g, in [6].

Let D be a self–adjoint differential operator in d dimensions 3. Consider
the function

G(x, y, τ,D) = 〈x|e−τD|y〉. (75)

It obeys the following relations,

∂

∂τ
G(x, y, τ,D) = −DG(x, y, τ,D), (76)

3With respect to a suitable scalar product.
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G(x, y, 0, D) = δ(x− y). (77)

One can combine the last two properties and write

(∂τ +D)G(x, y, τ,D) = δ(x− y)δ(τ). (78)

Hence one recognizes in G the Green function of the operator ∂τ +D,

G(x, y, τ,D) = 〈x, τ | 1

∂τ +D
|y, 0〉. (79)

For example, if D = α4 with α being some constant, then G is the Green
function of the heat equation, hence the name. Consider now D = D0,
where

D0 = � +m2, � = −∂2τ +4. (80)

Straightforward calculations lead to

G0 ≡ G(x, y, τ,D0) =
1

(4πτ)d/2
e
−i
(

(x−y)2
4τ

+τm2

)
. (81)

As a simple example of the use of G, let us compute the Feynman propagator
in the theory of the scalar field in 4 dimensions. Using the equality

i

A+ iε
=

∫ ∞
0

dτeiτ(A+iε), (82)

we have

iDF (x−y) = 〈x| i

� +m2 + iε
|y〉 = −i

∫ ∞
0

dτ

16π2τ2
exp i

[
(x− y)2

4τ
+ τ(m2 + iε)

]
.

(83)
In the limit m = 0, the last expression turns to

iDF (x− y) = − 1

4π

1

(x− y)2 − iε
, (84)

and coincides with the standard result.
As was said before, the particular usefulness of the heat kernel method

in QFT is related to computation of one–loop divergences. Recall that
quantum effects due to background fields are contained in the one–loop
effective action

W ∼ ln detD. (85)

Using the integral

ln
a

b
=

∫ ∞
0

dτ

τ

(
e−τa − e−τb

)
, (86)

from (85) and (75) we have

W ∼
∫ ∞
0

dτ

τ
TrG(x, x, τ,D) + C = Tr′

∫ ∞
0

dτ

τ

∫
ddx〈x|e−τD|x〉+ C. (87)
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Here C is some constant, and by Tr′ we understand the trace taken over
internal indexes of D.

In general, the expression (87) can be divergent at both limits of inte-
gration. Those corresponding to large τ are IR–divergences, and we will not
consider them here. Rather, we will be interested in UV–divergences which
appear in the limit τ → 0. Therefore, we need to know the asymptotic
behavior of G at small τ . The latter is given by

G(x, y, τ,D) = G(x, y, τ,D0)(a0 + a1τ + a2τ
2 + ...), (88)

where ai = ai(x, y) are local polynomials of the background fields. Substi-
tuting (88) into (87) gives

TrlnD = − i

(4π)d/2

∞∑
n=0

md−2nΓ(n− d

2
)Tr′an(x). (89)

3.2 Applications

Now we are going to compute G explicitly for quite generic form of D,

D = dµd
µ + σ(x), dµ = ∂µ + Γµ(x). (90)

Inserting the full set of momentum states, one can rewrite G as

G(x, x, τ,D) = 〈x|e−τD|x〉 =

∫
ddp

(2π)d
e−ipxe−τDeipx, (91)

where we have used the following normalizations,

〈p|x〉 =
1

(2π)d/2
eipx, 〈x|x′〉 = δ(d)(x− x′), 〈p|p′〉 = δ(d)(p− p′). (92)

Using the relations

dµe
ipx = eipx(ipµ + dµ), dµd

µeipx = eipx(ipµ + dµ)(ipµ + dµ), (93)

we derive

G(x, x, τ,D) =

∫
ddp

(2π)d
e−τ [(ipµ+dµ)

2+m2+σ] =

=

∫
ddp

(2π)d
eτ(p

2−m2)e−τ(d·d+σ+2ip·d). (94)

We observe that the first exponential in (94) corresponds to the free theory
result, while all the interesting physics is contained in the second exponen-
tial. The latter can be expanded in powers of τ . Integrating over p gives
(for the details of calculations, see Appendix B of [7]),

G(x, x, τ,D) =
ie−m

2τ

(4πτ)d/2

[
1− στ + τ2

(
1

2
σ2 +

1

12
[dµ, dν ][dµ, dν ] +

1

6
[dµ, [d

µ, σ]]

)]
.

