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1 Effective field theory

Doing physics, we are usually interested in phenomena at particular energy
scales. Given a full theory at hand, one can perform computations at any
energy within its range of applicability. Often the computations can be
made easier by restricting the theory to some particular range of scales.
For example, doing physics at low energies, one may reasonably guess that
the influence of high–energy degrees of freedom (DOFs) can be consistently
taken into account without the need to directly compute corresponding con-
tributions. In this way we arrive at Effective field theories (EFT). They can
be very useful. Indeed, avoiding the complications of a full theory, we can
simplify our calculations. What is more important, a full theory may not
even be known, e.g. as with gravity, yet the corresponding EFT exists and
allows for consistent study of processes at a certain range of energies. Due
to the lack of an experimentally verified “theory of everything”, all of our
real world QFTs are merely EFTs.

Although we do not generally have detailed knowledge about high–
energy dynamics when doing low–energy physics this does not mean that
this dynamics does not affect EFT. All EFTs are sensitive to high energies to
some order. For example, when going to low energies involves spontaneous
symmetry breaking (SSB), the symmetric phase of the theory manifests itself
in the structure of interactions of a low–energy theory. As a more general
example, when one computes loop corrections in EFT, the UV dynamics
manifests itself in the running of coupling constants with energy. The effect
of heavy DOFs is also typically encoded in operators suppressed by some
cutoff scale [1],[2].

1.1 Three principles of effective field theories

What makes us sure that one can overcome the influence of UV scales on
low–energy physics? The answer is three–fold. On the one hand, this is
locality principle. Speaking loosely, the uncertainty principle,

∆x∆p ∼ ~, (1)
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implies that the higher is the energy, the smaller is the distance. Hence
one can expect that effects of UV physics are local, and hence these effects
can be captured by local operators. As a simple illustration, consider the
electron–positron scattering process in QED, e+e− → e+e−. The tree–level
photon propagator behaves as

e2
0

q2
, (2)

where e0 is a bare electron charge and q is a momentum transfer. Summing
up 1–particle reducible diagrams leads to the renormalization of the charge,

e2 =
e2

0

1−Π(q2)
. (3)

On the other hand, we know that QED is the part of the Standard Model,
and the photon propagator gets renormalized by, e.g., a heavy particle. At
low energies, q2 � m2

H , the heavy particle contribution to Π(q2) is

Π(q2) =
e2

0

12π2

(
1

ε
+ ln4π − γ − ln

m2
H

µ2
+

q2

5m2
H

+ ...

)
. (4)

This is the example of how heavy DOFs participate in the renormalization of
the local EFT parameters. Note that the shift in the fine structure constant
made by the heavy particle cannot be directly observed since the values of
couplings are to be measured experimentally. Had we defined eph in the
limit q → 0, the correction to the propagator would be

1

q2

e2

1−Π(q2)
=
e2
ph

q2
+

e2
0

12π2

q2

5m2
H

1

q2
+ ... . (5)

We see that in the limit mH →∞, the UV physics is completely decoupled,
and we come back to QED with a modified electron charge. Note that there
are some caveats about this decoupling. For example, for a top quark there
are many diagrams that do not vanish in the limit mt → ∞. Instead, they
behave as m2

t or ln(m2
t ). This is because the electroweak theory with the

t−quark removed violates the SU(2)L symmetry, as the doublet

(
t
b

)
is no

longer present. However, it one takes the limit mt,b → ∞ simultaneously,
the symmetry is preserved and decoupling occurs.

Let us demonstrate explicitly how the integration out of heavy DOFs
leaves us with the local low-energy physics. Consider the theory

L =
1

2
(∂µϕ∂µϕ−m2ϕ2) + ϕF (ψ) + L(ψ) , (6)

where the field ψ is assumed to be light compared to ϕ. Denote

Z0 =

∫
[dϕ]ei

∫
d4xL(ϕ) . (7)
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The partition function of the theory is then written as follows,

Z = Z−1
0

∫
[dϕ][dψ]ei

∫
d4x(L(ϕ)+L(ϕ,ψ)+L(ψ)) =

Z−1
0

∫
[dψ]ei

∫
d4xL(ψ))

∫
[dϕ]ei

∫
d4x(L(ϕ)+L(ϕ,ψ)) ≡ Z−1

0 Z1

∫
[dψ]ei

∫
d4xL(ψ)) .

