
III
Symmetries and anomalies

Application of the concept of symmetry leads to some of the most pow-
erful techniques in particle physics. The most familiar example is the use
of gauge symmetry to generate the lagrangian of the Standard Model.
Symmetry methods are also valuable in extracting and organizing the
physical predictions of the Standard Model. Very often when dealing
with hadronic physics, perturbation theory is not applicable to the cal-
culation of quantities of physical interest. One turns in these cases to
symmetries and approximate symmetries. It is impressive how successful
these methods have been. Moreover, even if one could solve the theory
exactly, symmetry considerations would still be needed to organize the
results and to make them comprehensible. The identification of symme-
tries and near symmetries has been considered in Chap. I. This chapter
is devoted to their further study, both in general and as applied to the
Standard Model, with the intent of providing the foundation for later
applications.

III–1 Symmetries of the Standard Model

The treatment of symmetry in Sects. I–4, I–6 was carried out primarily
in a general context. In practice, however, we are most interested in the
symmetries relevant to the Standard Model. Let us briefly list these,
reserving for some a much more detailed study in later sections.

Gauge symmetries: As discussed in Chap. II, these are the SU(3)c ×
SU(2)L × U(1)Y gauge invariances. It is interesting to compare their
differing realizations. SU(3)c is unbroken but evidently confined, whereas
SU(2)L ×U(1)Y undergoes spontaneous symmetry breaking, induced by
the Higgs fields, leaving an unbroken U(1)em gauge invariance.

Fermion number symmetries: There exist global vector symmetries
corresponding to both lepton and quark number. These are of the form

ψα → e−iQαθψα (1.1)
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for fields of each chirality. The index α refers to either the set of all
leptons or the set of all quarks, and the conserved charges Qα are just
the total number of quarks minus antiquarks and the total number of
leptons minus antileptons∗. Conservation of baryon number B is violated
due to an anomaly in the electroweak sector, but B − L remains exact.

Global vectorial symmetries of QCD: If the quarks were all massless,
there would be a very high degree of symmetry associated with QCD.
Even if m ̸= 0, symmetries are possible if two or more quark masses are
equal. Three of the quarks (c, b, t) are heavy compared to the confinement
scale ΛQCD and widely spaced in mass, so they cannot be accommodated
into a global symmetry scheme.∗ However the u, d, and s quarks are light
enough that their associated symmetries are useful. The best of these is
the isospin invariance, which consists of field transformations

ψ =

(
u

d

)
→ ψ′ = exp(−iτ · θ)ψ , (1.2)

where
{
τ i
}
(i = 1, 2, 3) are SU(2) Pauli matrices and

{
θi
}
are the com-

ponents of an arbitrary constant vector. Associated with the SU(2) flavor
invariance are the three Noether currents

J (i)
µ = ψ̄γµ

τ i

2
ψ . (1.3)

Isospin symmetry is broken by the up–down mass difference,

Lmass = −
mu +md

2
(ūu+ d̄d)− mu −md

2
(ūu− d̄d) , (1.4)

and by electromagnetic and weak interactions. Inclusion of the strange
quark extends isospin to SU(3) flavor transformations

ψ =

u

d

s

→ ψ′ = exp(−iθ · λ)ψ , (1.5)

where {λa} (a = 1, 2, . . . , 8) are the SU(3) Gell–Mann matrices. The
SU(3) flavor symmetry is broken significantly by the strange quark mass,
and to a lesser extent by other effects. Predictions of isospin symmetry
work at the 1% level, whereas SU(3) predictions hold only to about 30%.
It is occasionally convenient to employ a particular SU(2) subgroup of
SU(3), called U -spin, which corresponds to the transformations(

d

s

)
→ exp(−iτ · θ)

(
d

s

)
. (1.6)

∗ In Chap. VI, we return to the study of lepton number violation through possible Majorana mass
terms

∗ See, however, the discussion of the dynamical heavy-quark symmetries in Chap. XII-3
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U -spin is also a symmetry of the electromagnetic interaction, since its
generators commute with the electric charge operator. The U -spin sym-
metry is broken by the large d-quark, s-quark mass difference.

Approximate chiral symmetries of QCD: The vectorial symmetries are
valid if quark masses are equal. If the masses vanish, there are additional
chiral symmetries, because in this limit the left-handed and right-handed
components of the fields are decoupled (cf. Sect. I–3),

LQCD

∣∣∣∣
m=0

= −1

4
F a
µνF

aµν + ψ̄L/DψL + ψ̄R/DψR , (1.7)

i.e. the left-handed and right-handed fields have separate invariances.
For massless up and down chiral quarks, the symmetry operations are

ψL → exp(−iθL · τ )ψL ≡ LψL , ψR → exp(−iθR · τ )ψR ≡ RψR , (1.8)

where ψL,R are chiral projections of the ψ doublet in Eq. (1.2). These
can also be expressed as vector and axial-vector isospin transformations,

ψ → exp(−iθV · τ )ψ , ψ → exp(−iθA · τγ5)ψ , (1.9)

with θV = (θL+θR)/2, and θA = (θL−θR)/2. This invariance is variously
referred to as chiral-SU(2), SU(2)L × SU(2)R or SU(2)V × SU(2)A. In
QCD, it is broken by quark mass terms,

Lmass = −muūu−mdd̄d = −mu(ūLuR+ūRuL)−md(d̄LdR+d̄RdL). (1.10)

Thus if mu = md ̸= 0, separate left-handed and right-handed invariances
no longer exist, but rather only the vector isospin symmetry. The gen-
eralization to three massless quarks defines chiral SU(3) (or SU(3)L ×
SU(3)R) and is a straightforward extension of the above ideas.

Discrete symmetries: Since the Standard Model is a hermitian and
Lorentz-invariant local quantum field theory, it is invariant under the
combined set of transformations CPT . Both QCD (given the absence
of the θ-term) and QED conserve P , C, and T separately. By contrast,
the electroweak interactions have maximal violation of P and C in the
charged-current sector. If a nonzero phase resides in the quark-mixing
matrix, there will exist a breaking of CP , or equivalently of T , invariance.
Otherwise the weak interactions are invariant under the product CP .

In addition to the above exact or approximate symmetries of the Stan-
dard Model, there are some important ‘non-symmetries’ of QCD. By
these we mean invariances of the underlying lagrangian which might
naively be expected to appear as symmetries of Nature but which, for
a variety of reasons, do not. These include the following.
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Axial U(1): The QCD lagrangian would have an axial U(1) invariance
of the form

ψ =

u

d

s

→ ψ′ = e−iθγ5ψ , (1.11)

if the u, d, s quarks were massless. However, this turns out not to be even
an approximately valid symmetry, as it has an anomaly. We shall return
to this point in Sect. III–3.

Scale Transformations: If quarks were massless, the QCD lagrangian
would contain no dimensional parameters. The lagrangian would there-
fore be invariant under the scale transformations

ψ(x)→ λ3/2ψ(λx) , Aaµ(x)→ λAaµ(λx) , (1.12)

where ψ and Aaµ are respectively the quark and gluon fields. This invari-
ance is also destroyed by anomalies (see Sect. III–4).

‘Flavor Symmetry’: Because the gluon couplings are independent of
the quark flavor, one often finds reference in the literature to a flavor
symmetry of QCD. Unless the specific application is reducible to one of
the above true symmetries, one should not be misled into thinking that
such a symmetry exists. For example, flavor symmetry is often used in
this context to relate properties of the pseudoscalar mesons η(549) and
η′(960) (or analogous particles in other nonets). However the result is
rarely a symmetry prediction. Rather, this approach typically pertains
to specific assumptions about the way quarks behave, and is dressed up
by incorrectly being called a symmetry. In group theoretic language, this
may arise by assuming that QCD has a U(3) symmetry rather than just
that of SU(3).

III–2 Path integrals and symmetries

The transition from classical physics to quantum physics is in many ways
most transparent in the path integral formalism. In this chapter we
use these techniques to provide a quantum description of symmetries,
complementing the treatment at the classical level of Sects. I–4, I–6. A
brief pedagogical introduction to those path integral techniques which
are important for the Standard Model is provided in App. A.

