Notes on K-L divergence and MaxEnt learning

Robert Staubs
rstaubs@linguist.umass.edu

October 13, 2014

1 What is this?

Solving with numerical optimizers is greatly aided if we have an explicit, known gradient. MaxEnt offers us (relatively) easy answers in likelihood maximization and K-L divergence minimization.

Here I include some notes on how these gradients are derived, as well as comments on their interpretation and implementation. These notes serve both as a tool for a successor to work such as HGR, as well as a codification of things I have in scattered notes.

Among those contents are notes on the calculation of Hessians (second derivatives) for MaxEnt. These are of potential use in optimization, but have not before been a part of HGR. Hessian calculations will be added to this document when I can typeset them.

Please let me know if you have comments, questions, corrections, clarifications, etc.

2 Definitions

Let X be the set of inputs, with members x.
Let Y_{x} be the sets of outputs, with members y. (I will abbreviate these.)
Let $z \subset y$ denote the hidden structures z compatible with the output $y . Z_{x}$ is the set of hidden structures available in the tableau for x.

Let $w_{(i)}$ indicate the i th weight, $v_{(i)}$ the i th element of a violation vector (etc.)
N_{x} is the MaxEnt normalization for a tableau with input x.
p and q are the predicted MaxEnt distribution and the empirical distribution, respectively.

3 Recurring gradients

$$
\begin{array}{rlr}
\frac{\partial}{\partial w_{(i)}} N_{x} & =\frac{\partial}{\partial w_{(i)}} \sum_{y^{\prime} \in Y_{x}} \sum_{z^{\prime} \subset y^{\prime}} e^{w^{T} v_{x z^{\prime}}} \\
& =\sum_{y^{\prime} \in Y_{x}} \sum_{z^{\prime} \subset y^{\prime}} v_{x z^{\prime}(i)} e^{w^{T} v_{x z^{\prime}}} \quad \text { def. } \\
& =\sum_{z \in Z_{x}} v_{x z(i)} e^{w^{T} v_{x z}} \tag{3}
\end{array}
$$

$$
\begin{align*}
\frac{\partial}{\partial w_{(i)}} p(y \mid x) & =\frac{\partial}{\partial w_{(i)}} \sum_{z \subset y} p(y, z \mid x) \\
& =\frac{\partial}{\partial w_{(i)}} \sum_{z \subset y} \frac{e^{w^{T} v_{x z}}}{N_{x}} \tag{5}\\
& =\sum_{z \subset y} \frac{\left(v_{x z(i)} e^{w^{T} v_{x z}}\right)\left(N_{x}\right)-\left(e^{w^{T} v_{x z}}\right)\left(\frac{\partial N_{x}}{\partial w_{(i)}}\right)}{N_{x}^{2}} \tag{6}\\
& =\sum_{z \subset y} \frac{\left(v_{x z(i)} e^{w^{T} v_{x z}}\right)\left(N_{x}\right)-\left(e^{w^{T} v_{x z}}\right)\left(\sum_{z^{\prime} \in Z_{x}} v_{x z^{\prime}(i)} e^{\left.w^{T} v_{x z^{\prime}}\right)}\right.}{N_{x}^{2}} \tag{7}\\
& =\sum_{z \subset y} p(y, z \mid x)\left(v_{x z(i)}-\sum_{z^{\prime} \in Z_{x}} p\left(y, z^{\prime} \mid x\right) v_{x z^{\prime}(i)}\right) \tag{8}\\
& =\sum_{z \subset y} p(y, z \mid x)\left(v_{x z(i)}-E\left[v_{x(i)}\right]\right) \tag{9}\\
& =\sum_{z \subset y}\left(p(y, z \mid x) v_{x z(i)}\right)-p(y \mid x) E\left[v_{x(i)}\right] \tag{10}
\end{align*}
$$

quotient rule
see above

MaxEnt defs.
def. exp.

$$
\begin{array}{rlr}
\frac{\partial}{\partial w_{(i)}} \log p(y \mid x) & =\frac{1}{p(y \mid x)} \frac{\partial}{\partial w_{(i)}} p(y \mid x) & \text { chain rule } \\
& =\frac{1}{p(y \mid x)}\left(\sum_{z \subset y}\left(p(y, z \mid x) v_{x z(i)}\right)-p(y \mid x) E\left[v_{x(i)}\right]\right) & \text { above } \\
& =\left(\sum_{z \subset y} \frac{p(y, z \mid x)}{p(y \mid x)} v_{x z(i)}\right)-E\left[v_{x(i)}\right] & \\
& =\left(\sum_{z \subset y} p(z \mid x, y) v_{x z(i)}\right)-E\left[v_{x(i)}\right] & \text { def. cond. prob. } \\
& =E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right] & \text { def. cond. exp. } \tag{15}
\end{array}
$$

4 Gradients for Kullback-Leibler divergences

K-L divergence is not symmetric: $D(p \| q) \neq D(q \| p)$, in general. We have been using $D(q \| p)$ up til now in HGR. This is fairly typical, using the divergence which places the true values on the left.