(8)

Integrating by parts, we have

L(ϕ,ψ) + L(ψ) = −1

2
ϕ(� +m2)ϕ+ ϕF (ψ) . (9)

Let us now define

ϕ̃(x) = ϕ(x) +

∫
d4yDF (x− y)F (ψ(y)) , (10)

where DF (x− y) is the Green function of the field ϕ,

(� +m2)DF (x− y) = −δ(4)(x− y) . (11)

Then it follows that

−1

2
ϕ(�+m2)ϕ+ϕF (ψ) = −1

2
ϕ̃(�+m2)ϕ̃−1

2

∫
d4yF (ψ(x))DF (x−y)F (ψ(y)) .

(12)
Since ϕ̃ is obtained from ϕ by a mere shift, the integration measure remains
the same, [dϕ] = [dϕ̃]. Therefore, we have

Z =

∫
[dψ]ei

∫
d4xL(ψ)e−

i
2
〈FDF 〉 , (13)

where we denote, schematically,

〈FDF 〉 =

∫
d4xd4yF (ψ(x))DF (x− y)F (ψ(y)) . (14)

One clearly sees that the term (14) is non–local in general. This is to
be expected since we removed part of the local interactions of the original
theory. Note that in deriving (13) no approximation was used, hence the
procedure of excluding some fields from the dynamics of the theory is quite
general 1. But in our case we can go further and see that the remaining

1In practice, integration out of some DOFs is performed when one is interested only in
a part of a content of the original theory. In the example given above we could say that it
is dynamics of the field ψ that we wish to study, and treat the field ϕ as a background to
be integrated out. Non–local terms then give rise to dissipation in the reduced theory [3].
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theory is actually local. Indeed, consider the propagator

DF (x− y) =

∫
d4q

(2π)4

e−iq(x−y)

q2 −m2
=

∫
d4q

(2π)4
e−iq(x−y)

(
− 1

m2
− q2

m4
+ ...

)
=

(15)(
− 1

m2
+

�
m4

+ ...

)∫
d4q

(2π)4
e−iq(x−y) .

(16)

The last integral is nothing but the delta function δ(4)(x− y). We arrive at
an infinite series of local expressions. Introduce the effective Lagrangian of
the theory,

Z =

∫
[dψ]ei

∫
d4xLeff , (17)

then

Leff = L(ψ) +
1

2
F (ψ)

1

m2
F (ψ)− 1

2m4
F (ψ)�F (ψ) + ... . (18)

We observe that as long as q2/m2 � 1, one can restrict ourselves to the finite
amount of terms in the expansion of 〈FDF 〉, and hence the effective theory
enjoys locality. When m → 0 this property breaks down as the propagator
(15) becomes

DF (x− y) ∼ 1

16π2

1

(x− y)2 − iε
(19)

so we see that massless particles cannot be integrated out in the same way
that massive ones are.

The derivative expansion obtained before is a generic feature of effective
field theory. It is the second organizing principle in building any low–energy
theory. It claims that there is always terms of growing dimensions in the ef-
fective Lagrangian. They are accompanied by the coupling constants which,
on dimensional ground, have lowering dimensions. Dimensional analysis
allows one to divide the effective Lagrangian into pieces

Leff = L0 + Ld=5 + Ld=6 + ... , (20)

where the piece Ld=5 contains operators of dimension 5 and so on. The
higher dimansional operators is an essential part of the effective field theory.
Their presence means that UV physics affects the low–energy behaviour but
does this in a controlled way. In fact, one can successfully study low–energy
physics without knowing anything about the UV completion of the theory.
In this case, all possible higher order operators in (20) represent the effects
of unknown UV physics 2.

2Taking into account the higher order operators is important when one studies the
phenomena involving the energies of the order of the UV cutoff of the theory. Perhaps,
the most illustrative example is the study of the electroweak vacuum decay, where the
answer (the lifetime of the metastable vacuum) can be extremely sensitive to the MP –
suppressed operators [4].
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The expression (18) is the form in which the effective Lagrangian is
usually used. It represents a valid QFT with the Feynman rules induced
from the corresponding UV theory. For example, the diagram

ψ ψ

ϕ

ψ ψ

ϕ (21)

with the heavy particle running in the loop reduces to the four–vertex dia-
gram

ψ

ψ

ψ ψ
Γeff

(22)

Let us now make some concluding remarks.