The generating functional

In order to implement a quantum description of currents and current
matrix elements, one studies the generating functional, Z, of the theory.
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For a generic field φ, we have

Z[j] = eiW [j] =

∫
[dφ] exp i

∫
d4x (L(φ, ∂φ)− jφ) , (2.1)

where j(x) is an arbitrary classical source field whose presence allows us to
probe the theory by studying its response to the source. The symbol [dφ]
indicates that at each point of spacetime one integrates over all possible
values of the field φ(x). All the matrix elements needed to describe
physical processes in the theory can be obtained from lnZ[j] by functional
derivations, i.e.

⟨0 |T (φ(xk) . . . φ(xp))| 0⟩ = (i)n
δn lnZ[j]

δj(xk) . . . δj(xp)

∣∣∣∣
j=0

(2.2)

where n is the number of fields in the matrix element. If there is more
than one field, i.e. the set {φi}, a separate source is introduced for each
field.

If one wants to study a given current Jµ (not to be confused with the
source j) associated with some classical symmetry, one simply adds an
extra classical source field vµ which is coupled to that current,

Z[j, vµ] =

∫
[dφ] exp i

∫
d4x (L − jφ− vµJµ) . (2.3)

In this case all matrix elements involving Jµ can be obtained by functional
derivation with respect to vµ,

J̄µ(x) = i
δ lnZ

δvµ(x)

∣∣∣∣
vµ=0

, (2.4)

where the bar in J̄µ indicates that it is a functional describing matrix
elements of the current Jµ. Specific matrix elements are obtained by
further derivatives, as in

⟨0 |T (Jµ(x)φ(x1)φ(x2))| 0⟩ = (i)2
δ2

δj(x1)δj(x2)
J̄µ(x)

∣∣∣∣
j=0

. (2.5)

This device allows one to discuss all possible matrix elements of the cur-
rent Jµ.

As an example, consider the vector and axial-vector currents of QED.
We define

Z[vµ, aµ] ≡
∫

[dψ][dψ̄][dAµ]e
i
∫
d4x(LQED−vµψ̄γµψ−aµψ̄γµγ5ψ) . (2.6)
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A three-current (connected) matrix element is obtained then as

Tµαβ(x, y, z)conn ≡
⟨
0
∣∣T (

ψ̄(x)γµγ5ψ(x) ψ̄(y)γαψ(y) ψ̄(z)γβψ(z)
)∣∣ 0⟩

= (i)3
[

δ2

δvα(y)δvβ(z)

δ

δaµ(x)
lnZ

]
vµ=0
aµ=0

= (i)2
δ2

δvα(y)δvβ(z)
J̄5µ(x) ,

(2.7)
where the axial-vector quantity J̄5µ is defined in analogy with Eq. (2.4).

Noether’s theorem and path integrals

Returning to the general case, let us consider an infinitesimal transfor-
mation of a set of fields {φi}

φi → φ′i = φi + ϵ(x)fi(φ) (2.8)

such that the current under discussion is

Jµ(x) =
∂L′

∂(∂µϵ)
. (2.9)

If this is a symmetry transformation, one has up to a total derivative,

L
(
φ′, ∂φ′

)
= L (φ, ∂φ) + Jµ∂µϵ . (2.10)

If ϵ(x) is a constant, the lagrangian is invariant under the transformation.
This is the statement of the classical symmetry condition. In order to
study the consequences of this situation, we rewrite our previous defini-
tion of the current matrix elements

J̄µ(x) = i
δ

δvµ(x)
lnZ[vν ] (2.11)

in integral form by noting

δ lnZ[vµ] = lnZ[vµ + δvµ]− lnZ[vµ] ≡ −i
∫
d4x J̄µ(x)δvµ(x) , (2.12)

which is just the inverse of Eq. (2.11). Now choosing the particular form
for δvµ,

δvµ(x) = −∂µϵ(x) , (2.13)

we have

δϵ lnZ[vµ] ≡ lnZ[vµ − ∂µϵ]− lnZ[vµ]

= i

∫
d4x J̄µ(x)∂µϵ(x) = −i

∫
d4x ϵ(x)∂µJ̄

µ(x) .
(2.14)
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With this procedure we can isolate a divergence condition for J̄µ. If
Z[vµ − ∂µϵ] = Z[vµ], then ∂

µJ̄µ(x) = 0. To check this, consider

Z[vµ − ∂µϵ] =
∫

[dφi] exp i

∫
d4x (L(φi, ∂φi)− (vµ − ∂µϵ)Jµ) . (2.15)

If we can change integration variables so that∫
[dφi] =

∫
[dφ′i] (2.16)

with φ′i given by Eq. (2.8), then we obtain

Z[vµ − ∂µϵ] =
∫

[dφ′i] exp i

∫
d4x

(
L(φ′i, ∂φ′i) + vµJ

µ
)
= Z[vµ] , (2.17)

and therefore

∂µJ̄µ(x) = 0 . (2.18)

This change of variables seems reasonable and in most cases is perfectly
legitimate. After all, the symbol [dφi(x)] means that we integrate over
all values of the field φi separately at each point in spacetime. Shifting
the origin of integration at point x by a constant, φi(x) ≡ φ′i(x)− ϵ(x)fi,
and then integrating over all values of φ′i should amount to the original
integration. Given this shift, we have obtained in Eq. (2.18) by Noether’s
theorem a quantum conservation law involving matrix elements. The
expression ∂µJ̄

µ(x) = 0 means that all matrix elements of Jµ, obtained
via further functional derivatives (as in Eq. (2.5)), satisfy a divergenceless
condition, i.e. the current Jµ is conserved in all matrix elements.

It was Fujikawa who first pointed out the consequences if the change
of variables, Eq. (2.16), is not a valid operation in a path integral [Fu 79].
Certainly, many procedures involving path integrals need to be examined
carefully in order to see if they are well-defined. We shall explicitly study
some examples in which the change of variable is nontrivial and can be
calculated. In such cases one finds ∂µJ̄

µ(x) ̸= 0, which implies that the
classical symmetry is not a quantum symmetry. In these situations it is
said that there exists an anomaly .

III–3 The U(1) axial anomaly

For massless quarks mu = md = ms = 0, the lagrangian of QCD contains
an invariance LQCD → LQCD under the global U(1) axial transformations

ψ =

u

d

s

→ ψ′ = e−iθγ5ψ . (3.1)

In this limit, which we shall adopt until near the end of this chapter,
Noether’s theorem can be applied to identify the classically conserved
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axial current,

J
(0)
5µ = ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s , ∂µJ

(0)
5µ = 0 , (3.2)

where the superscript on J
(0)
5µ denotes an SU(3) singlet current. We shall

see that this is not an approximate symmetry of the full quantum theory
because the current divergence has an anomaly. This can be demon-
strated in various ways. For a direct ‘hands-on’ demonstration, the early
discussion [Ad 69, BeJ 67, Ad 70] of Adler and of Bell and Jackiw, which
we recount below, has still not been improved upon. However for a deeper
understanding, Fujikawa’s path integral treatment [Fu 79], also described
below, seems to us to be the most illuminating. The effect of an anomaly
is simply stated, although one must go through some subtle calculations
to be convinced that the effect is inescapable. An anomaly is said to
occur when a symmetry of the classical action is not a true symmetry of
the full quantum theory. The Noether current is no longer divergence-
less, but receives a contribution arising from quantum corrections. It is
this contribution which is often loosely referred to as the anomaly. The
Ward identities relating matrix elements no longer hold, but rather, are
replaced by a set of anomalous Ward identities which take into account
the correct current divergence.

There are two applications of the axial anomaly which have proved to
be of particular importance to the Standard Model. One is in connection
with the SU(3) singlet axial current described above. Here the anomaly
will end up telling us that the current is not conserved in the chiral limit,
but rather that

∂µJ
(0)
µ5 =

3αs
4π

F a
µνF̃

aµν (F̃ a
µν ≡

1

2
ϵµναβF a

αβ) . (3.3)

This will serve to keep the ninth pseudoscalar meson, the η′, from being
a pseudo-Goldstone boson.