(95)
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Comparing with (88), we have

a0 = 1, a1 = −σ, a2 =
1

2
σ2 +

1

12
[dµ, dν ][dµ, dν ] +

1

6
[dµ, [d

µ, σ]]. (96)

As an application of the result derived above, consider the scalar QED.
We have

dµ = ∂µ + ieAµ, m = 0, σ = 0, [dµ, dν ] = ieFµν . (97)

Hence the coefficients (96) are

a1 = 0, a2 =
1

12
FµνF

µν . (98)

It then follows that the divergent part of the 1–loop effective action is

Sdiv =

∫
d4x

1

ε

e2

16π

1

12
FµνF

µν . (99)

As a second example, consider the renormalization of the scalar field in
the presence of background gravitational field. We specify the theory as
follows,

L = ξRϕ2 + gµν∂µϕ∂νϕ+m2ϕ2, (100)

where ξ is a non–minimal coupling constant. In this case straightforward
calculations give

a1 =

(
1

6
− ξ
)
R, a2 =

1

180

(
RµνρσR

µνρσ −RµνRµν +
5

2
(6ξ − 1)2R2 − 6�R

)
.

(101)
The divergent part of the effective action is then given by

Sdiv =

∫
d4x
√
−g1

ε

1

180

1

16π2

[
3

(
RµνR

µν − 1

8
R2

)
+

5

2
(6ξ − 1)R2

]
. (102)

3.3 Gauss–Bonnet term

Topological properties of manifolds are captured by invariant combinations
of local quantities. In case of even–dimensional boundaryless manifold one
of such invariants is the Euler characteristic χ given by

χ =

∫
d4x
√
−gE, E = RµνρσR

µνρσ − 4RµνR
µν +R2. (103)

Adding this term to the action does not affect the equations of motion, since
E can be written as a divergence of a topological current,

√
−gE = ∂µJ

µ, Jµ =
√
−gεµνρσε κλ

ρσ Γρκν

(
1

2
Rσλρσ +

1

3
ΓστρΓ

τ
λσ

)
. (104)
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Consequently, whenever one has a bilinear combination of Riemann, Ricci
or scalar curvature tensors, one can eliminate one of them by the means of
the Gauss–Bonnet term 4.

3.4 Pure gravity limit

Now we are going to see how the gravity itself renormalizes in the presence
of external gravitational field. The functions ai,grav. in the short–time ex-
pansion (88) are called DeWitt-Seeley-Gilkey coefficients. Computation of
the second coefficient gives the following result,

a2,grav. =
215

180
R2 − 361

90
RµνR

µν +
53

45
RµνρσR

µνρσ =

=
1

120
R2 +

7

20
RµνR

µν , (105)

where in the second line we have made use of the Gauss–Bonnet term (103).
From (105) an interesting feature of pure gravity in four dimensions follows.
Recall that in the absence of matter Einstein equations read

Rµν −
1

2
gµνR = 0. (106)

Hence the solution is Rµν = 0 and R = 0. But then a2,grav = 0, and we
arrive at conclusion that pure gravity can be made finite at one–loop by a
suitable fields redefinition. This nice property is, however, peculiar to the
specific theory. First, only in four dimensions one can use the Gauss–Bonnet
term (103) to make the divergent term vanish at one loop. For example, in
six dimensions pure gravity diverges at one loop. Second, the real world
contains the matter which spoils the one–loop finiteness. Third, even for
pure gravity the renormalizability does not hold anymore when one goes to
higher loops. For example, the two–loop calclulation reveals the following
behavior of the divergent part of the action [8]

S2,div =

∫
d4x
√
−g1

ε

209

2880

κ2

(16π2)2
RµναβRαβγδR

γδ
µν , (107)

and this divergence cannot be canceled by the renormalization of the Einstein–
Hilbert action.

To summarize, we have seen that the heat kernel method is a powerful
and universal tool of computing one–loop divergences of the effective action.
In particular,

• it is easy to apply,

4Note that if E is coupled to other fields, e.g., through the terms f(ϕ)E, it does
contribute to the equations of motion.
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• it captures the divergent parts of all one–loop diagrams,

• it offers the manifestly covariant approach.

On the other hand, the heat kernel method

• does not capture the finite ln q2 parts,

• is not applicable beyond the one–loop approximation.
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