• Higher order operators in the derivative expansion spoil the renormal-
izability of the theory. Hence, in general EFT is not renormalizable
(though without these operators it could have been). Divergences
coming from non–renormalizable operators are local.

• Using the locality feature of EFT, the procedure of separating low–
energy DOFs from high–energy ones is essential for the effective field
theory.

• We have seen that heavy d.o.f. participate in the renormalization
of propagators and vertices of EFT resulting in running of coupling
constants. If a full theory is unknown, we can use experiment to
measure the coefficient of the effective lagrangian. If the theory is
known, any predictions of EFT must match those obtained in the
framework of the full theory. Perhaps, the most known example of
the latter situation is the electroweak theory whose low–energy limit
is the Fermi theory. The matching/measuring condition constitutes
the third organizing principle of any EFT.

1.2 The linear sigma–model

To illustrate the general considerations made above, we now turn to a par-
ticular example – the linear sigma–model. This is one of the most instructive
of all field theory models. The full theory is taken to be

L(σ, π, ψ) =
1

2
((∂µσ)2 + (∂µ~π)2) +

µ2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2+

ψ̄i/∂ψ + gψ̄(σ + i~τ · ~πγ5)ψ , (23)
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where ~τ are the generators of SU(2) group. The DOFs of the theory are the
scalar σ, the triplet of scalars ~π, and the Dirac fermion ψ. It is useful to
quote an alternative form of the theory achieved by redefinition Σ = σ+i~τ ·~π,

L(Σ, ψ) =
1

4
Tr(∂µΣ†∂µΣ) +

µ2

4
Tr(Σ†Σ)

λ

16
(Tr(Σ†Σ))2+

ψ̄Li/∂ψL + ψ̄Ri/∂ψR − g(ψ̄LΣψR + ψ̄RΣ†ψL) , (24)

where

ψL =
1

2
(1 + γ5)ψ, ψR =

1

2
(1− γ5)ψ . (25)

The model is invariant under the global SU(2)L × SU(2)R group. Indeed,
if we set

ψL → LψL, ψR → RψR, Σ→ LΣR† , (26)

where L,R ∈ SU(2), then all combinations of the fields ψL,R and Σ in (24)
are invariant.

Let µ2 > 0. Then the model allows for SSB. The vacuum solution is

〈σ〉 =

√
µ2

λ
≡ v, 〈~π〉 = 0 . (27)

Consider perturbations above the vacuum parametrized by ~π and σ̃ = σ−v.
The Lagrangian (23) is rewritten as

L =
1

2
((∂µσ̃)2 − 2µ2σ̃2) +

1

2
(∂µ~π)2 − λvσ̃(σ̃2 + ~π2)− (28)

λ

4
(σ̃2 + ~π2)2 + ψ̄(i/∂ − gv)ψ − gψ̄(σ̃ − i~τ · ~πγ5)ψ . (29)

The Lagrangian (28) describes the same physics as (23) and enjoys the same
SU(2)L × SU(2)R symmetry, though this is not obvious from its form. The
symmetry of the unbroken phase manifests itself in the form of interactions
of the sigma–model. Observe that the pion fields ~π are massless. They are
Goldstone fields associated with the broken chiral symmetry.

The Lagrangian (28) is not the only way to represent the low–energy
DOFs. For the purposes of constructing the EFT, it is convenient to intro-
duce new fields as follows,

U = e
i~τ ·~π′
v , v + σ̃ + i~τ · ~π = (v + s)U , (30)

where at the linear order ~π′ = ~π + ..., and hence s = σ̃ + .... We get one
more form of the Lagrangian,

L =
1

2
((∂µs)

2 − 2µ2s2) +
(v + s)2

4
Tr(∂µU∂

µU †)−

λvs3 − λ

4
s4 + ψ̄i/∂ψ − g(v + s)(ψ̄LUψR + ψ̄RU

†ψL) . (31)
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This Lagrangian is invariant under SU(2)L × SU(2)R provided that U →
LUR†. We see that the field s is massive with the mass m2

s = 2µ2. We
can now use the technique described above to integrate this field out. In
consistency with the general form of EFT Lagrangian (20), we have