The other application is in the decay π0 → γγ, which is historically
the process wherein the anomaly was discovered. The quantity of inter-

est here is an isovector axial current J
(3)
5µ which transforms as the third

component of an SU(3) flavor octet,

J
(3)
5µ = ūγµγ5u− d̄γµγ5d . (3.4)

Without the anomaly, one would expect that the current J
(3)
5µ would be

conserved in the chiral SU(2) limit even in the presence of electromag-
netism. This follows from the apparently correct procedure

∂µJ
(3)
5µ = ū

[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
u

− d̄
[(
/
←
∂ − iQ/A

)
γ5 − γ5 (/∂ + iQ/A)

]
d = 0 .

(3.5)
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However explicit calculation shows that the current has an anomaly, such
that

∂µJ
(3)
5µ = 2i

(
muūγ5u−mdd̄γ5d

)
+
αNc

6π
FµνF̃

µν , (3.6)

where Fµν is the electromagnetic field strength. This will be important
in predicting the π0 → γγ and η0 → γγ rates and serves as a test for the
number of quark colors.

Diagrammatic analysis

To review the work of Adler and of Bell and Jackiw, we first consider the
Ward identities for the coupling of the U(1) axial current to two gluons.
We define

T abµαβ(k, q) ≡ i
∫
d4x d4y eik·xeiq·y

⟨
0
∣∣∣T (

J
(0)
5µ (x)J

a
α(y)J

b
β(0)

)∣∣∣ 0⟩ (3.7)

where Jaα is a flavor-singlet (color-octet) vector current coupled to gluons

Jaα =
∑

q=u,d,s

qγα
λa

2
q . (3.8)

It is important to understand that the SU(3) matrices pertain here to
the color degree of freedom and should not be confused with analogous
matrices which operate in flavor space. The amplitude T abµαβ is related to
the vacuum-to-digluon matrix element by⟨

Ga(λ1, q) G
b(λ2,−k − q)

∣∣∣∣J (0)
5µ

∣∣∣∣0⟩ = ig23ϵ
†α
1 ϵ
†β
2 T

ab
µαβ(k, q) . (3.9)

There are two Ward identities, representing the conservation of axial and
vector currents. The vector Ward identity, corresponding to color current
conservation, ∂αJaα = 0, is

qαT abµαβ(k, q) = 0 . (3.10)

The axial Ward identity is derived in a similar fashion using the assumed
conservation of the U(1) axial current in the massless limit,

∂µJ
(0)
5µ (x) = 0 , (3.11)

to yield

kµT abµαβ(k, q) = 0 . (3.12)

In order to reveal the anomalous behavior of this coupling, we calculate
the vertex in lowest order perturbation theory via the triangle diagram
of Fig. III–1. With the momenta as labeled in the figure, this produces
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the amplitude

T abµαβ = −3
∫

d4p

(2π)4

[
Tr

(
γµγ5

1

p/ + k/
γβ
λb

2

1

p/ − q/
γα
λa

2

1

p/

)

+ Tr

(
γµγ5

1

p/ + k/
γα
λa

2

1

p/ + k/ + q/
γβ
λb

2

1

p/

)] (3.13)

where the prefactor of 3 arises from the three massless quarks, each of

which contributes equally.

Observe that these integrals are linearly divergent, and so may not be

well-defined. In particular, there exists an ambiguity corresponding to

the different possible ways to label the loop momentum. An example will

prove instructive, so we consider the integral

Iγ =

∫
d4p

[
pγ
p4
− (p− ℓ)γ

(p− ℓ)4

]
. (3.14)

This is evaluated by transforming to Euclidean space, where p0 = ip4
and p2 = −p24 − p2 = −p2E . In order to perform the integration, one may
note that for a general function, F (p), whose four-dimensional integral is
linearly divergent (i.e. one with p3F (p) ̸= 0, but p3F ′(p) = p3F ′′(p) =

. . . = 0 for p → ∞), one finds by Taylor expanding and using Gauss’

theorem that∫
d4pE [F (p)− F (p− ℓ)] =

∫
d4pE

[
ℓµ∂µF (p)−

1

2
ℓµℓν∂µ∂νF (p) + . . .

]
= ℓµ

∫
d3Sµ

[
F (p)− 1

2
ℓν∂νF (p) + . . .

]
p→∞

= ℓµ
∫
d3Sµ F (p)

∣∣∣∣
p→∞

(3.15)

Fig. III–1 Triangle diagram associated with the axial anomaly.
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where d3Sµ indicates integration over a three-dimensional surface at p→
∞.∗ Applying this result to the case at hand, we obtain a surface integral

Iγ = i

∫
d4pE

(
pγ
p4
− (p− ℓ)γ

(p− ℓ)4

)
= iℓµ

∫
d3Sµ

pγ
p4

= iℓµ
∫
d3S

pµ
p

pγ
p4

.

(3.16)
Note that from euclidean covariance we can replace pµpγ by δµγp

2/4, to
yield

Iγ = i
ℓγ
4

∫
d3S

1

p3
= i

π2ℓγ
2

, (3.17)

where the last step uses the surface area of a three-dimensional surface
in four-dimensional euclidean space, S4 = 2π2R3.

In the case of T abµαβ , consider the effect of shifting the integration vari-

able of the first term in Eq. (3.13) from p to p + b1q + b2(−k − q). In
order to maintain the Bose symmetry of T abµαβ (i.e. symmetry under the

interchange α↔ β at the same time as q ↔ (−k − q)) we must shift the
second integration from p to p+b1(−k−q)+b2q. Use of Eqs. (3.14)-(3.17)
then yields a change in T abµαβ of the size

∆T abµαβ =
6iδab

(2π)4
ϵµαβγ [I

γ(b1q + b2(−q − k))− Iγ(b1(−q − k) + b2q)]

= − 3δab

16π2
(b1 − b2)ϵµαβγ(2q + k)γ ,

(3.18)
induced by the shift of the original integration variable pµ. This is an
indication that there may be trouble in the calculation of this diagram,
but it is not yet proof of any violation of the Ward identities.

Let us now check the Ward identities. In both cases, use can be made
of identities similar to qα = pα − (pα − qα) in order to change the result
into a difference of integrals. We find for the vector Ward identity

qαT abµαβ(k, q)

= −3δab

2

∫
d4p

(2π)4
Tr

[
γµγ5

1

p/ + k/
γβ

1

p/ − q/
− γµγ5

1

p/ + q/ + k/
γβ

1

p/

]
= −6iδabϵµβρσ

∫
d4p

(2π)4

[
(p+ k)ρ(p− q)σ

(p+ k)2(p− q)2
− (p+ k + q)ρpσ

(p+ k + q)2p2

]
(3.19)

∗ Note that this is just the four-dimensional generalization of the one-dimensional formula∫ ∞

−∞
dx [f(x+ y)− f(x)] =

∫ ∞

−∞
dx

[
yf ′(x) +

1

2
y2f ′′(x) + . . .

]
= y [f(∞)− f(−∞)] ,

valid for f(±∞) ̸= 0 but f ′(±∞) = f ′′(±∞) = . . . = 0.
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while for the axial-vector case,

kµT abµαβ(k, q) =
3δab

2

∫
d4p

(2π)4
Tr

[
γ5γβ

1

p/ − q/
γα

1

p/

+ γ5
1

p/ + k/
γβ

1

p/ − q/
γα + γ5γα

1

p/ + k/ + q/
γβ

1

p/
+ γ5

1

p/ + k/
γα

1

p/ + k/ + q/
γβ

]

= −6iδabϵαβρσ
∫

d4p

(2π)4

[
(p+ k + q)ρpσ

(p+ k + q)2p2
− (p+ k)ρ(p− q)σ

(p+ k)2(p− q)2

+
(p+ k)ρ(p+ k + q)σ

(p+ k)2(p+ k + q)2
− (p− q)ρpσ

(p− q)2p2

]
. (3.20)

It is easy to see that if one could freely shift the integration variable, each
expression would separately vanish. However, direct calculation using
Eq. (3.14)-Eq. (3.17) yields

qαT abµαβ(k, q) = −
3δab

16π2
ϵµβρσk

ρqσ and kµT abµαβ(k, q) =
3δab

8π2
ϵαβρσk

ρqσ .

