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We outline the program to apply modern quantum field theory methods to calculate observables
in classical general relativity through a truncation to classical terms of the multi-graviton two-
body on-shell scattering amplitudes between massive fields. Since only long-distance interactions
corresponding to non-analytic pieces need to be included, unitarity cuts provide substantial simpli-
fications for both post-Newtonian and post-Minkowskian expansions. We illustrate this quantum
field theoretic approach to classical general relativity by computing the interaction potentials to
second order in the post-Newtonian expansion, as well as the scattering functions for two massive
objects to second order in the post-Minkowskian expansion. We also derive an all-order exact result
for gravitational light-by-light scattering.

PACS numbers: 04.60.-m, 04.62.+v, 04.80.Cc

Today it is universally accepted that classical general
relativity can be understood as the ~→ 0 limit of a quan-
tum mechanical path integral with an action that, min-
imally, includes the Einstein-Hilbert term. It describes
gravitational interactions in terms of exchanges and in-
teractions of spin-2 gravitons with themselves (and with
matter) [1, 2]. The language of effective field theory
encompasses this viewpoint, and it shows that a large-
distance quantum field theoretic description of gravity
is well defined order by order in a derivative expan-
sion [3, 4]. Quantum mechanics thus teaches us that
we should expect classical general relativity to be aug-
mented by higher-derivative terms. More remarkably,
what would ordinarily be a quantum mechanical loop ex-
pansion contains pieces at arbitrarily high order that are
entirely classical [5, 6]. A subtle cancellation of factors
of ~ is at work here. This leads to the radical conclusion
that one can define classical general relativity perturba-
tively through the loop expansion. Then ~ plays a role
only at intermediary steps, a dimensionful regulator that
is unrelated to the classical physics the path integral de-
scribes.

For the loop expansion, central tools have been the uni-
tarity methods [7] which reproduce those parts of loop
amplitudes that are “cut constructable”, i.e. all non-
analytic terms of the amplitudes. This amounts to an
enormous simplification, and most of today’s amplitude
computations for the Standard Model of particle physics
would not have been possible without this method. In
classical gravity, the long-distance terms we seek are pre-
cisely of such non-analytic kind, being functions of the di-
mensionless ratio m/

√
−q2, where m is a massive probe,

and qµ describes a suitably defined momentum trans-

fer [4]. This leads to the proposal that these modern
methods be used to compute post-Newtonian and post-
Minkowskian perturbation theory of general relativity for
astrophysical processes such as binary mergers. This has
acquired new urgency due to the recent observations of
gravitational waves emitted during such inspirals.

While the framework for classical general relativity as
described above would involve all possible interaction
terms in the Lagrangian, ordered according to a deriva-
tive expansion, one can always choose to retain only the
Einstein-Hilbert action. Quantum mechanically this is
inconsistent, but for the purpose of extracting only clas-
sical results from that action, it is a perfectly valid trun-
cation. This scheme relies on a separation of the long-
distance (infrared) and short-distance (ultraviolet) con-
tributions in the scattering amplitudes in quantum field
theory. We will follow that strategy here, but one may
apply the same amplitude methods to actions that con-
tain, already at the classical level, higher-derivative terms
as well. In the future, this may be used to put better ob-
servational bounds on such new couplings.

In [8] Damour proposed a new approach for convert-
ing classical scattering amplitudes into the effective-one-
body Hamiltonian of two gravitationally interacting bod-
ies. In this work we take a different route and we show
how scattering amplitude methods, which build on the
probabilistic nature of quantum mechanics, may be used
to derive classical results in gravity. We show how tree-
level massless emission from massive classical sources
arises from quantum multiloop amplitudes, thus provid-
ing an all-order argument extending the original observa-
tions in [6]. We apply this method to derive the scattering
angle between two masses to second post-Minkowskian
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order using the eikonal method.
We start with the Einstein-Hilbert action coupled to a

scalar field φ

S=

∫
d4x
√
−g
[

1

16πG
R+

1

2
gµν∂µφ∂νφ−

m2

2
φ2
]
. (1)

Here R is the curvature and gµν is the metric, de-
fined as the sum of a flat Minkowski component ηµν
and a perturbation κhµν with κ ≡

√
32πG. It is cou-

pled to the scalar stress-energy tensor Tµν ≡ ∂µφ∂νφ −
ηµν
2

(
∂ρφ∂ρφ−m2φ2

)
.