Leff =
v2

4
Tr(∂µU∂

µU †) +
v2

8m2
s

(Tr(∂µU∂
µU †))2 + ... . (32)

1.2.1 Test of equivalence

We would like to make sure that all the forms of the UV theory listed
above as well as the EFT theory given by (32) give the same result when
calculating low–energy processes. To see this, consider the scattering of two
pions, π+π0 → π+π0. Consider first the Lagrangian (28). The part of it
contributing to the process takes the form

∆L = −λ
4

(~π · ~π)2 − λvσ̃~π2 . (33)

There are two diagrams contributing to the process, and the amplitude is
given by

π+

π0

π+

π0

+

π0 π0

σ̃

π+ π+

= −iM = −2iλ+ (−2iλv)2 i

q2 −m2
s

=
iq2

v2
+O(q4) .

(34)

One of the diagrams shows the current–current interaction usual for EFT.
Note also that the amplitude of the process depends on the momentum
transfer even at the leading order as the constant pieces of two diagrams
cancel.

Let us now look at the Lagrangian (31). The part of it relevant for our
process takes the form

∆L =
(v + s)2

4
Tr(∂µU∂

µU †) . (35)

Clearly, there is only one four–vertex diagram contributing at the order
O(q2). Expanding (35) to the fourth order in ~π′, we have

∆L =
1

6v2

[
(~π′ · ∂µ~π′)2 − ~π′2(∂µ~π

′ · ∂µ~π′)
]
. (36)
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The amplitude is given by

π′+

π′0

π′+

π′0

= −iM =
iq2

v2
+O(q4) . (37)

Finally we look at the EFT Lagrangian (32). One sees that the leading
order term contributing to the scattering process coincides with that of
(35), hence the amplitude is the same. Here we see the advantage of using
EFT approach: it allows us to rewrite the theory in the form at which only
relevant at low energies DOFs are present in the Lagrangian. By no means,
this simplifies significantly calculations.

The lesson we have learnt from this equivalence test is that the phys-
ically measured quantities (like S–matrix elements) should not depend on
the choice of variables we use to enumerate DOFs of the theory. This is
essentially the statement of the Haag’s theorem [5],[6]. Specifically, let the
original Lagrangian be L(ϕ), and let the redefinition of the fields is

ϕ = χF (χ), F (0) = 1 . (38)

Then L(ϕ) = L(χF (χ)) ≡ L̃(χ). The claim now is that the Lagrangians
L(ϕ) and L̃(ϕ) describe the same physic in the sense that on–shell matrix
elements computed with either Lagrangian are identical. A little contem-
plation shows that this is to be expected. Indeed, since F (0) = 1, the free
theories clearly coincide. But then asymptotic conditions for any scattering
experiment written in both theories coincide as well. In turn, as soon as the
initial conditions are specified, the result of the experiment cannot depend
on which quantities we use to compute the interactions taking place in the
middle. To put it in other words, “names do not matter”.

The EFT approach outlined above allows to recover all pion physics at
low energies. In this sense, the EFT (32) is a full QFT. It can be continued
beyond the low orders in q2 by including terms of higher powers. As is
written in (32), it provides us with the correct amplitude for π+π0 → π+π0

scattering process up to O(q4). The first part gives rise to the four–vertex
diagram that contributes at the order of q2, and the second part leads to the
diagram like the rightmost one in Eq. (34), which contributes at the order
q4.

Let us finally quote the partition function of the theory,

Z[J ] =

∫
[ds][d~π]ei

∫
d4x(Lfull(s,~π)+ ~J ·~π) =

∫
[d~π]ei

∫
d4x(Leff (~π+ ~J ·~π) . (39)

From this expression one can derive all the correlation functions, Feynman
rules, etc. of the low–energy theory. This again illustrates the fact that the
EFT is a viable QFT.
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2 Loops

Now let us tackle loop effects within the EFT. Here are the essential points
in performing this program:

• the linear σ–model is a renormalizable theory. Thus, one can just
compute everything in this theory, renormalize and look at the low–
energy limit.

