
Lecture 4

13 October 2016

1 General Relativity as an effective field theory

In the previous lecture we have learned how effective field theory works.
Now we can straightforwardly apply these ideas to General Relativity (GR)
and see that it perfectly fits into the effective field theory description. Tech-
nically, all interaction vertices of GR are energy-dependent and thus ef-
fortlessly organize an EFT energy expansion. The GR interactions are non-
renormalizable, and the suppression scale is given by the Planck mass ∼ 1018

GeV. The shortest scales at which gravity can be directly tested are several
tens of micrometers [1], which corresponds to energy ∼ 0.1 eV. The energies
accessible at LHC are about 10 TeV, while the most energetic cosmic rays
were detected at 1011 GeV. The highest energy scale accessible in principle
(at this moment) is the scale of inflation equal to 1016 GeV at most [2].
Clearly, all these scales are well below the Planck energy which serves as a
cutoff in GR if treated as an EFT.1 Thus, from the phenomenological point
of view, GR should be enough to account for effects of quantum gravity
within the EFT framework. In this lecture we will apply one by one the
EFT principles listed in Lecture 3 to GR and show that quantum gravity is
indeed a well-established and predictive theory.

1.1 Degrees of freedom and interactions

As a first step we identify low energy degrees of freedom and their inter-
actions. These are the helicity-2 transverse-traceless graviton and matter
fields (in this lecture represented by a real scalar φ).

1.2 Most general effective Lagrangian

Let us go for the steps (2) and (3). The most general Lagrangian for gravity
which is consistent with diffeomorphisms and local Lorentz transformations

1Formally, the cutoff of GR may depend on the number of matter degrees of freedom
which can run into gravity loops.
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takes the following form, if ordered in the energy expansion,

S =

∫
d4x
√−g

[
−Λ− 2

κ2
R+ c1R

2 + c2RµνR
µν + ...

]
. (1)

Recall that R ∼ ∂2g, where g denotes the metric, so the leftmost term
(cosmological constant) is O(E0), the second - O(E2) and the ci terms scale
as O(E4) in the energy expansion.2 The most generic local energy-ordered
effective Lagrangian for matter takes the following form,

S =

∫
d4x
√−g

[
− V (φ) +

1

2
gµν∂µφ∂νφ− ξφ2R

+
d1

M2
P

Rgµν∂µφ∂νφ+
d2

M2
P

Rµν∂µφ∂νφ+ ...

]
,

(2)

with dimensionless couplings ξ, d1, d2. For the sake of simplicity we will put
these parameters to zero in what follows and focus only on the minimal
coupling between gravity and matter.

1.3 Quantization and Renormalization

At the step (4) we should begin to calculate starting with the lowest order.
In fact, we have already computed the 1-loop effective action in Lecture 2.
The result is,

∆Ldiv. =
1

16π2

(
1

ε
+ ln 4π − γ

)[{
1

120
R2 +

7

120
RµνR

µν

}
+

1

180

(
3RµνR

µν −R2
)]

,

(3)
where the terms inside the curly brackets come from graviton loops and
the terms inside the round brackets come from the matter loops. Then, we
renormalize the couplings as follows,

cM̄S
1 = c1 +

1

16π2

(
1

ε
+ ln 4π − γ

)[
1

120
− 1

60

]
,

cM̄S
2 = c2 +

1

16π2

(
1

ε
+ ln 4π − γ

)[
7

120
+

3

60

]
.

(4)

1.4 Fixing the EFT parameters

The EFT parameters Λ, κ2, ci are to be measured experimentally (step (6)
in our program).

2Notice that we are working in four dimensions and assume trivial boundary conditions,
which, by virtue of the Gauss-Bonnet identity (see Lecture 2), allows us to eliminate from
the action another curvature invariant, RµνλρR

µνλρ.
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1) The cosmological constant is believed to be responsible for the current
acceleration expansion of the Universe. This hypothesis is consistent with
all cosmological probes so far, and the inferred value of the cosmological
constant is

Λ ' 10−47 (GeV)4 . (5)

The cosmological constant has a very tiny effect on ordinary scales and
is negligible for practical computations as long as we work at distances
shorter than the cosmological ones. In what follows we will assume that
the cosmological constant is zero.