(3.21)
If, on the other hand, the original integration variable were shifted as in
Eq. (3.18) one would obtain

qαT abµαβ(k, q) = −
3δab

16π2
(1 + b1 − b2) ϵµβρσkρqσ ,

kµT abµαβ(k, q) =
3δab

8π2
(1− b1 + b2) ϵαβρσk

ρqσ .

(3.22)

Thus either one of the original Ward identities may be regained by a
particular choice of b1 − b2, but both expressions cannot vanish simulta-
neously.

The discussion of the manipulations of the Feynman diagrams should
not obscure the main physical fact illustrated above, i.e., despite the
claim of Noether’s theorem that there are two sets of conserved currents
(vector SU(3) of color and axial-vector U(1)), one-loop calculations in-
dicate that only one can in fact be conserved. On physical grounds, we
know that in Nature the vector current is conserved, as its charge corre-
sponds to QCD color charge. Thus it must be the axial current which is
not conserved. This phenomenon is at first sight quite surprising and it
deserves the name ‘anomaly’ by which it has come to be called. Noether’s
theorem has misled us, and it is only by direct calculation of the quantum
corrections that the true symmetry structure of the theory has been ex-
posed. Note that the situation is not the same as spontaneous symmetry
breaking, where the symmetry is hidden by dynamical effects. There the
currents remain conserved, as demonstrated in Sect. I–6. Here current
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conservation has been violated. In particular, the calculation described
above (with b1 − b2 = 1) is consistent through use of Eq. (3.9) with the
operator relation of Eq. (3.3),

∂µJ
(0)
5µ =

3αs
4π

F a
µνF̃

aµν . (3.23)

Both sides of this equation have the same two-gluon matrix elements. It is
clear from this that the apparent U(1) symmetry predicted by Noether’s
theorem is not a symmetry of the quantum theory after all.

Path integral analysis

In a path integral treatment [Fu 79], the symmetry of the theory can be
tested by considering the generating functional, as described in Sect. III–
2. In particular, if we consider a functional of the gluon field Abµ and an
axial current source aµ,

Z [aµ, A
c
λ] =

∫
[dψ][dψ̄] exp i

∫
d4x

(
LQCD(ψ, ψ̄, A

c
λ)− aµJ

(0)µ
5

)
(3.24)

then the steps leading to Eq. (2.14) produce

−i
∫
d4xβ(x)∂µJ̄

(0)
5µ (x) = lnZ

[
aµ − ∂µβ,Abµ

]
− lnZ

[
aµ, A

b
µ

]
(3.25)

where J̄
(0)
5µ (x) denotes the matrix elements of the current J

(0)
5 ,

J̄
(0)
5µ (x) = i

δ

δaµ(x)
lnZ

[
aν , A

b
λ

]
|aν=0 . (3.26)

In particular, the two-gluon matrix described above is given by

T abµαβ(x, y, z) = (i)2

[
δ2

δAαa (y)δA
β
b (z)

J̄
(0)
5µ (x)

] ∣∣∣∣∣Ac
λ
=0

aν=0

. (3.27)

In order to solve for ∂µJ̄
(0)
5µ , we note that the ∂µβ term can be absorbed

into a redefinition of the fermion fields. This can be seen from the identity
(for infinitesimal β),

ψ̄i/∂ψ + ∂µβ ψ̄γ
µγ5ψ = ψ̄ (1− iβγ5) i/∂ (1− iβγ5)ψ . (3.28)

The following quantities are invariant under this transformation:

ψ̄/Aaλaψ = ψ̄(1− iβγ5)/Aaλa(1− iβγ5)ψ ,

Jµ = ψ̄γµψ = ψ̄(1− iβγ5)γµ(1− iβγ5)ψ .
(3.29)
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Mass terms would not be invariant, but we are presently working in the
massless limit. Therefore, if we define

ψ′ = (1− iβγ5)ψ = e−iβγ5ψ +O(β2) ,

ψ̄′ = ψ̄(1− iβγ5) = ψ̄e−iβγ5 +O(β2) ,
(3.30)

we see that the lagrangian can be written in terms of ψ′,

LQCD(ψ, ψ̄, A
a
µ) + ∂µβ J

(0)
5µ = LQCD(ψ

′, ψ̄′, Aaµ) . (3.31)

Furthermore, we would like to change from ψ to ψ′ in the path integration.
To be general, we allow for the possibility of a jacobian J accompanying
this change of variables, viz.,∫

[dψ][dψ̄] ≡
∫

[dψ′][dψ̄′]J . (3.32)

If, as will be shown later, the jacobian J is independent of ψ and ψ̄, it
can be taken to the outside of the path integral, resulting in

Z
[
aµ − ∂µβ,Aaµ

]
=

∫
[dψ′][dψ̄′]J ei

∫
d4x(LQCD(ψ′,ψ̄′,Aa

µ)−aµJ
µ
5 )

= J Z
[
aµ, A

a
µ

]
.

(3.33)

Thus the test for the symmetry, Eq. (3.25), depends entirely on J ,

lnJ = −i
∫
d4x β(x)∂µJ̄

(0)
5µ (x) . (3.34)

The lesson learned is that if the lagrangian and the path integral measure
are invariant under the U(1) transformation, then there exists a U(1)

symmetry in the theory, with ∂µJ̄
(0)
5µ = 0. However if the lagrangian is

invariant, as it is in this case, but the path integral is not (i.e. J ̸=
1), then the U(1) transformation is not a symmetry of the theory, i.e.,

∂µJ
(0)
5µ ̸= 0.

We shall show below that the jacobian, when properly regularized, has
the form

J = exp (−2i trβγ5) = exp

[
−i

∫
d4xβ(x)

3αs
4π

F a
µνF̃

aµν

]
, (3.35)

so that the current divergence has the form given in Eq. (3.3),

∂µJ̄
(0)
5µ =

3αs
4π

F a
µνF̃

aµν .

Functional differentiation using Eq. (3.27) yields the same result for
qµT abµαβ as obtained in ordinary perturbation theory. The nontrivial trans-

formation of the path integral measure has prevented the axial U(1) trans-
formation from being a symmetry of the theory. We now turn to the
calculation of the jacobian.
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The jacobian in fact diverges, and a regularization is needed in order
to make it finite. In Fujikawa’s original calculation the regularizer was
introduced early into the procedure, allowing each step to be well-defined.
We will be slightly less rigorous by introducing the regularizer somewhat
later. In order to calculate the jacobian we need to review the properties
of integration over Grassmann numbers (which are described in more
detail in App. A–5). The anticommuting nature of the variables requires
that any function constructed from them terminates after linear order in
each variable. Thus a function of two Grassman numbers z1, z2 (z1z2 =
−z2z1, z2i = 0) becomes

f(z1, z2) = f0 + f1z1 + f2z2 + f12z1z2 , (3.36)

where f0, f1, f2, f12 are real numbers. The primary property of an integral
to be transferred to Grassmann numbers is completeness, i.e.∫

dz f(z) =

∫
dz f(z + z′) . (3.37)

where z′ is a constant Grassmann number. Expanding both sides we have∫
dz (f0 + f1z) =

∫
dz

(
f0 + f1z + f1z

′) . (3.38)

For this to be true, the condition∫
dz = 0 (3.39)

is required. Now consider a change of variables

z1 = c11z
′
1 + c12z

′
2 , z2 = c21z

′
1 + c22z

′
2 , (3.40)

involving a matrix of coefficients C. The jacobian is defined by∫
dz1 dz2 f(z) = J

∫
dz′1 dz

′
2 f(Cz

′) . (3.41)

Application of Eq. (3.36) leads to the consideration of only the f12 term,

f12

∫
dz1 dz2 z1z2 = J f12

∫
dz′1 dz

′
2 (c11z

′
1 + c12z

′
2)(c21z

′
1 + c22z

′
2)

= J f12(c11c22 − c12c21)
∫
dz′1 dz

′
2 z
′
1z
′
2 ,

(3.42)
and hence the identification of the jacobian,

J = [detC]−1 . (3.43)

