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1 What is this?

Solving with numerical optimizers is greatly aided if we have an explicit, known gradient. MaxFEnt
offers us (relatively) easy answers in likelihood maximization and K-L divergence minimization.

Here I include some notes on how these gradients are derived, as well as comments on their
interpretation and implementation. These notes serve both as a tool for a successor to work such
as HGR, as well as a codification of things I have in scattered notes.

Among those contents are notes on the calculation of Hessians (second derivatives) for MaxEnt.
These are of potential use in optimization, but have not before been a part of HGR. Hessian
calculations will be added to this document when I can typeset them.

Please let me know if you have comments, questions, corrections, clarifications, etc.

2 Definitions

Let X be the set of inputs, with members =x.

Let Y, be the sets of outputs, with members y. (I will abbreviate these.)

Let z C y denote the hidden structures z compatible with the output y. Z, is the set of hidden
structures available in the tableau for x.

Let wy;) indicate the ith weight, v(; the ith element of a violation vector (etc.)

N, is the MaxEnt normalization for a tableau with input x.

p and ¢ are the predicted MaxEnt distribution and the empirical distribution, respectively.
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hidden struc. def. (4)

MaxEnt def. (5)

quotient rule (6)

see above (7)

MaxEnt defs. (8)

def. exp. (9)

(10)
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4 Gradients for Kullback-Leibler divergences

K-L divergence is not symmetric: D(p||q) # D(q||p), in general. We have been using D(g||p) up
til now in HGR. This is fairly typical, using the divergence which places the true values on the
left.

Computing the gradient is largely a matter of plugging in what we have from above:
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Elvg] is the expected amount of violation of the ith constraint, under the predicted distribu-
tion. Computing it therefore involves computing the distribution over full structures for a tableau
and weighting the violations. These are then summed. This is one-liner if done in matrix math,
as it probably should be.

E [vx(i)\y] is a similar expectation, but taken only over a certain output. To compute this, the



distribution over full structures compatible with a given output is computed and used to weight
violations. The one-liner is similar here, but it has to be embedded in some logic that subdivides
the data into sub-tableaux for each output.

q is the empirical distribution, and therefore involves no novel calculation.

In the maximum likelihood case, there is only a single winner in each tableau. The K-L

gradient thus reduces to the following, where v is the target output for the input z.

= - Z Z y‘l‘ U:L"(z)‘y] - E[U:p(z)”] above (20)

zeX yEYac

= Z Z [E[Um(i)|y] - E[Um(i)]]] only one winner (21)

zeX y=y3

When there is no hidden structure, it is instead the conditional expectation that simplifies:
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These combine trivially in the case where there is a single, fully specified target output for

every input:
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r€X y=y;Ya

This is all that is needed to implement K-L as found in HGR. It might be that someone would

want the other direction on K-L. It is here:
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The core expectation comparison is the same as before, but it is somewhat obscured. Note
that within this is the p-g divergence—p multiplied by the log difference between p and ¢. A form
reflecting this seems to more obfuscate than clarify, however.

N.B. I have not numerically checked the final form here for hidden structure,
though I have checked it for overt structure. I advise asking me or checking the result numerically

if you implement this.