2) The parameter κ2 defines the strength of gravitational interactions at
large scales. Neglecting for a moment the ci terms, the tree-level gravita-
tional potential of interaction between two point masses m1 and m2 takes
the form,

V (r) = − κ2

32π

m1m2

r
, (6)

from which one deduces the relation to the Newtonian gravitational con-
stant,

κ2 = 32πG . (7)

3) The constants ci produce Yukawa-type corrections to the gravitational
potential which become relevant at distances ∼ κ

√
ci. Indeed, taking into

account the ci terms one can obtain the tree-level gravitational potential of
the form [3],

V (r) = − κ2

32π

m1m2

r

(
1 +

1

3
e−M1r − 4

3
e−M2r

)
, (8)

where

M2
1 ≡

1

(3c1 + c2)κ2

M2
2 ≡ −

2

c2κ2
.

(9)

The laboratory tests of gravity at short scales imply

|ci| < 1056 . (10)

In order to understand the above results let us focus on a toy model of
gravity without tensor indices.

1.4.1 Gravity without tensor indices

Consider the following action

S =

∫
d4x
√−g

(
− 2

κ2
R+ cR2

)
. (11)
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Expanding the toy metric g as follows,

g = 1 + κh , (12)

one arrives at the following free equation of motion for the “graviton”,

(� + cκ2�2)h = 0 . (13)

The propagator then takes the form,

D(q2) =
1

q2 + cκ2q4
≡ 1

q2
− 1

q2 + (κ2c)−1
. (14)

Then we couple the “scalar graviton” to matter,

Sm =
1

2

∫
d4x
√−g

(
g(∂φ)2 −m2φ2

)
, (15)

and compute the tree-level gravitational potential. Introducing the notation
M2 ≡ (κ2c)−1 we perform a Fourier transform to finally get

V (r) = −Gm1m2

r
(1− e−Mr) . (16)

The current laboratory constraint on the Yukawa-type interactions imply
the bound

M < 0.1 eV ⇒ c < 1056 . (17)

An important observation can be made by taking the limit M → ∞, in
which the Yukawa part of the potential reduces to a representation of the
Dirac delta-function,

1

4πr
e−Mr → 1

M2
δ(3)(x) . (18)

Thus, the gravitational potential from Eq. (16) can be rewritten as

V (r) = −Gm1m2

r
+ cG2δ(3)(x) . (19)

This expression reminds us of local quantum correction related to divergent
parts of loop integrals. In fact, this result merely reflects the fact that ∼ R2

terms are generated by loops.
A comment is in order. The fact that the propagator of the higher-order

theory (14) can be cast into the sum of two “free” propagators suggests that
there are new degrees of freedom that appear if we take into account the
∼ R2 terms. In fact, non-zero ci lead to the appearance of a scalar DOF of
mass M1 (see Eq. (9)) and a massive spin-2 DOF of mass M2.
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1.5 Predictions: Newtonian gravitational potential at one
loop

So far we have made no predictions. We performed renormalization and
measured (constrained) the free parameters of our EFT. As we learned from
the example of the sigma-model, the most important predictions of the EFT
are related to non-analytic in momenta loop contributions to the interaction
vertices. They are typically represented by logarithms and correspond to
long-range interactions induced by virtual particles.3

In this subsection we will demonstrate the Newtonian potential at one
loop and show that the predictions of GR treated as an EFT are no quali-
tatively different from that of the sigma-model.

At one-loop order there appear a lot of diagrams contributing to the
gravitational potential. Here is a very incomplete sample of them,

+ + + ...

(20)

From the power counting principles we anticipate that the 1-loop amplitude
will take the following form,

M =
Gm1m2

q2

(
1 + aG(m1 +m2)

√
−q2 + b Gq2 ln(−q2) + c Gq2

)
, (21)

where a, b, c are some constants. Then, assuming the non-relativistic limit
and making use of ∫

d3q

(2π)3
eiq·r

1

q2
=

1

4πr
,∫

d3q

(2π)3
eiq·r

1

|q| =
1

2π2r2
,∫

d3q

(2π)3
eiq·r ln(q2) = − 1

2πr3
,

(22)

we recover the following potential in position space:

V (r) = −Gm1m2

r

(
1 + a

G(m1 +m2)

r
+ b

G

r2

)
+ c Gδ(3)(x) . (23)

The delta-function term is irrelevant as it does not produce any long-distance
effect. The a and b terms are relevant though. By dimensional analysis we

3 Note that in renormalizable field theories the effect of non-analytic contributions can
be interpreted as running of coupling constants with energy.
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can restore the speed of light cl and the Planck constant ~ in the expression
for them,

V (r) = −Gm1m2

r

(
1 + a

G(m1 +m2)

rc2
l

+ b
G~
r2c3

l

)
. (24)

The a-term thus represents a classical correction that appears due to the
non-linearity of GR while the b-term is a quantum correction.

An explicit calculation has been carried out in Ref.[4] and gives

a = 3 ,

b =
41

10π
.

(25)

The ci terms in our EFT expansion give only local contributions ∼ δ(3)(x)
and thus can be dropped. The result (24) with the coefficients (25) should
be true in any UV-completion of gravity that reduces to GR in the low-
energy limit. The quantum correction (b-term) is extremely tiny and scales
as (lP /r)

2 in full agreement with the EFT logic.
As for the classical correction (a-term), it agrees with the Post-Newtonian

expansion in a proper coordinate frame. Quite unexpectedly, this correction
came out of the loop calculation even though one might have thought that
loop corrections should scale as powers of ~. This is not true, and we can
demonstrate an even simpler example of that. Consider the action for a
fermion in flat spacetime,

S =

∫
d4x ψ̄

(
/D −m

)
ψ . (26)

Introducing ~ and cl this action can be rewritten as,

S = ~
∫
d4x ψ̄

(
/D − mc2

l

~

)
ψ . (27)

One observes the appearance of ~ in the denominator, which can cancel
some ~ coming from loops and eventually result in a classical correction.

2 Generation of the Reissner-Nordström metric
through loop corrections

Another instructive example showing EFT ideas at work is the calculation of
quantum corrections to the Reissner-Nordström metric (static spherically-
symmetric GR solution for charged point objects), see [5] for more detail.
In this case dominating quantum corrections are produced by matter fields
running inside loops, the metric can be treated as a classical field. The
classical metric couples to the energy momentum tensor of matter, whose
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quantum fluctuations induce corrections to the metric. The net result in the
harmonic gauge reads,

g00 = 1− 2GM

r
+
Gα

r2
− 8Gα

3πMr3
,

gij = δij

(
1 +

2GM

r

)
+
Gαninj
r2

+
4Gα

3πMr3
(ninj − δij) ,

(28)

where

α =
e2

4π
,

ni ≡
xi
r
.

(29)

We start by considering a charged scalar particle on the flat background.
As shown in Lecture 1, in the harmonic gauge the Einstein equation for a
metric perturbation hµν ,

gµν = ηµν + hµν , (30)

takes the following form:

�hµν = −8πG(Tµν −
1

2
ηµνT

λ
λ ) . (31)

Assuming a static source, upon introducing the retarded Green’s function
we obtain,

hµν = −8πG

∫
d3q

(2π)3
eiqx

1

q2
(Tµν(q)− 1

2
ηµνT

λ
λ (q)) . (32)

The energy momentum tensor is a quantum variable. In what follows we
assume that the matter is given by a scalar field of mass m, which is coupled
to photons. The transition density takes the form

〈p′|Tµν |p〉 =
ei(p

′−p)x
√

2E2E′

[
2PµPνF1(q2) + (qµqν − ηµνq2)F2(q2)

]
, (33)

where

Pµ ≡
∫
d3xT0µ . (34)

At tree level one has,

F1(q2) = 1 ,

F2(q2) = −1

2
.

(35)
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The radiative corrections to Tµν are given by the following diagrams

hµν + hµν

+

hµν

γ γ

+

hµν

γ γ
+

hµν

γ

+ ...

(36)

The form-factors in the limit q → 0 read,

F1(q2) = 1 +
α

4π

q2

m2

(
−8

3
+

3

4

mπ2√
−q2

+ 2 ln
−q2

m2

)
,

F2(q2) = −1

2
+

α

4π

(
−2

ε
+ γ + ln

m2

4πµ2
− 26

9
+

mπ2

2
√
−q2

+
4

3
ln
−q2

m2

)
.