Although derived in the simple 2 × 2 case, Eq. (3.43) generalizes to ar-
bitrary dimension. Note that, due to the Grassmann nature of the vari-
ables, this result is the inverse of what would be expected with normal
commuting variables.
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Turning now to the path integral, we temporarily consider ψ(x) as
a finite number of Grassmann variables corresponding to four Dirac in-
dices at each point of spacetime (i.e., imagine that the spacetime label is
discrete and finite). At each point, the transformation is from ψ → ψ′

ψ(x) = eiβ(x)γ5ψ′(x) , ψ̄(x) = ψ̄′(x) eiβ(x)γ5 , (3.44)

so that the overall jacobian has the form

J =
[
det

(
eiβγ5

)]−1 [
det

(
eiβγ5

)]−1
(3.45)

with one factor from each of the ψ and ψ̄ variables. The determinant
runs over the 4 × 4 Dirac indices, the three flavors, colors and also the
spacetime indices. This is a rather formal object, but can be made more
explicit by using

detC = e tr lnC , (3.46)

valid for finite matrices, to write

J = e−2i trβγ5 . (3.47)

The symbol tr denotes a trace acting over spacetime indices plus Dirac
indices, flavors and colors,

trβγ5 = Tr ′
∫
d4x ⟨x|βγ5|x⟩ , (3.48)

with Tr ′ indicating the Dirac, color and flavor trace. This will become
clearer through direct calculation below.

The jacobian still is not regulated. Fujikawa suggested the removal
of high energy eigenmodes of the Dirac field in a gauge-invariant way.
Consider, for example, the simple extension

J = lim
M→∞

exp
[
−2i tr

(
βγ5 e

−(/D/M)2
)]

, (3.49)

where /D is the QCD covariant derivative. The insertion of a complete
set of eigenfunctions of /D exponentially removes those with large eigen-
values. There has been an extensive literature demonstrating that other
regularization methods produce the same results as Fujikawa’s, provided
that the regulator preserves the vector gauge invariance.

In order to complete the calculation we employ the following identity:

/D /D =
1

2
{γµ, γν}DµDν +

1

2
[γµ, γν ]D

µDν

= DµD
µ +

1

4
[γµ, γν ] [D

µ, Dν ]

= DµD
µ +

g3λ
a

4
σµνF a

µν .

(3.50)
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In this case the expression⟨
x| exp−(/D/M)2|x

⟩
(3.51)

has the same form as given in Eqs. (B–1.1), (B–1.9), (B–1.17-18) with
the identifications

dµ = Dµ , σ =
g3
4
σµνλaF a

µν , τ =
1

M 2
. (3.52)

Applying the calculation done there to our present situation yields

J = lim
M→∞

e−2i
∫
d4x Tr (β(x)γ5H(x,M−2))

= lim
M→∞

e
1

8π2

∫
d4x Tr (β(x)γ5[M4a0+M

2a1+a2+O(M−2)]) .
(3.53)

The notation is defined in App. B–1. The first two traces vanish, leaving
only the factor with two σµν matrices in a2. From the result

Tr (γ5σ
µνσαβ) = −Tr γ5γ

µγνγαγβ = −4iϵµναβ , (3.54)

it is easy to calculate

J = exp

(
1

16π2

∫
d4xβ(x)Tr′

(
γ5
g23λ

aλb

16
σµνF a

µνσ
αβF b

αβ

))
= exp

(
−1
16π2

∫
d4xβ(x) 3 · 2δab · 4 iϵµναβ g

2
3

16
F a
µνF

b
αβ

)
= exp

(
−i

∫
d4xβ(x)

3αs
4π

F a
µνF̃

µν
a

)
,

(3.55)

where the trace Tr ′ has produced factors for three flavors, color and the
Dirac trace.

Although the calculation of the jacobian has been somewhat involved,
we have succeeded in making sense out of what seemed to be a rather
abstract object. The fact that it is not unity is an indication that the
U(1) transformation is not a symmetry of the theory. Applying Eq. (3.34)
we see that

lnJ = −i
∫
d4xβ(x)∂µJ̄

(0)
5µ (x) = −i

∫
d4xβ(x)

3αs
4π

F a
µνF̃

µν
a , (3.56)

or once again

∂µJ̄
(0)
5µ =

3αs
4π

F a
µνF̃

µν
a . (3.57)

The choice of a regulator which preserves the vector SU(3) gauge sym-
metry is important. Whereas in the Feynman diagram approach, we had
the apparent freedom to shift the integration variable to preserve either
the vector of axial-vector symmetries, the corresponding freedom in the
path integral case is in the choice of regularization.
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If quark masses are included, the operator relation becomes

∂µJ
(0)
5µ (x) = 2i(muūγ5u+mdd̄γ5d+mss̄γ5s) +

3αs
4π

F a
µνF̃

µν
a . (3.58)

Masses do not modify the coefficient of the anomaly, basically because
it arises from the ultraviolet divergent parts of the theory, which are
insensitive to masses.

One does not have to go through these lengthy calculations for each
new application of the anomaly. The anomalous coupling for currents

V (b)
µ = ψ̄γµT

(b)
V ψ , A(b)

µ = ψ̄γµγ5T
(b)
A ψ , (3.59)

where T
(b)
V , T

(b)
A are matrices in the space of quark flavors, is of the form

∂µA(b)
µ =

Dbcd

16π2
ϵµναβF c

µνF
d
αβ +mass terms , (3.60a)

Dbcd ≡ Nc

2
Tr

(
T
(b)
A

{
T
(c)
V , T

(d)
V

})
, (3.60b)

where Nc is the number of colors. In particular, for the electromagnetic
coupling to the isovector axial current we have

J
(3)
5µ = ūγµγ5u− d̄γµγ5d ,

Dbcd = e2NcTr τ3Q
2 =

Nc

3
e2 ,

(3.61)

leading to the result already quoted in Eq. (3.6).
The full content of the anomaly was given by Bardeen [Ba 69]. Consider

a fermion with η internal degrees of freedom (flavor or color) coupled to
vector and axial-vector currents vµ, aµ,

L = ψ (i/∂ − /v − /aγ5)ψ . (3.62)

These currents are in an η × η representation

vµ = v0µI + vkµλ
k , aµ = a0µI + akµλ

k . (3.63)

Thus the axial current is J
(k)
5µ = ψγµγ5λ

kψ, and the anomaly equation
becomes

∂µJ
(k)
5µ =

1

4π2
ϵµναβ Tr

[
λk

(
1

4
vµνvαβ +

1

12
aµνaαβ

−2i

3
aµaνvαβ −

2i

3
vµνaαaβ −

2i

3
aµvναaβ −

8

3
aµaνaαaβ

)]
,

vµν = ∂µvν − ∂νvµ + i[vµ, vν ] + i[aµ, aν ] ,

aµν = ∂µaν − ∂νaµ + i[vµ, aν ]− i[vν , aµ] . (3.64)
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This may also be expressed in terms of the left-handed and right-handed
field tensors ℓµν and rµν by using the identities,

ℓµν ≡ ∂µℓν − ∂νℓµ + i[ℓµ, ℓν ] = vµν + aµν ,

rµν ≡ ∂µrν − ∂νrµ + i[rµ, rν ] = vµν − aµν ,
1

4
vµνvαβ +

1

12
aµνaαβ =

1

12
(ℓµνℓ

µν + rµνr
µν) +

1

24
(ℓµνr

µν + rµνℓ
µν) .

(3.65)
In the language of Feynman diagrams, one encounters the anomaly contri-
butions not only in the triangle diagram, but also in square and pentagon
diagrams (e.g. from the aµaνaαaβ term). Our previous result, Eq. (3.57),

is obtained for aµ = 0, vµ = g3A
k
µλ

k/2, with three flavors and three colors
of quarks.