Scalar triangle integrals [9] are what reduces the one-
loop two-graviton scattering amplitude to classical gen-
eral relativity [4, 10] in four dimensions. For the long-
distance contributions these are the integrals that pro-
duce the tree-like structures one intuitively associates
with classical general relativity. To see this, consider
first the triangle integral of one massive and two mass-
less propagators,

I.(p1, q) =

=

∫
d4`

(2π)4
1

`2 + iε

1

(`+ q)2 + iε

1

(`+ p1)2 −m2
1 + iε

, (2)

with p1 = (E, ~q/2), p2 = (E,−~q/2) and q ≡ p1 − p2 =
(0, ~q) and E =

√
m2

1 + ~q2/4, and we work with the
mostly negative metric (+ − −−). The curly lines are
for massless fields and the left solid line is for a particle
of incoming momentum p1, outgoing momentum p2 and
mass p21 = p22 = m2

1.
In the large mass approximation we focus on the region

|~̀| � m1 we have (`+ p1)2 −m2
1 = `2 + 2` · p1 ' 2m1`0

therefore the integral reduces in that limit to

1

2m1

∫
d4`

(2π)4
1

`2 + iε

1

(`+ q)2 + iε

1

`0 + iε
. (3)

We perform the `0 integral by closing the contour of in-
tegration in the upper half-plane to get∫

|~̀|�m

d3~̀

(2π)3
i

4m

1

~̀2

1

(~̀+ q)2
= − i

32m|~q|
. (4)

This result can be obtained by performing the large mass
expansion of the exact expression for the triangle integral
as shown in the Appendix.

In (4) we recognize the three-dimensional integral of
two static sources localized at different positions, repre-
sented as shaded blobs, and emitting massless fields

∫
d3~̀

(2π)3
1

~̀2

1

(~̀+ q)2
←→ (5)

Below we show how this allows us to recover the first
post-Newtonian correction to the Schwarzschild metric
from quantum loops. We now explain how the classical
part emerges from higher-loop triangle graphs, starting
with two-loop triangles

I..(1)(p1, q) = (6)

+ +

In the large mass limit |~̀i| � m1 for i = 1, 2, 3 and
approximating (`i + p1)2 − m2

1 ' 2`i · p1 ' 2m1`
0
i the

integral reduces in that limit to

I..(1)(p1, q) = −
∫ 3∏

i=1

d4`i
(2π)4

1

`2i + iε

×
(2π)3δ(3)(

∑3
i=1

~̀
i + ~q)

(`1 + q)2 + iε
× 2πδ(`01 + `02 + `03)

×
( 1

2m1`01 + iε

1

2m1`02 − iε
+

1

2m1`03 + iε

1

2m1`01 − iε

+
1

2m1`03 + iε

1

2m1`02 − iε

)
. (7)

We note that

δ(`01 + `02 + `03)
( 1

2m1`01 + iε

1

2m1`02 − iε

+
1

2m1`03 + iε

1

2m1`01 − iε
+

1

2m1`03 + iε

1

2m1`02 − iε

)
= 0 +O(ε) , (8)

so that only the `0 residue at 2m1`
0 = ±iε contributes,

giving

I..(1)(p1, q) =
i

4m2
1

∫
d3~̀1
(2π)3

d3~̀2
(2π)3

1

~̀2
1

1

~̀2
2

1

(~̀1 + ~̀
2 + ~q)2

1

(~̀1 + ~q)2
.