• Instead, one can use an EFT, but this is a non–renormalizable theory.
Would it stop us? No, because we can still take loops, renormalize
them, and obtain “finite” predictions at low energies.

• Recall that an EFT contains a bunch of unknown parameters. Having
computed the loops both in the EFT and in the full theory we can just
match the relevant expressions for amplitudes and retrieve the EFT
parameters. This procedure is called “matching”.

Why does this work? By construction an EFT is not reliable at high
energies, but since its effect is local (thanks to the uncertainty principle),
it is encoded by local terms in the effective Lagrangian. The low–energy
predictions then must be the same in the EFT and the full theory, and thus
the EFT is predictive at low energies.

Let us write down the most general EFT Lagrangian up to the next to
the leading order in the energy expansion that requires the symmetry under
SU(2)L × SU(2)R group,

L =
v2

4
Tr
(
∂µU∂

µU+
)

+ l1[Tr
(
∂µU∂

µU+
)
]2 + l2[Tr

(
∂µU∂νU

+
)
]2 . (40)

The invariance is achieved if U → LUR+, where L,R ∈ SU(2). Now we ap-
ply the background field method and factorize the “background” and “quan-
tum” fields,

U = Ūei∆ , where ∆ ≡ ~τ · ~∆ . (41)

Then we expand our Lagrangian in ∆, e.g.,

Tr
(
∂µU∂

µU+
)

=Tr
(
∂µŪ∂

µŪ+
)
− 2iTr

(
Ū+∂µŪ∂

µ∆
)

+ Tr
[
∂µ∆∂µ∆ + Ū+∂µŪ(∆∂µ∆− ∂µ∆∆)

]
.

(42)

The renormalized quadratic action then takes the form

S
(0)
2 =

∫
d4x

{
L2(Ū)− v2

2
∆a(dµd

µ + σ)ab∆b + ...

}
, (43)
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where

dabµ = δab∂µ + Γabµ ,

Γabµ = −1

4
Tr
(

[τa,−τ b](Ū+∂µŪ)
)
,

σab =
1

8
Tr
(

[τa, Ū+∂µŪ ][τ b, Ū+∂µŪ ]
)
.

(44)

It is also instructive to recall the heat kernel method, which yields the
following diverging part of the 1–loop effective action,

W1−loop =
i

2
Tr ln(dµd

µ + σ)

=
1

(4π)d/2

∫
d4x lim

m→0

{
Γ

(
1− d

2

)
md−2Trσ

+md−4Γ

(
2− d

2

)
Tr

(
1

12
ΓµνΓµν +

1

2
σ2

)
+ ...

}
,

(45)

where

TrΓµνΓµν =
Nf

8
Tr

([
Ū+DµŪ , Ū

+DνŪ

][
Ū+DµŪ , Ū+DνŪ

])
,

Trσ2 =
1

8

[
Tr
(
DµŪD

µŪ+
)]2

+
1

4
Tr
(
DµŪDνŪ

+
)

Tr
(
DµŪDνŪ+

)
+
Nf

8
Tr(DµŪD

µŪ+DνŪD
νŪ+) .

(46)

Now we can absorb the divergences into the “renormalized” coupling con-
stants of the theory, which yields

L =
v2

4
Tr
(
∂µU∂

µU+
)

+ lr1[Tr
(
∂µU∂

µU+
)
]2 + lr2[Tr

(
∂µU∂νU

+
)
]2 , (47)

with

lr1 = l1 +
1

384π2

[
1

ε
− γ + ln 4π

]
,

lr2 = l1 +
1

192π2

[
1

ε
− γ + ln 4π

]
.

(48)

Now let us study the “finite”, non–local contributions. To this end we use
the background field method, which gives (see Lecture 2),

∆Sfinite =

∫
d4xd4y Tr

{
ΓµνL(x− y)Γµν

12
+
σ(x)L(x− y)σ(y)

2

}
,

where L(x− y) =

∫
d4q

(2π)4
eiq(x−y) ln

(
q2

µ2

)
.