We have seen that symmetries of the classical lagrangian are not al-
ways symmetries of the full quantum theory. This is the general situation
when there are anomalies. These appear in perturbation theory and are
associated with divergent Feynman diagrams. This sometimes gives the
mistaken impression that the dynamics has ‘broken’ the symmetry, and
hence one might expect a massless particle through the application of
Goldstone’s theorem. In the path integral framework the impression is
different. There the symmetry never exists in the first place, as the cal-
culation performed above is simply the path integral test for a symmetry,
generalizing Noether’s theorem. Hence there is in general no expectation
for a Goldstone boson.

Can anomalies cause problems? When the anomaly occurs in a global
symmetry, such as the above U(1) example, the answer is ‘no’. They
just need to be taken properly into account, e.g. as in Eq. (3.61). Given
the specific form of the anomaly operator relation, there exist ‘anoma-
lous Ward identities’ which contain terms attributable to the anomaly
[Cr 78]. These anomalies can even be associated with a variety of spe-
cific phenomena. For example, in Sect. VII–6 we shall see how the decay
π0 → γγ is attributed to the axial anomaly.

The presence of anomalies in gauge theories is far more serious be-
cause they destroy the gauge invariance of the theory and wreak havoc
with renormalizability. Thus, one attempts to employ only those gauge
theories which have no anomalies. In some cases this can be arranged
by ensuring, through the group or particle content of the theory, that
the coefficient Dbcd of Eq. (3.60b) vanish. For example, in the Standard
Model it must be checked that this occurs for all combinations of the
SU(3)c × SU(2)L × U(1)Y generators. These were already compiled in
Eqs. (II–3.5a-c) and were seen to lead to the quantized fermion charge
values observed in Nature.
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III–4 Classical scale invariance and the trace anomaly

If the fermion masses were zero in either QED or QCD, these theories
would contain no dimensional parameters in the lagrangian, and they
would exhibit a classical scale invariance. The associated quark and gluon
scale transformations would be ψ(x)→ λ3/2ψ(λx) and Aaµ(x)→ λAaµ(λx)
for arbitrary λ. We saw in Sect. I–4 that this leads to a traceless energy-
momentum tensor, with conserved dilation current Jµscale,

Jµscale = xνθ
µν , ∂µJ

µ
scale = θνν = 0 , (4.1)

where θµν is the energy-momentum tensor. Such a situation would have
drastic consequences on the theory, since all single particle states would
be massless. This can be seen as follows. For any hadron H, the matrix
element of the energy-momentum tensor at zero momentum transfer is

⟨H(k) |θµν |H(k)⟩ = 2kµkν , (4.2)

where the normalization of states is chosen in accordance with the con-
ventions defined in App. C–3. A vanishing trace would imply zero mass,
i.e. ⟨

H(k)
∣∣θµµ∣∣H(k)

⟩
= 0 = 2M 2

H . (4.3)

This is most obviously a problem in QCD where the quark masses are
small compared to most composite particle masses.∗ We would not expect
the proton mass to vanish if the quark masses were set equal to zero, yet
the scale invariance argument implies that it must.

A resolution is suggested by the method which is used to renormalize
the theory. In practice, renormalization prescriptions introduce dimen-
sional scales into the theory. Most commonly, there is the momentum
scale at which one specifies the running coupling constant to have a par-
ticular value, e.g. αs(91GeV) = 0.12. This in turn defines a scale Λ which
enters the formula for the running coupling constant, Eq. (II–2.74). Thus,
to fully specify QCD one needs to specify not only the lagrangian, but
also a scale parameter, and the full quantum theory is not scale invari-
ant. Although this argument does not, at first sight, seem to nullify the
reasoning based on Noether’s theorem, it turns out that the trace of the
energy-momentum tensor has an anomaly [Cr 72, ChE 72, CoDJ 77], and
the specification of a scale and the coefficient of the anomaly are in fact
related.

In the following, let us start directly with the path integral treatment
[Fu 81], again in the framework of QCD, concentrating on the effect of
a single quark. We can introduce an external source coupled to θµµ into

∗ As can be justified, we neglect here the existence of very heavy quarks, c, b and t.



III–4 Classical scale invariance and the trace anomaly 21

the generating functional

Z[h,Aaµ] =

∫
dψ dψ̄ exp i

∫
d4x

[
LQCD(ψ,A

a
µ) + h(x)θµµ

]
, (4.4)

where

θµν =
i

2
ψ̄γµ
↔
Dνψ . (4.5)

As in the case of the chiral anomaly, we can use this as a starting point
to explore the nature of the trace θµµ. The key is that if one makes the
change of variables

ψ(x) = e−α(x)/2ψ′(x) , (4.6)

one obtains for infinitesimal α∫
d4x

[
LQCD

(
ψ,Aaµ(x)

)
+ α(x)θµµ

]
=

∫
d4x

[
LQCD

(
ψ′, Aaµ

)
+ α(x)mψ̄′ψ′ + iψ̄′γµψ

′∂µα
]
.

(4.7)

The last term vanishes after an integration by parts. The focus of our
calculation can thus be shifted to a jacobian J by a change of variable,

Z
[
h+ α,Aaµ

]
=

∫
dψ dψ̄ ei

∫
d4x[LQCD(ψ,Aa

µ)+(h+α)θµµ]

=

∫
dψ dψ̄ ei

∫
d4x[LQCD(ψ′,Aa

µ)+hθ
µ
µ+αmψ̄

′ψ′]

=

∫
dψ′ dψ̄′ J ei

∫
d4x[LQCD(ψ′,Aa

µ)+hθ
µ
µ+αmψ̄

′ψ′] .

(4.8)

Thus we obtain the identity

i

∫
d4x θµµα(x) = lnJ + i

∫
d4x mψ̄ψ α(x) . (4.9)

The form of the jacobian which follows from the work done in Sect. III–3
is

J =
[
det

(
e−α/2

)]−2
= lim

M→∞
eTr

′
∫
d4x ⟨x|α exp−(D//M)2|x⟩ , (4.10)

where we have adopted the same regulator as used previously.
The final result is easily obtained from the general heat kernel calcu-

lation of App. B–1, again using the identities of Eqs. (B–1.17), (B–1.18).
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After some algebra this becomes

Tr ′
⟨
x
∣∣exp −(/D/M)2

∣∣x⟩
=
iM 4

16π2
Tr ′

[
1− g23λ

aλb

32M 4
σµνσαβF a

µνF
b
αβ +

[Dµ, Dν ][Dµ, Dν ]

12M 4
+ . . .

]
=

3iM4

4π2
+

ig23
48π2

F a
µνF

µν
a + . . . .

(4.11)
Here we have found both a term which is a divergent constant, and one
which involves two-gluon field strengths. The divergent constant corre-
sponds to the infinite zero-point energy of the vacuum. This can be seen
by noting that if the zero point energy is defined by the vacuum matrix
element

⟨0|H(x)|0⟩ = E0

V
=

⟨
0
∣∣θ00(x)∣∣ 0⟩ , (4.12)

then Lorentz covariance requires a non-zero trace

⟨0 |θµν(x)| 0⟩ = E0

V
gµν =⇒

⟨
0
∣∣θµµ(x)∣∣ 0⟩ = 4

E0

V
. (4.13)

Thus, a constant in the vacuum matrix element of the trace is just four
times the zero point energy density. It is standard practice to subtract off
this zero point energy, and we shall do so by dropping the constant term.
This is similar to the procedure of normal ordering the energy-momentum
tensor.

If we now combine these results using Eq. (4.9), we obtain

i

∫
d4x θµµα(x) = i

∫
d4x

[
g23

48π2
F a
µνF

µν
a +mψ̄ψ

]
α(x) (4.14)

which is equivalent to the operator relation

θµµ =
αs
12π

F a
µνF

µν
a +mψ̄ψ . (4.15)

One may also derive the trace anomaly via the calculation of a Feynman
diagram, the triangle diagram of Fig. III–1 but with the axial current
replaced by the energy-momentum tensor. The trace anomaly is different
from the chiral anomaly in that it also receives contributions from gluons.
In the Feynman diagram approach, this arises from the replacement of
quark lines by gluons, while in the path integral context it occurs when
one considers scale transformations of the gluon field. A full calculation
yields

θµµ =
βQCD

2g3
F a
µνF

µν
a +muuu+mddd+msss+ . . . , (4.16)
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where βQCD is the beta function of QCD (cf. Eq. (II–2.57b)). The result
of our previous calculation, Eq. (4.15), corresponds to the lowest order
contribution of a single quark to the beta function.