(9)

We now consider the large mass expansion of the graph

I..(2)(p1, q) = (10)
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which to leading order reads

I..(d)(p1, q) = −1

3

∫ 3∏
i=1

(
d4`i

(2π)4
1

`2i + iε

)
× (2π)3δ(3)(`1 + `2 + `3 + q)

× 2πδ(`01 + `02 + `03)
( 1

2m1`01 + iε

1

2m1`02 − iε

+
1

2m1`03 + iε

1

2m1`01 − iε
+

1

2m1`03 + iε

1

2m1`02 − iε

)
,

(11)

and evaluates to

I..(2)(p1, q) =
1

12m2
1

∫
d3~̀1
(2π)3

d3~̀2
(2π)3

1

~̀2
1

1

~̀2
2

1

(~̀1 + ~̀
2 + ~q)2

.

(12)
The expressions (9) and (12) are precisely the coupling
of three static sources to a massless tree amplitude

I..(1)(p1, q), I..(2)(p1, q)↔

(13)
A generalisation of the identity (8) implies that the sum
of all the permutation of n massless propagators con-
nected to a massive scalar line results in the coupling of
classical sources to multileg tree amplitudes [11, 12]. The
same conclusion applies to massive particles with spin as
we will demonstrate elsewhere.

This analysis applies directly to the computation of an
off-shell quantity such as the metric itself. Consider the
absorption of a graviton

〈p2|Tµν |p1〉 =
−i

2m1

∫
d4`

(2π)4
Pρσ,αβ
`2 + iε

Pκλ,γδ
(`+ q)2 + iε

τρσ1 (p1 − `, p1)τκλ1 (p1 − `, p2)τ3µν
αβ,γδ(`, `− q)

(`+ p1)2 −m2
1 + iε

, (14)

where τ1 is the vertex for the coupling of one graviton to
a scalar given in [13, eq. (72)], τ3 is the three graviton
vertex given in [13, eq. (73)] and Pµν,ρσ is the projection
operator given in [13, eq. (30)]. In the large m limit
|q|/m � 1 projects the integral on the 00-component of
the scalar vertex τµν1 (p1 − `, p1) ' iκm2

1δ
µ
0 δ
ν
0 . Focusing

on the 00 component we have in this limit [12]

〈p2|T00|p1〉 ' 4iπGm3
1

∫
d4`

(2π)4

(
3

8
~q 2 − 3

2
~̀ 2
)

× 1

(`2 + iε)((`+ q)2 + iε)((`+ p1)2 −m2
1 + iε)

=
3κ2m3

128
|~q| , (15)

where we used the result of the previous section to
evaluate the triangle integral. This reproduces the
classical first post-Newtonian contribution to the 00-
component of the Schwarzschild metric evaluated in [13].
It also immediately shows how to relate a conventional
Feynman-diagram evaluation with the computation of
Duff [14] who derived such tree-like structures from clas-
sical sources.

SCALAR INTERACTION POTENTIALS

For the classical terms we need only the graviton cuts,
and instead of computing classes of diagrams, we apply
the unitarity method directly to get the on-shell scatter-
ing amplitudes [10, 15]. We first consider the scattering
of two scalars of masses m1 and m2, respectively. At
one-loop order this entails a two-graviton cut of a mas-
sive scalar four-point amplitude. We have shown that
classical terms arise from topologies with loops solely en-
tering as triangles that include the massive states. When
we glue together the two on-shell scattering amplitudes,
we thus discard all terms that do not correspond to such
topologies. Rational terms are not needed, as they cor-
respond to ultra-local terms of no relevance for the long-
distance interaction potentials.

We first recall the classical tree-level result from the
one-graviton exchange

M1 =

=−16πG

q2
(
m2

1m
2
2−2(p1 · p4)2−(p1 · p4)q2

)
, (16)

where incoming momenta are p1 and p4 and p21 = p22 =
m2

1, p23 = p24 = m2
2 and the momentum transfer q =

p1 − p2 = −p4 + p3.
The two-graviton interaction is clearly a one-loop am-

plitude that can be constructed using the on-shell uni-
tarity method [10, 15]. The previous analysis shows that
the classical piece is contained in the triangle graphs

M2 = + (17)

=−i(8πG)2

(
c(m1,m2)I.(p1, q)