(49)
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The 1−loop effective action includes all processes up to ∼ O(π6).
Now we can easily compute the amplitude of the pion scattering π0π+ →

π0π+ at one loop. In the EFT this amounts to computing only the bubble
diagrams,

π+ π+

π+(0)

π0 π0

π−(0) +

π+

π0

π+

π0

π0

π+

=Meff =
t

v2
+

[
8lr1 + 2lr2 +

5

192π2

]
t2

v4
+

[
2lr2 +

7

576π2

]
(s(s− u) + u(u− s))/v4

− 1

96π2v4

[
3t2 ln

−t
µ2

+ s(s− u) ln
−s
µ2

+ u(u− s) ln
−u
µ2

]
.

(50)

At the same time, the π0π+ → π0π+ scattering can be computed in the full
sigma–model. In this case the calculation is rather lengthy and one has to
take into account the bubble, triangle and box diagrams. The latter have a
particularly difficult form, which can be found in [7]. The low–energy limit
of the amplitude obtained from the full theory gives,

Mfull =
t

v2
+

[
v2

m2
σ

− 11

96π2

]
t2

v4
− 1

144π2v4
(s(s− u) + u(u− s))

− 1

96π2v4

[
3t2 ln

−t
m2
σ

+ s(s− u) ln
−s
m2
σ

+ u(u− s) ln
−u
m2
σ

]
.

(51)

Requiring the two expressions, Eq. (51) and Eq. (50), to coincide, we obtain
the EFT parameters,

lr1 =
v2

8m2
σ

+
1

384π2

[
ln
m2
σ

µ2
− 35

6

]
,

lr2 =
1

192π2

[
ln
m2
σ

µ2
− 11

6

]
.

(52)

One can compare this result with the tree–level matching Eq.(32) and con-
clude that we have taken into account an important kinematic feature –
the logarithmic dependence of the coupling constant upon the characteristic
momentum transfer in the problem.

We saw that the predictions of the EFT, upon matching, accurately
reproduce the results of the full theory. Once matching is done, one can
use the EFT to calculate other processes without the need to rematch the
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couplings again. The effect of the massive particles has been reduced to just
a few numbers in the effective Lagrangian, and all low–energy processes are
described by the light DOFs. In principle, if the high–energy theory is not
known, the EFT couplings can be obtained from measurements.

We have also observed another very important property of the EFT.
Naively, one might estimate that loops can contribute at order O(E2) be-
cause loop propagators contain powers of energy in their denominators.
However, as we have seen, this is not the case. We have seen that the
tree–level amplitude of the π0π+ → π0π+ scattering scales as,

Mtree
π0π+→π0π+ ∼

q2

v2
, (53)

while the 1−loop result is,

M1−loop
π0π+→π0π+ ∼

q4

v4
. (54)

Since the external momenta are small, the loop expansion is converging.
This happens because every vertex contains a factor 1/v2 and thus must be
accompanied by momenta squared in the numerator in order to end up in a
dimensionless quantity. Thus, the higher are the loops we are going to, the
bigger is the overall momentum power of the amplitude.

This statement is known as the Weinberg’s power counting theorem. It
says, essentially, that the overall energy dimension of a diagram with NL

loops is,

D = 2 +
∑
n

Nn(n− 2) + 2NL , (55)

where Nn stands for the number of vertices arising from the subset of effec-
tive Lagrangians that contain n derivatives. This gives very simple power–
counting rules:

• at order O(E2) one has to take into account only two–derivative La-
grangians at tree level.

• at order O(E4) one takes one–loop diagrams made of the O(E2)–terms
and the O(E4) Lagrangians at tree level. Then one renormalizes the
O(E4) Lagrangian.

• at orderO(E6) one takes two–loop diagrams made of theO(E2)–terms,
one–loop diagrams made of O(E4) and O(E2) terms, and tree–level
diagrams coming from the O(E6) Lagrangian.

• in this way one proceeds to a desired accuracy level.
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Before closing this section, let us discuss the regime of validity for an
effective field theory. As we have seen, the scattering amplitude scales as,
schematically,

M∼ q2

v2

(
1 +

q2

m2
σ

+ ...

)
. (56)

This suggests that the EFT expansion breaks down at energies comparable
to the masses of the heavy particles. Thus, the EFT itself reveals its limits.
The scale at which the energy expansion breaks down is called “cut–off”.
In most of situations the EFT cut–off is set by heavy particles’ masses, but
there exist more subtle examples. For instance, one can integrate out hard
modes of some field but keep the low–energy modes of this field as active
DOFs in the EFT. This is done, for instance, in the effective Hamiltonian
of the weak decays and in the dynamics of turbulent flows.