A feeling of why the beta function enters can be obtained from an
extremely simple, but heuristic, derivation of the trace anomaly. Let
us rescale the gluon field to A

a
µ ≡ g3A

a
µ, such that the massless action

becomes

L = − 1

4g23
F̄ a
µνF̄

µν
a + iψγµD̄µψ . (4.17)

The coupling constant g3 now enters only as an overall factor in the first
term. However in renormalizing the coupling constant, we need to intro-
duce a renormalization scale. If we interpret this coupling as a running
parameter, the action is no longer invariant under scale transformations.
Instead, taking λ = 1 + δλ, we find

δS

δλ
=

∫
d4x

∂

∂λ

(
− 1

4g23(λ)

)
F̄ a
µνF̄

µν
a =

∫
d4x

βQCD(g3)

2g3
F a
µνF

µν
a , (4.18)

where we have changed back to the standard normalization of Aaµ in the
final term. By Noether’s theorem, the scale current is no longer conserved,
and Eq. (4.16) is reproduced. The need to specify a scale in defining the
coupling constant has removed the scale invariance of the theory.

The trace anomaly occupies a significant place in the phenomenology
of hadrons because it is the signal for the generation of hadronic masses.
Returning to the discussion of masses which began this section, we see
that the mass of a state is expressible as a matrix element of the energy-
momentum trace. For example, we find for the nucleon state that

mN ū(p)u(p) = ⟨N(p)|θµµ|N(p)⟩

= ⟨N(p)|
βQCD

2g3
F a
µνF

µν
a +mss̄s+muūu+mdd̄d|N(p)⟩ .

(4.19)

The terms containing the light quark masses mu,md are expected to be
small, and indeed the ‘σ-term’ determined in πN scattering (cf. Sect. XII–
3) implies that they contribute about only 45 MeV. This leaves the bulk of
the nucleon’s mass to the gluon and s-quark terms in Eq. (4.19), of which
the F µν

a F a
µν part is expected to be dominant. Although this presents

a conceptual problem for the naive quark model interpretation of the
proton as a composite of three light quarks, it is nevertheless a central
result of QCD.

III–5 Chiral anomalies and vacuum structure

There is a fascinating connection between the axial anomaly described
previously in this chapter and the vacuum of QCD. This has important
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phenomenological consequences for both the η′ mass and the strong CP
problem. Here we present an introductory account of this topic [Pe 89].

The θ-vacuum

One is used to considering the effect on gluon fields of ‘small’ gauge
transformations, i.e. those which are connected to the identity operator
in a continuous manner. There also exist ‘large’ gauge transformations
which change the color gauge fields in a more drastic fashion. For example
the gauge transformation [JaR 76] generated by

Λ1(x) ≡
x2 − d2

x2 + d2
+

2idτ · x
x2 + d2

, (5.1)

where d is an arbitrary parameter and τ is an SU(2) Pauli matrix in any
SU(2) subgroup of SU(3), transforms the null potential A(x) = 0 into

A
(1)
j (x) = − i

g3
(∇jΛ1(x)) Λ

−1
1 (x)

= − 2d

g3 (x2 + d2)2
[
τj(d

2 − x2) + 2xj(τ · x)− 2d(x× τ )j
]
.

(5.2)
Here, we are using the matrix notation

Aµ = Aaµ
λa

2
. (5.3)

This potential lies in an SU(2) subgroup of the full color SU(3) group,
and is ‘large’ in the sense that it cannot be brought continuously into the
identity. The τ · x factor couples the internal color indices to the spatial
position such that a path in coordinate space implies a corresponding path
in the SU(2) color subspace. All gauge potentials Aµ carry a conserved
topological charge called the winding number,

n =
ig33
24π2

∫
d3xTr (Ai(x)Aj(x)Ak(x)) ϵ

ijk . (5.4)

As can be demonstrated by direct substitution, the gauge field of Eq. (5.2)
corresponds to the value n = 1. Fields with any integer value of the
winding number n can be obtained by repeated applications of Λ1(x),
viz.,

Λn(x) = [Λ1(x)]
n . (5.5)

All gauge potentials can be classified into disjoint sectors labeled by their
winding number.

The existence of these distinct classes has interesting consequences.
For example, consider a configuration of the gluon field that starts off at
t = −∞ as the zero potentialA(x) = 0, has some interpolatingA(x, t) for
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intermediate times, and ends up at t = +∞ lying in the gauge equivalent
configuration A(x) = A(1)(x).∗ Then the following integral can be shown
to be nonvanishing:

g23
32π2

∫
d4xF a

µνF̃
aµν (F̃ aµν ≡ 1

2
ϵµναβF a

αβ) . (5.6)

This is surprising because the integrand is a total divergence. As noted
previously in Eq. (II–2.23), FF̃ can be written as

F a
µνF̃

aµν = ∂µK
µ , Kµ = ϵµνλσ[AaνF

a
λσ +

1

3
g3fabcA

a
νA

b
λA

c
σ] , (5.7)

and thus the integral can be written as a surface integral at t = ±∞. For
the field configuration under consideration, this reduces to the winding
number integral

g23
32π2

∫
d4xF a

µνF̃
aµν =

g23
32π2

∫
d4x ∂µK

µ

=
g23

32π2

∫
d3xK0

∣∣∣∣t=∞
t=−∞

=
g33

24π2
i

∫
d3x ϵijk Tr

(
A

(1)
i (x)A

(1)
j (x)A

(1)
k (x)

)
= 1 .

(5.8)

More generally, the integral of FF̃ gives the change in the winding num-
ber

g23
32π2

∫
d4xF a

µνF̃
aµν =

g23
32π2

∫
d3xK0

∣∣∣∣t=∞
t=−∞

= n+ − n− (5.9)

between asymptotic gauge field configurations.
Thus, the vacuum state vector will be characterized by configurations of

gluon fields which fall into classes labeled by the winding number. More-
over, there will exist a corespondence between the gauge transformations
{Λn} and unitary operators {Un} which transform the state vectors. For
example, a vacuum state dominated by field configurations in the zero
winding class (‘near’ to Aµ = 0) would be transformed by U1 into config-
urations with a dominance of n = 1 configurations, or more generally,

U1|n⟩ = |n+ 1⟩ . (5.10)

∗ Such configurations are known to exist [Co 85].
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This implies that a gauge-invariant vacuum state requires contributions
from all classes, such as the coherent superposition

|θ⟩ =
∑
n

e−inθ|n⟩ , (5.11)

where θ is an arbitrary parameter. It follows from Eq. (5.10) that this
θ-vacuum is gauge-invariant up to an overall phase

U1|θ⟩ = eiθ|θ⟩ . (5.12)

TheQCD vacuummust contain contributions from all topological classes.

The θ-term

Given this nontrivial vacuum structure, one requires three ingredients
to completely specify QCD: (1) the QCD lagrangian, (2) the coupling
constant (i.e. ΛQCD), and (3) the vacuum label θ. How can we account
for the different vacua corresponding to different choices of θ? In a path
integral representation, the θ = 0 vacuum would imply generic transition
elements of the form

out⟨θ = 0|X|θ = 0⟩in =

∫
[dAµ][dψ] [dψ̄] Xe

iSQCD =
∑
n,m

out⟨m|X|n⟩in .