(q2 − 4m2
1)
2 +

c(m2,m1)I.(p4,−q)
(q2 − 4m2

2)
2

)
,

with for the interaction between two massive scalars

c(m1,m2) = (q2)5 + (q2)4
(
6p1 · p4 − 10m2

1

)
+ (q2)3

(
12(p1 · p4)2 − 60m2

1p1 · p4 − 2m2
1m

2
2 + 30m4

1

)
−(q2)2

(
120m2

1(p1 · p4)2 − 180m4
1p1 · p4 − 20m4

1m
2
2 + 20m6

1

)
+q2

(
360m4

1(p1 · p4)4 − 120m6
1p1 · p4 − 4m6

1(m2
1 + 15m2

2)
)

+ 48m8
1m

2
2 − 240m6

1(p1 · p4)2 . (18)
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At leading order in q2, using the result (4) the
two gravitons exchange simplifies to just, in agreement
with [16, eq (3.26)] and [15, 17],

M2 =
6π2G2

|~q|
(m1 +m2)(5(p1 · p4)2 −m2

1m
2
2) +O(|~q|) .

(19)
Note the systematics of this expansion. The Einstein

metric is expanded perturbatively, and all physical mo-
menta are provided at infinity. Contractions of momenta
are performed with respect to the flat-space Minkowski
metric only, and no reference is made to space-time co-
ordinates. This is a gauge invariant expression for the
classical scattering amplitude that is independent of co-
ordinate choices (and gauge choices). To derive a classical
non-relativistic potential, we need to choose coordinates:
We Fourier transform the gauge invariant momentum-
space scattering amplitude. This introduces coordinate
dependence even in theories such as Quantum Electrody-
namics. Moreover, just as in Quantum Electrodynamics,
we must also be careful in keeping sub-leading terms of
this Fourier transform and thus expand in q0 consistently.
This forces us to keep velocity-dependent terms in the
energy that are of the same order as the naively defined
static potential. One easily checks that the overall sign
of the amplitudes in (16) and (19) are precisely the ones
required for an attractive force.

The result of this procedure has been well documented
elsewhere, starting with the pioneering observations of
Iwasaki [5], and later reproduced in different coordinates
in [15, 18]. Although we are unable to reproduce the
individual contributions in [5, eqs. (A.1.4)–(A.1.6)] our
final result for the interaction energy is to this order

H =
~p21

2m1
+

~p24
2m2

− ~p41
8m3

1

− ~p44
8m3

2

(20)

− Gm1m2

r
− G2m1m2(m1 +m2)

2r3

− Gm1m2

2r

(
3~p21
m2

1

+
3~p24
m2

2

− 7~p1 · ~p4
m1m2

− (~p1 · ~r)(~p4 · ~r)
m1m2r2

)
,

which precisely leads to the celebrated Einstein-Infeld-
Hoffmann equations of motion. It is crucial to correctly
perform the subtraction of the iterated tree-level Born
term in order to achieve this.

THE POST-MINKOWSKIAN EXPANSION

The scattering problem of general relativity can be
treated in a fully relativistic manner, without a truncated
expansion in velocities. To this end, we consider here the
full relativistic scattering amplitude and expand in New-
ton’s constant G only. For the scalar-scalar case we thus
return to the complete classical one-loop result (17). The
conventional Born-expansion expression that is used to

derive the quantum mechanical cross section is not ap-
propriate here, even if we keep only the classical part of
the amplitude. That expression for the cross section is
based on incoming plane waves, and will not not match
the corresponding classical cross section beyond the lead-
ing tree-level term. In fact, even the classical cross sec-
tion is unlikely to be of any interest observationally. So
a more meaningful approach is to use the classical scat-
tering amplitude to compute the scattering angle of two
masses colliding with a given impact parameter b.