3 Chiral Perturbation Theory

In this section we will give a brief overview of the Chiral Perturbation The-
ory (ChPT) which gives the easiest and yet powerful example of an EFT
description of the Standard Model at lowest possible energies. The main dif-
ference of the ChPT effective Lagrangian with respect to the sigma–model
is that the chiral symmetry is to be broken. The QCD Lagrangian reads

LQCD =
∑
quarks

(
ψ̄L /DψL + ψ̄R /DψR − ψ̄LmψR − ψ̄RmψL

)
. (57)

If the quarks were massless, QCD would be invariant under the SU(2) chiral
transformations,

ψL,R → (L,R)ψL,R = exp{−iθaL,Rτa}ψL,R . (58)

The axial symmetry is broken dynamically by the quark condensate, and
pions are the corresponding Goldstone bosons (approximately, since they do
have masses). The vectorial isospin symmetry remains approximately intact
3, i.e.,

SUL(2)× SUR(2)→ SUV (2) , (59)

which manifests itself in the near equality of the masses of (π±, π0), (p, n),
etc.

It is clear that in the absence of the pion masses their Lagrangian should
take the form,

L =
F 2

4
Tr (∂µU∂

µU) , (60)

3 The vectorial isospin symmetry is broken because mu 6= md. The difference
|md −mu| ∼ 3 MeV, however, is much smaller than ΛQCD ∼ 250 MeV, which is why

ChPT is isospin symmetric to a very good accuracy.
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with
U = ei

~τ ·~π
F . (61)

Now we have to include the mass term. The way to do this is to introduce
a “compensator” field χ which will restore the axial symmetry at the level
of the Lagrangian, but then break it spontaneously by acquiring a vacuum
expectation value. We consider a free QCD–like Lagrangian coupled to a
background complex scalar field φ = s+ ip:

L = ψ̄L /DψL + ψ̄R /DψR − ψ̄L(s+ ip)ψR − ψ̄R(s− ip)ψL . (62)

The limit p → m, s → 0 reduces this theory to the QCD with the bro-
ken chiral symmetry. But in general, one can make this Lagrangian chiral
invariant by assuming that φ transforms as

s+ ip→ L(s+ ip)R . (63)

Upon introducing the field χ,

χ ≡ 2B0(s+ ip) , (64)

with B0 =const, the low–energy effective Lagrangian for pions can be rewrit-
ten as,

Leff,π =
F 2

4
Tr (∂µU∂

µU) +
F 2

4
Tr
(
χ+U + U+χ

)
. (65)

At the lowest order we obtain,

Leff,π = ∂µ~π · ∂µ~π −B0s ~π · ~π + F 2B0s . (66)

The pion mass is generated by the condensate of the u and d quarks.
In order for the field χ to reproduce the quark masses one has to break the
axial symmetry. To this end one assigns the expectation value of the s field
to

s = mu +md ,

p = 0 ,
(67)

which reproduces the quark masses and gives the following pion mass:

m2
π = B0(mu +md) . (68)

Taking the vacuum expectation value of the u and d quarks’ Hamiltonian
and that of the chiral theory, we obtain,

〈0|ψ̄ψ|0〉 = −〈0|
δLu,d
δs
|0〉 = −〈0|

δLeff,π
δs

|0〉 = −F 2B0 . (69)

The full EFT program can (and have been) carried out (see Ref. [8] for
detail). In this way one should write down all possible operators involving U
and χ that are consistent with the chiral symmetry and act along the lines
above. In fact, ChPT has been widely used to give predictions for different
processes up to 2 loops. The reader is advised to consult Ref. [9] for further
details. ChPT thus represents a very successful and predictive framework
within which the EFT ideas work at their best.
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4 Conclusion

Let us summarize main principles of the EFT approach:

• identify low–energy DOFs and symmetries

• write the most general effective Lagrangian

• order it in the local energy expansion

• calculate starting with the lowest order

• renormalize

• match or measure free parameters of the EFT

• use the EFT to predict residual low–energy effects
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