(37)

The classical corrections ∼
√
−q2 come only from the middle diagram of

the last line in Eq. (36), while the “quantum” logarithms are produced by
both the left and the middle diagrams of the last line in Eq. (36).

Let us comment more on the origin of the classical terms. In position
space the energy-momentum tensor takes the form,

T00 = mδ(3)(x) +
α

8πr4
− α

π2mr5
,

Tij = − α

4πr4

(
ninj −

1

2
δij

)
− α

3π2mr5
δij .

(38)

This should be compared with the expression for the energy-momentum
tensor of the electromagnetic field around a static charged particle,

TEMµν = −FµλF λ
ν +

1

4
ηµνF

2
αβ ,

TEM00 =
~E2

2
=

α

8πr4
,

TEMij = −EiEj + δij
~E2

2
= − α

4πr4

(
ninj −

1

2
δij

)
.

(39)
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One concludes that the classical corrections just represent the electromag-
netic field surrounding the charged particle. These corrections reproduce
the classical Reissner-Nordström metric and are required in order to satisfy
the Einstein’s equations.

Thus, starting from a charged particle on the flat background, we com-
puted loop corrections to the metric, which yielded the classical Reissner-
Nordström metric plus a quantum correction.

3 GR as EFT: further developments

3.1 Gravity as a square of a gauge theory

We started our Lectures by constructing GR in the gauge theory framework.
We saw that there is deep connection between gravity and YM-theories.
Here we want to explore this connection from different perspective. Medi-
tating on immense complexity of quantum gravity amplitudes, it is tempting
to search for their relation to YM-amplitudes, since the calculation of the
latter is incomparably easier. Observing that the graviton field hµν has a
meaning of the tensor product of two vector objects, one may guess that

gravity ∼ gauge theory× gauge theory . (40)

The question of how to endow this intuitive statement with precise meaning
is far from being obvious. The answer comes from string theory, where there
are so-called Kawai-Lewellen-Tye (KLT) relations that connect closed and
open string amplitudes [6]. Since closed strings correspond to gravitons, and
open strings correspond to gauge bosons, these relations must link quan-
tum gravity amplitudes to YM-amplitudes in the field theory limit. The
KLT-relations provide us with the desired simplification in computing the
diagrams in quantum gravity.

To understand why the KLT-relations actually take place within the field
theory framework, it is desirable to derive them without appealing to string
theory. Speaking loosely, one should “decouple” the left and right indices
of hµν in order to associate a gauge theory to each of them. Taking GR as
it is, we see that such decoupling is not achieved even at quadratic order
in κ, in particular due to plenty of hµµ pieces (see Lecture 2). An elaborate
procedure of redefining the fields must be implemented before this becomes
possible. For further details, see [7].

As an instructive example of the application of the KLT-relations, con-
sider the gravitational Compton scattering process. Namely, let φ(s) be
massive spin−s matter field, s = 0, 1

2 , 1, with mass m. Consider the QED

with the field φ(s) coupled to the photon field in the usual way, and let e
denote the coupling constant. The tree-level scattering process in QED is
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described by the following sum of diagrams,

iM(s)
EM(p1, p2, k1, k2) =

p1

k1

p2

k2

+

p1

k2

p2

k1

+

p1

k2

p2

k1

.

Here we use the “all-incoming” notation for momenta, so that p1 + p2 +
k1 + k2 = 0. On the other hand, the gravitational scattering amplitude is
represented by the series of diagrams

iM(s)
grav.(p1, p2, k1, k2) =

p1

k1

p2

k2

+

p1

k2

p2

k1

+

p1

k2

p2

k1

+

p1

k1

p2

q2 = 2k1 · k2

k2

.