We use the eikonal approach to derive the relationship
between small scattering angle θ and impact parameter
b. Generalizing the analysis of ref. [19] (see also [20]) to
the case of two scalars of masses m1 and m2, we focus
on the high-energy regime s, t large and t/s small. Note
that in addition to expanding in G, we are also expand-
ing the full result (17) in q2, and truncating already at
next-to-leading order. We go to the center of mass frame
and define p2 ≡ |~p1|2 = |~p4|2. The impact parameter

is defined by a two-dimensional vector ~b orthogonal to
~p1 = −~p4, with b ≡ |~b|. In the eikonal limit we find the
exponentiated relationship between the scattering ampli-
tude

M(~b) ≡
∫
d2~qe−i~q·

~bM(~q) , (21)

and scattering function χ(b) to be

M(~b) = 4p(E1 + E2)(eiχ(
~b) − 1) . (22)

In order to compare with the first computation of post-
Minkowskian scattering to order G2 [21], we introduce
new kinematical variables M2 ≡ s, M̂2 ≡ M2 − m2

1 −
m2

2. We go to the center of mass frame where p2 =
(M̂4 − 4m2

1m
2
2)/4M2. In terms of the scattering angle

θ we have t ≡ q2 = [(M̂4 − 4m2
1m

2
2) sin2(θ/2)]/M2, and

4p(E1 + E2) = 2
√
M̂4 − 4m2

1m
2
2. Keeping, consistently,

only the leading order in q2 of the one-loop amplitude
(21), we obtain

2 sin(θ/2)=
−2M√

M̂4 − 4m2
1m

2
2

∂

∂b
(χ1(b) + χ2(b)) , (23)

where χ1(b) and χ2(b) are the tree-level and one-loop
scattering functions given respectively by the Fourier
transform of the scattering amplitudes

χi(b) =
1

2
√
M̂4 − 4m2

1m
2
2

∫
d2~q

(2π)2
e−i~q·

~bMi(~q) . (24)

At the leading order in q2 the tree-level and one-loop
amplitudes in (16) and (19) read

M1(~q) =
8πG

~q2
(M̂4 − 2m2

1m
2
2) ,

M2(~q) =
3π2G2

2|~q|
(m1 +m2)(5M̂4 − 4m2

1m
2
2) . (25)
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Only the triangle contribution contribute to the one-loop
loop scattering function because the contributions from
the boxes and cross-boxes contributed to the exponenti-
ation of the tree-level amplitude [19, 22]. The scattering
functions then read

χ1(b) = 2G
M̂4 − 2m2

1m
2
2√

M̂4 − 4m2
1m

2
2

(
1

d− 2
− log

(
b

2

)
− γE

)
,

χ2(b) =
3πG2

8
√
M̂4 − 4m2

1m
2
2

m1 +m2

b
(5M̂4 − 4m2

1m
2
2) ,

(26)

with the scattering angle to this order

2 sin

(
θ

2

)
=

4GM

b

(M̂4 − 2m2
1m

2
2

M̂4 − 4m2
1m

2
2

+
3π

16

G(m1 +m2)

b

5M̂4 − 4m2
1m

2
2

M̂4 − 4m2
1m

2
2

)
. (27)

This result agrees with the expression found by Westp-
fahl [21] who explicitly solved the Einstein equations to
this order in G and in the same limit of small scattering
angle. We find the present approach to be superior in
efficiency, and very easily generalizable to higher orders
in G.

Taking the massless limit m2 = 0 and approximating
2 sin(θ/2) ' θ, we recover the classical bending angle of

light θ = 4Gm1

b + 15π
4

G2m2
1

b2 , including its first non-trivial
correction in G, in agreement with [23, §101]. We have
additionally computed the full expression for the classical
part of the scalar-fermion (spin 1/2) amplitude up to and
including one-loop order, but do not display the results
here for lack of space. We stress that the small-angle
scattering formula derived above is based on only a small
amount of the information contained in the full one-loop
scattering amplitude (17).

