Nordie 4 - GR as QFT/EFT DONOGHUE

Note Tile

Final topics:

Unitarity Methods

Double Copy

Light Bending

Classical physics from loops

Background Field Method and 't Hooft Veltnam

Stort

Non-boost action

Limits to the EFT

Recall

Tree Theorem

This made me investigate the entire subject in great detail to find out what the trouble is. I discovered in the process two things. First, I discovered a number of theorems, which as far as I know are new, which relate closed loop diagrams and diagrams without closed loop diagrams (I shall call the latter diagrams "trees"). The unitarity relation which I have just been describing, is one connection between a closed loop diagram and a tree; but I found a whole lot of other ones, and this gives me more tests on my machinery. So let me just tell you a little bit about this theorem, which gives other rules. It is rather interesting. As a matter of fact, I proved that if you have a diagram with rings in it there are enough theorems altogether, so that you can express any diagram with circuits completely in terms of diagrams with trees and with all momenta for tree diagrams in physically attainable regions and on the mass shell. The demonstration is remarkably easy. There are several ways of demonstrating it: I'll only chose one. Things propagate from one place to another, as I said, with

amplitudo	$iM_0^{\text{tree}}(p_1, p_2, k_1^+, k_2^+) = \frac{\kappa_{(4)}^2}{16} \frac{1}{(k_1 \cdot k_2)} \frac{m^4 \left[k_1 k_2\right]^4}{(k_1 \cdot p_1)(k_1 \cdot p_2)},$
P.V. => GIZ + GI3 + GBA.	$iM_0^{\text{tree}}(p_1, p_2, k_1^-, k_2^+) = \frac{\kappa_{(4)}^2}{16} \frac{1}{(k_1 \cdot k_2)} \frac{\langle k_1 p_1 k_2 \rangle^2 \langle k_1 p_2 k_2 \rangle^2}{(k_1 \cdot p_1)(k_1 \cdot p_2)},$
- recognize by cuts	Spino beliety
$= \frac{4}{10\pi} \frac{6\pi}{2^2}$	
Universal soft theorem at I loop	
7	ow Tackin Gross, Warsbey &
loop also universel	Holsterio Ross V

Classial Physics from Quantum Foop

Folh theoren: Loop expansion = to expansion

— not tene

Twassli, Gupta + Redford > classical port

+ Modern

What gras wrong?

Th. The Things

At one loop to me to me

Backgrowd Field Method 't Hooft Voltmas

Jun = Jun (x) + K hunder)

Expand around backgrown

Full covariance w. n. t. \(\overline{g} \)

Gauge invariance

\[
\chi^m \times \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m \times \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m - \chi^m + \overline{g}^m
\]

\[
\sigma^m - \chi^m + \overlin

 $\frac{\text{Limit of } EFI}{M = M_0 \left[1 + Gg^2 \ln g^2 + Gg^4 + - 1 \right]}$ $\frac{\text{Fals} \qquad Gg^3 \sim O(1) \qquad g^2 > M_t^2}{Fab}$ $\frac{\text{Fals} \qquad GG_t g^2 > 1}{2}$

IR issue:

Grav interactions baild up 1 - GP Tr larg, classical effect - Diff eq Tacknings Only weal field quantus BH useres

Core theory!

Z = [d+3A24] exp = [-4F2+4x84+2+2+2+4-V(+)
-1-2R+c,R2+c,R2+c,R2+...]

[&]quot;A lot of portentous drivel has been written about the quantum theory of gravity, so I'd like to begin by making a fundamental observation about it that tends to be obfuscated. There is a perfectly well-defined quantum theory of gravity that agrees accurately with all available experimental data." Frank Wilczek Physics Today