]			۸.	_			_
	X	<u></u>	K		ک 1	E	

Note Title 7/10/2018

1) U(1) effective lagrangian

Consider a theory with a complex scalar field φ with a U(1) global symmetry $\varphi \to \varphi' = \exp(i\theta) \varphi$. The lagrangian will be

$$\mathcal{L} = \partial_{\mu} \varphi^* \partial^{\mu} \varphi + \mu^2 \varphi^* \varphi - \lambda (\varphi^* \varphi)^2$$

a) Minimize the potential to find the ground state and write out the lagrangian in the basis

$$\varphi = \frac{1}{\sqrt{2}}(v + \varphi_1(x) + i\varphi_2(x))$$

Show that φ_2 is the Goldstone boson.

b) Use this lagrangian to calculate the low-energy scattering of $\varphi_2 + \varphi_2 \to \varphi_2 + \varphi_2$. Show that despite the non-derivitive interactions of the lagrangian, cancelations occur such that leading scattering amplitude starts at order p^4 .

c) Instead of the basis above express the lagrangian using an exponential basis,

$$\varphi = \frac{1}{\sqrt{2}}(v + \Phi(x))e^{i\chi(x)/v} .$$

Show that in this basis a 'shift symmetry' $\chi \to \chi + c$ is manifest.

d) Calculate the same scattering amplitude using this basis and show that the results agree. Note that the fact that the amplitude is of order p^4 is more readily apparent in this basis.

Renaming field (Haay's thm.)

1) Effective lagrangian for $\mu \rightarrow e + \gamma$

In describing the decay $\mu \to e + \gamma$, one may try to use an effective lagrangian $\mathcal{L}_{3,4}$ which contains terms of dimensions 3 and 4,

$$\mathcal{L}_{3,4} = a_3(\bar{e}\mu + \bar{\mu}e) + ia_4(\bar{e}\,D\!\!\!/\mu + \bar{\mu}\,D\!\!\!/e)$$

where $D_{\mu} \equiv \partial_{\mu} + ieQ_{\rm el}A_{\mu}$ and a_3, a_4 are constants.

- a) Show by direct calculation that $\mathcal{L}_{3,4}$ does not lead to $\mu \to e + \gamma$.
- b) If $\mathcal{L}_{3,4}$ is added to the QED lagrangian for muons and electrons, show that one can define new fields μ' and e' to yield a lagrangian which is diagonal in flavor. Thus, even in the presence of $\mathcal{L}_{3,4}$, there are two conserved fermion numbers.
- c) At dimension 5, $\mu \to e + \gamma$ can be described by a gauge-invariant effective lagrangian containing constants c,d,

$$\mathcal{L}_5 = \bar{e}\sigma^{\alpha\beta}(c + d\gamma_5)\mu F_{\alpha\beta} + \text{h.c.}$$
 .

Obtain bounds on c, d from the present limit for $\mu \to e + \gamma$.

Effective Lagrangian for Higgs

In class we derived an approximate effective Lagrangian for the Higg coupling to gauge fields $\int_{eff} = \frac{d_s}{24\pi} \ln\left(\frac{N+H}{N}\right) F_{uv}^a F^{a\,uv}$

(valid when M4 4 Mt)

Use this to show that the 66->HH amplitude vanishes at threshold (Hint " + 3 H (4)

This is phenomenologically relevant as it is an approx. reason for the suppressed di-Higgs rate.

Oravety without tensor indices

Using $I \sim \begin{bmatrix} 1 & R + C & R^2 \end{bmatrix}$ and dropping endices

on the metric (g = 1 + h) 3

1) treating both terms on equal footing, find the propagator

- 2) Show that the potential is (+ Yukawa)
- 3) Find a bound on c, knowing that table top expts do not see the Yukawa
- 4) The EFT treatment has a 5 (x) instead of a yuhawa. How is this consistent?

Schroedinger eg for gravity

Take a scalar field coupled to gravity $\Gamma_{5} = \Gamma_{5} \left[g^{nv} \partial_{n} \phi \partial_{v} \phi - m^{2} \phi^{2} \right]$ with $g_{nv} = \gamma_{nv} + h_{ny}$; $h_{nv} = \left(J \right) \frac{2GM}{T}$

Find the Euler Lagrange equations, to be the non relativistic limit and thereby find the Schroedinger eq in a gravitational field.

Use the ar coefficient given in class to obtain the wavefunctions renormalizations constant for QED.

The graft web page has the Appendix B from "Dynamics of the Standard Model" which also contains the relevant formulas.