To understand the enormous difficulty of the straightforward calculation
of this amplitude, one can just recall the general expression for the tree-

graviton vertex quoted in [8]. It makes truly remarkable the fact thatM(s)
grav.

is actually equal to [9]

M(s)
grav.(p1, p2, k1, k2) =

κ2

8e2

(p1 · k1)(p1 · k2)

(k1 · k2)
M(s)

EM (p1, k2, p2, k1)

×M(0)
EM (p1, k2, p2, k1) . (41)

Let us take s = 0 for simplicity. Then, using the Helicity formalism notations
of Ref.[10], the amplitude (41) can be brought to the form

iM(0)
grav.(p1, p2, k

+
1 , k

+
2 ) =

κ2

16

m4[k1k2]4

(k1 · k2)(k1 · p1)(k1 · p2)
,

iM(0)
grav.(p1, p2, k

−
1 , k

+
2 ) =

κ2

16

〈k1|p1|k2]2〈k1|p2|k2]2

(k1 · k2)(k1 · p1)(k1 · p2)
, (42)

and

iM(0)
grav.(p1, p2, k

−
1 , k

−
2 ) = (iM(0)

(grav)(p1, p2, k
+
1 , k

+
2 ))∗ ,

iM(0)
grav.(p1, p2, k

+
1 , k

−
2 ) = (iM(0)

(grav)(p1, p2, k
−
1 , k

+
2 ))∗ . (43)

Here we denote by k+
i the (++) polarization of the graviton, and by k−i —

its (−−) polarization.

3.2 Loops without loops

Now we want to make one step further and see how one can simplify the
computation of loop diagrams in quantum gravity. A natural method here
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is to use the Optical theorem. Making use of the unitarity of S-matrix,
S†S = 1, where S = 1 + iT , we have

2ImTif =
∑
j

TijT
†
jf . (44)

In this expression, i and f denote initial and final states respectively, and the
sum is performed over all intermediate states. Eq.(44) allows us to express
the imaginary part of 1-loop diagrams in terms of tree-level diagrams. The
reconstruction of the whole loop amplitude from its imaginary part can be
tackled in several ways. The traditional way is to use dispersion relations. In
general this method has unpredictable subtraction constants in the real part
of the amplitude, which cannot be eliminated. However, the non-analytic
corrections are independent of the subtraction constants and are predictable.

A more modern way is to explore unitarity in the context of dimensional
regularization. It turns out that there are large classes of 1-loop amplitudes
in various theories, that can be uniquely reconstructed from tree diagrams
by using the D−dimensional unitarity technique. Any such amplitude can
be represented as M =

∑
i ciIi, where ci are rational functions of the mo-

mentum invariants and Ii are some known integral functions representing
sample 1-loop diagrams (these include box, triangle and bubble integrals).
It can be proven that if two linear combinations

∑
i ciIi and

∑
i c
′
iIi coincide

on cuts, then they must coincide everywhere 4.
For many practical purposes there is no need for the reconstruction of

the whole 1-loop amplitude. For example, consider the diagram presented
in Fig.1. It provides a quantum correction to the Coulomb potential or
to the Newton’s potential. Cutting it as demonstrated in Fig.1, one can
express its imaginary part in terms of the corresponding tree diagrams.
This imaginary part contains enough information to extract non-analytic

p1

p2

p4

p3

Figure 1: 1-loop diagram providing quantum corrections to the
Coulomb or Newton’s potential. Dotted line represents the cut.

contributions to the quantum correction like the classical contribution from
GR and the quantum gravity contribution to the Newton’s potential. The
essential features of such calculation are

4For further discussion, see [11].
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• we impose on-shell cut condition everywhere in the numerator,

• the computation does not require any ghost contributions,

• the non-analytic terms give us leading long-ranged corrections to the
potential.

3.3 An application: bending of light in Quantum gravity

Let us briefly demonstrate how to apply the tools we have just described
to a real computation. Consider the light bending in quantum gravity and
calculate the long-ranged quantum correction to the deflection angle of a
beam of massless particles (scalars or photons) as they scatter off a massive
scalar object (like the Sun) of mass M . Our strategy is the following [12],

• write the tree-level QED Compton amplitudes,

• express the gravitational tree-level Compton amplitude through the
corresponding QED amplitudes,

• write the discontinuity of the gravitational 1-loop scattering amplitude
in terms of the on-shell tree-level amplitudes,

• from this discontinuity, extract the power-like and logarithm correc-
tions to the scattering amplitude,

• compute the potential in the Born approximation and deduce the
bending angle of a photon and for a massless scalar.