Computing the gradient is largely a matter of plugging in what we have from above:

$$
\begin{array}{rlr}
D(q \| p) & =\sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x) \log \frac{q(y \mid x)}{p(y \mid x)} \\
\frac{\partial D}{\partial w_{(i)}} & =\frac{\partial}{\partial w_{(i)}} \sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x)(\log q(y \mid x)-\log p(y \mid x)) & \text { def. } \\
& =-\sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x)\left(\frac{\partial}{\partial w_{(i)}} \log p(y \mid x)\right) & q \text { constant w.r.t. } w \\
& \left.=-\sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x)\left[E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right]\right] & \text { see aboverties } \tag{19}
\end{array}
$$

$E\left[v_{x(i)}\right]$ is the expected amount of violation of the i th constraint, under the predicted distribution. Computing it therefore involves computing the distribution over full structures for a tableau and weighting the violations. These are then summed. This is one-liner if done in matrix math, as it probably should be.
$E\left[v_{x(i)} \mid y\right]$ is a similar expectation, but taken only over a certain output. To compute this, the
distribution over full structures compatible with a given output is computed and used to weight violations. The one-liner is similar here, but it has to be embedded in some logic that subdivides the data into sub-tableaux for each output.
q is the empirical distribution, and therefore involves no novel calculation.
In the maximum likelihood case, there is only a single winner in each tableau. The K-L gradient thus reduces to the following, where y_{x}^{*} is the target output for the input x.

$$
\begin{array}{rlrl}
\frac{\partial D}{\partial w_{(i)}} & \left.=-\sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x)\left[E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right]\right] & \quad \text { above } \\
& \left.=-\sum_{x \in X} \sum_{y=y_{x}^{*}}\left[E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right]\right] & & \text { only one winner } \tag{21}
\end{array}
$$

When there is no hidden structure, it is instead the conditional expectation that simplifies:

$$
\begin{array}{rlr}
\frac{\partial D}{\partial w_{(i)}} & \left.=-\sum_{x \in X} \sum_{y \in Y_{x}} q(y \mid x)\left[E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right]\right] \\
& =-\sum_{x \in X} \sum_{y \in Y_{x}}\left[v_{x y(i)}-E\left[v_{x(i)}\right]\right] \quad \text { above } \tag{24}
\end{array}
$$

These combine trivially in the case where there is a single, fully specified target output for every input:

$$
\begin{equation*}
\frac{\partial D}{\partial w_{(i)}}=-\sum_{x \in X} \sum_{y=y_{x}^{*} Y_{x}}\left[v_{x y(i)}-E\left[v_{x(i)}\right]\right] \quad \text { one full structure, one winner } \tag{25}
\end{equation*}
$$

This is all that is needed to implement K-L as found in HGR. It might be that someone would want the other direction on K-L. It is here:

$$
\begin{align*}
D(p \| q) & =\sum_{x \in X} \sum_{y \in Y_{x}} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)} \\
\frac{\partial D}{\partial w_{(i)}} & =\frac{\partial}{\partial w_{(i)}} \sum_{x \in X} \sum_{y \in Y_{x}} p(y \mid x)(\log p(y \mid x)-\log q(y \mid x)) \\
& =\sum_{x \in X} \sum_{y \in Y_{x}}\left(\frac{\partial}{\partial w_{(i)}} p(y \mid x)\right)(\log p(y \mid x)-\log q(y \mid x)) \\
& +p(y \mid x)\left(\frac{\partial}{\partial w_{(i)}}(\log p(y \mid x)-\log q(y \mid x))\right) \\
& =\sum_{x \in X} \sum_{y \in Y_{x}}\left(\sum_{z \subset y}\left(p(y, z \mid x) v_{x z(i)}\right)-p(y \mid x) E\left[v_{x(i)]}\right](\log p(y \mid x)-\log q(y \mid x))\right. \\
& +p(y \mid x)\left(E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right) \\
& =\sum_{x \in X} \sum_{y \in Y_{x}} p(y \mid x)\left(E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right)(\log p(y \mid x)-\log q(y \mid x)) \\
& +p(y \mid x)\left(E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right) \\
& =\sum_{x \in X} \sum_{y \in Y_{x}} p(y \mid x)\left(E\left[v_{x(i)} \mid y\right]-E\left[v_{x(i)}\right]\right)(\log p(y \mid x)-\log q(y \mid x)+1)
\end{align*}
$$

The core expectation comparison is the same as before, but it is somewhat obscured. Note that within this is the $p-q$ divergence - p multiplied by the \log difference between p and q. A form reflecting this seems to more obfuscate than clarify, however.
N.B. I have not numerically checked the final form here for hidden structure, though I have checked it for overt structure. I advise asking me or checking the result numerically if you implement this.