(5.13)
The presence of a nonzero θ leads to an extra phase,

out⟨θ|X|θ⟩in =
∑
n,m

ei(m−n)θ out⟨m|X|n⟩in . (5.14)

However, this phase can be accounted for in the path integral by the
addition of a new term to SQCD. In particular we have, through the use
of Eq. (5.9),

out⟨θ|X|θ⟩in =

∫
[dAµ][dψ][dψ̄] X eiSQCD+i

g2
3

32π2 θ
∫
d4xFa

µν F̃
aµν

=
∑
n,m

ei(m−n)θ out⟨m|X|n⟩out ,
(5.15)

where X is some operator. We see that the quantity (m−n) given by the
winding number difference of the fields contributing to the path integral
is equivalent to a new exponential factor containing F a

µνF̃
aµν . Thus a

correct procedure for doing calculations involving θ-vacua is to follow the
ordinary path integral methods but with a QCD lagrangian containing
the new term

LQCD = L(θ=0)
QCD + θ

g23
32π2

F a
µνF̃

aµν . (5.16)
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The parameter θ is to be considered a coupling constant. Since the op-
erator FF̃ is P -odd and T -odd, a nonzero θ can induce measurable T
violation. In Sect. IX–4, we shall show how to connect θ to physical ob-
servables. There is an important distinction between the various θ vacua
of QCD and the many possible vacuum states of a spontaneously bro-
ken symmetry such as the Higgs sector of the electroweak theory. In the
latter case, the various possible vacuum expectation values of the Higgs
field label different states within the same theory. In contrast, each value
of θ corresponds to a different theory, just as each value of ΛQCD would
label a different theory. Specifying θ and ΛQCD then specifies the content
of the version of QCD used by Nature.

Connection with chiral rotations

There is a connection between the axial anomaly and the presence of a
θ-vacuum [’tH 76a,b]. It involves the matrix element of FF̃ as follows.
Consider the limit of Nf massless quarks. The U(1) axial current

J
(0)
5µ =

Nf∑
j=1

ψ̄jγµγ5ψj (5.17)

is not conserved due to the anomaly,

∂µJ
(0)
5µ =

Nfαs
4π

F a
µνF̃

aµν . (5.18)

However, because of the fact that FF̃ is a total divergence, one can define
a new conserved current

J̃5µ = J
(0)
5µ −

Nfαs
4π

Kµ . (5.19)

While J̃5µ does form a conserved charge,

Q̃5 =

∫
d3x J̃5,0(x) , (5.20)

neither Q̃5 nor J̃5µ is gauge-invariant. In fact, under the gauge transfor-

mation Λ1 of Eq. (5.1), it follows from Eq. (5.8) that the operator Q̃5

changes by a c-number integer

U1Q̃5U
−1
1 = Q̃5 − 2Nf . (5.21)

This tells us that in the world of massless quarks, the different θ-vacua
are related by a chiral U(1) transformation,

U1 e
iαQ̃5 |θ⟩ = U1e

iαQ̃5U−11 U1|θ⟩ = ei(θ−2Nfα)eiαQ̃5 |θ⟩ , (5.22)
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or from Eq. (5.12),

eiαQ̃5 |θ⟩ = |θ − 2Nfα⟩ , (5.23)

where α is a constant. Therefore, in the limit of massless quarks, when
Q̃5 is a conserved quantity, all of the θ-vacua are equivalent and one can
transform away the θ dependence by a chiral U(1) transformation. The
same is not true if quarks have mass, as the mass terms in LQCD are not
invariant under a chiral transformation. We shall return to this topic in
Sect. IX–4.

To summarize, one finds that the existence of topologically nontrivial
gauge transformations, and of field configurations which make transitions
between the different topological sectors of the theory, leads to the exis-
tence of nonvanishing effects from a new term in the QCD action. Chiral
rotations can change the value of θ, allowing it to be rotated away if any
of the quarks are massless. However for massive quarks, the net effect is
a measurable CP violating term in the QCD lagrangian.

III–6 Baryon and lepton number
violation in the Standard Model

An even more dramatic effect arises from an anomaly in the current
for the total baryon plus lepton number (B + L). Baryon number ap-
pears to be a conserved quantity when Noether’s theorem is applied to
the lagrangian of the Standard Model, as is total lepton number∗. The
invariances are

q → eiφBq, ℓ→ eiφLℓ (6.1)

for all quarks q and leptons ℓ. The corresponding currents involve the
sum over all quarks and leptons

JµB =
1

3
(ūγµu+ d̄γµd+ ....)

JµL = ēγµe+ ν̄Lγ
µνL + .... ,

(6.2)

where the normalization of the baryon current is chosen to give a baryon
a charge of +1.

The baryon current is vectorial, and naively might not be expected to
have an anomaly. However, the coupling of the quarks to the SU(2)L
and U(1)Y gauge bosons violates parity, so that there are V V A triangle

∗ If there are neutrino Majorana masses, lepton number will be violated. However, this is inde-
pendent of the anomaly effect discussed in this section. Majorana masses will be discussed in
Chap. VI.
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diagrams involving the baryon current with two gauge currents. For ex-
ample, the triangle diagram involving the baryon current with the U(1)Y
hypercharge current has a V V A triangle involving the quantum number
sum

Tr(B(YL + YR)(YL − YR)) = −2 (6.3)

where B = 1/3 for quarks and B = 0 for leptons. These diagrams then
yield an anomaly. Because the axial current of this triangle is a gauge
current, any gauge invariant regularization of the triangle diagram will
place the anomaly in global baryon number current even though it is
vectorial (see the discussion surrounding Eq. (3.22)). Similar anomalies
occur in the lepton number current∗. The anomalies cancel if we take the
difference of the baryon and lepton currents, with the resulting anomaly
equations

∂µ(J
µ
B − J

µ
L) = 0

∂µ(J
µ
B + JµL) =

3

32π2

(
g22F

i
µνF̃

µν
i − g

2
1BµνB̃

µν
)

.
(6.4)

Here we see that, because of the anomaly, baryon number is in fact not
conserved in the Standard Model, although B − L is.

However, the baryon number violation due to the anomaly is unmea-
surably small at low temperature. Any transition that would change
baryon number is non-perturbative in nature, as it is not seen in the
usual perturbative Feynman rules. In weakly coupled field theory, such
non-perturbative phenomena are suppressed in rate by a factor [’tH 76]

[e−8π
2/g22 ]2 ∼ 10−160 , (6.5)

so that such transitions are unobservable.
At high temperatures the situation is different [KuRS 85]. The clas-

sical solution mediating a transition which changes baryon number, a
sphaleron [KlM 84], is known in the limit θw → 0 and the corrections due
to a non-zero θw can be estimated. The solution has an energy around
Esph ∼ 10 TeV, taking into account the measured Higgs boson mass. At
high temperature, thermal effects can cause transitions with a Boltzmann
factor e−Esph/T , and at very high temperatures all suppressions disappear
and the rate per unit volume scales with the temperature Γ/V ∼ T 4.

This has an important consequence – at equilibrium in the early uni-
verse an initial excess of baryons can disappear. More precisely, the
equilibrium value of B + L is zero at high temperature. However, B − L
is still conserved, so that an initial excess of B − L will be preserved.

∗ Because possible right handed neutrinos have no gauge couplings, their presence would not
modify the anomaly
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It is natural to ask if a sufficiently large baryon asymmetry in the
Universe can be generated by out-of-equilibrium processes near the elec-
troweak phase transition, using only Standard Model interactions. The
answer appears to be negative [GaHOP 94], as the necessary CP viola-
tion within the Standard Model is too small and the phase transition is
not strong enough. New interactions near the weak scale could provide
the needed extra physics. Alternatively, the residual baryon asymmetry
may arise from a net B − L generated in the universe before the elec-
troweak epoch. Within the context of the Standard Model interactions,
the simplest such possibility is leptogenesis involving heavy right-handed
neutrinos with Majorana masses. This mechanism will be discussed in
Sect. VI–6.

Problems

1) Currents and anomalies
a) Verify that all currents coupled to gauge bosons in the Standard

Model are anomaly free.
b) Find the relative strength of the anomaly coupling of the baryon

number current to the SU(2)L and U(1)R gauge bosons.
2) Trace anomaly in QED

In d dimensions, the trace of the energy-momentum tensor does not
vanish classically, except at d = 4. For example, in massless QED the
energy-momentum tensor,

θµν = −F µ
λ F

λν +
1

4
gµνF λσFλσ +

i

2
ψ̄γµ
↔
Dνψ ,

has trace θµµ = d−4
4 F λσFλσ. In the renormalization of the operator

F λσFλσ, one encounters a renormalization constant which diverges as
d → 4. Use this feature to calculate the QED trace anomaly using
dimensional regularization.