LIGHT-BY-LIGHT SCATTERING IN GENERAL
RELATIVITY

Photon-photon scattering is particularly interesting, as
our analysis will show how to derive an exact result in
general relativity. As explained above, classical contri-
butions from loop diagrams require the presence of mas-
sive triangles in the loops. For photon-photon scattering
there are no such contributions to any order in the ex-
pansion, and we conclude that photon-photon scattering
in general relativity is tree-level exact

Mγγ = + +

(28)

− 8πG
2tr(f1f2f3f4) + 2tr(f1f3f4f2)− tr(f1f2)tr(f3f4)

(p1 − p2)2

− 8πG
2tr(f1f4f3f2) + 2tr(f1f3f2f4)− tr(f1f4)tr(f2f3)

(p1 + p4)2

− 8πG
2tr(f1f3f4f2) + 2tr(f1f3f2f4)− tr(f1f3)tr(f2f4)

(p1 − p3)2
,

where the traces are evaluated over the Lorentz indices
and fµνi = εµi p

ν
i−ενi p

µ
i are the field-strength of the photon

fields. When considering polarised photons, it is imme-
diate to check that this amplitude is non-vanishing only
for scattering of photons of opposite polarisation (helic-
ity) as no force is expected between photons of the same
polarisation (heliticity) [24]. This is a result that one
can also derive by solving to leading order the Einstein
equations of classical general relativity [25, §114].

CONCLUSION

We have explicitly shown how loops of the Feynman di-
agram expansion become equal to the tree-like structures
coupled to classical sources thus demystifying the appear-
ance of loop diagrams in classical gravity, and, at the
same time, linking the source-based method directly to
conventional Feynman diagrams. Interestingly, the man-
ner in which the `0-integrations conspire to leave tree-like
structures from loops of triangle graphs also forms the
precise bridge to classical general relativity computations
based on the world-line formulation (see, e.g., [26–31]).

Enormous simplifications occur when computing what
corresponds to on-shell quantities, based on the unitar-
ity method [7]. Non-analytic terms [4] involving powers

of m/
√
−q2 produce the long-distance classical contribu-

tions from the loops. By the rules of unitarity cuts, we
can reconstruct these non-analytic pieces by gluing tree-
level amplitudes together while summing over physical
states of the graviton legs only [10, 15–17, 22].

Scalar interaction potentials form the backbone of
gravitational wave computations for binary mergers. The
fact that the unitarity method provides these results
straightforwardly provides hope that this is the begin-
ning of a new approach to both post-Newtonian and
post-Minkowskian calculations in general relativity, in-
cluding those relevant for the physics of gravitational
waves. Since the method applies to the general effective
field theory of gravity, this opens up a way to constrain
terms beyond the Einstein-Hilbert action that may affect
the observational signal of gravitational waves.
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Appendix: The finite massive triangle integral

We evaluate the ultraviolet and infrared finite triangle
integral for p2 > 0 and q2 < 0

I.(p, q)=

∫
d4`

(2π)4
1

(`2+iε)((`+q)2+iε)((`+p)2−p2+iε)
.

(29)
The parametric representation of this integral is [32]

I.(p1, q) =
i

16π2

∫
x1≥0
x2≥0

dx1dx2
(1 + x1 + x2)(q2x1x2 − p2)

. (30)

Integrating over x1 leads to

I.(p1, q) = i

∫ ∞
0

log(1 + x2) + log(x2) + log
(
− q

2

p2

)
16π2(p2 + q2x2(1 + x2))

dx2 .

(31)
We are interested in the case q2/p2 < 0, and we setting
ρ+ ≡ − 1

2 + 1
2

√
1− 4p2/q2 and ρ− ≡ − 1

2−
1
2

√
1− 4p2/q2.

It is immediate to evaluate the integration over x2

I.(p1, q) = i
6ζ(2) + log (−ρ+ρ−) log

(
− ρ+
ρ−

)
16π2q2

√
1− 4p2/q2

+ i
Li2

(
2,− 1

ρ+

)
− Li2

(
2,− 1

ρ−

)
16π2q2

√
1− 4p2/q2

, (32)

where we have introduced the dilogarithm function
(see [33] for a definition and properties)

Li2(z) ≡ −
∫ z

0

log(1− t)dt
t
, for z ∈ C . (33)

For small |q2/p2| � 1 we find

I.(p1, q) =
i

32q2

√
−q

2

p2
+O(q2/p2) . (34)
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