We have already given most of the results of the first two points of this
program. The tree-level massive scalar-graviton interaction amplitudes are
given by Eqs.(42),(43). Let us quote the result for the photon-graviton
interaction amplitude,

iM(1)
grav.(p

+
1 , p

−
2 , k

+
1 , k

−
2 ) =

κ2

4

[p1k2]2〈p2k2〉2〈k2|p1|k1]2

(p1 · p2)(p2 · k1)(p1 · k2)
. (45)

As for the other helicities, iM(1)
grav.(p

−
1 , p

+
2 , k

+
1 , k

−
2 ) is obtained from the ex-

pression above by the momenta p1 and p2 interchanged, and amplitudes with
opposite helicity configurations are obtained by complex conjugation.

Let us turn to the third point of the program. The 1-loop diagram
responsible for our scattering process is presented in Fig.2. We make two
gravitons cut and write the discontinuity as follows,

i
1
M

(s)

grav.(p
λ1
1 , pλ22 , p3, p4)

∣∣∣∣∣
disc.

=

∫
dDl

(2π)4

∑
h1,h2

M(s)
grav.(p

λ1
1 , pλ22 , lh11 lh22 ) · (M(0)

grav.(l
h1
1 , lh22 , p3, p4))∗

4l21l
2
2

. (46)
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In this expression, l21 = l22 = 0 are the cut momenta of the internal gravi-
ton lines, hi — their polarizations, and λi — possible polarizations of the
massless particle, s = 0, 1, and D = 4− 2ε.

p1

p2

p4

p3

l1

l2

Figure 2: 1-loop diagram providing quantum corrections to the light
bending. The dashed lines represent massless field (scalar or photon),
the solid line — the massive field, and the dotted line represents the
cut.

Now one can compute the full amplitude iM(s) = i
~M

(s)
grav. + i

1
M

(s)

grav..
In the low-energy limit, ω � M , where ω is the frequency of the massless
particle, the leading contribution to iM(s) is written as [12]

iM(s) ' N
(s)

~
(Mω)2 ×

[
κ2

t
+ κ4 15

512

M√−t+

~κ4 15

512π2
log

( −t
M2

)
− ~κ4 bu

(s)

(8π)2
log

(−t
µ2

)
+

~κ4 3

128π2
log2

(−t
µ2

)
+ κ4Mω

8π

i

t
log

( −t
M2

)]
. (47)

HereN (s) is the prefactor which is equal to 1 for the massless scalar, while for
the photon it is given by N (1) = (2Mω)2/(2〈p1|p3|p2]2) for the (+−) photon
helicity configuration and the complex conjugate of this for the (−+) photon
helicity configuration. For (++) and (−−) the amplitude vanishes. The
coefficient bu(s) equals 3/40 for the case of the scalar particle and −161/120
for the case of photon. Finally, t is the usual kinematic variable.

We can now use Born approximation to calculate the semiclassical po-
tential for a massless scalar and photon interacting with a massive scalar
object, and then apply a semiclassical formula or the eikonal approximation
[13] for the angular deflection to find for the bending angle

θ(s) ' 4GM

b
+

15

4

G2M2π

b2
+

8bu(s) + 9 + 48 log b
2ro

π

G2~M
b3

. (48)

The first two terms give the correct classical values, including the first post-
Newtonian correction, expressed in terms of the impact parameter b. The
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last term is a quantum gravity effect of the order G2~M/b3. Let us comment
on this formula.

• The third contribution in (48) depends on the spin of massless particle
scattering on the massive target. Hence the quantum correction is not
universal. This may seem to violate the Equivalence Principle. Note,
however, that this correction is logarithmic and produces non-local
effects. This is to be expected, since for the massless particles quantum
effects are not localized, and their description as point particles is
not valid anymore. The Equivalence Principle says nothing about
the universality of such non-local effects. Anyway, we see that in
quantum gravity particles no longer move along the geodesics, and
that trajectories of different particles bend differently.

• The answer depends on the IR-scale ro. However, this does not spoil
the predictive power of the theory. For example, one can compare the
bending angle of a photon with that of a massless scalar. The answer
is

θ(1) − θ(0) =
8(bu(1) − bu(0))

π

G2~M
b3

. (49)

This result is completely unambiguous. Once again this demonstrates
the fact that the EFT technique can make well-defined predictions
within quantum gravity.
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