
Notes on K-L divergence and MaxEnt learning

Robert Staubs

rstaubs@linguist.umass.edu

October 13, 2014

1 What is this?

Solving with numerical optimizers is greatly aided if we have an explicit, known gradient. MaxEnt

offers us (relatively) easy answers in likelihood maximization and K-L divergence minimization.

Here I include some notes on how these gradients are derived, as well as comments on their

interpretation and implementation. These notes serve both as a tool for a successor to work such

as HGR, as well as a codification of things I have in scattered notes.

Among those contents are notes on the calculation of Hessians (second derivatives) for MaxEnt.

These are of potential use in optimization, but have not before been a part of HGR. Hessian

calculations will be added to this document when I can typeset them.

Please let me know if you have comments, questions, corrections, clarifications, etc.

2 Definitions

Let X be the set of inputs, with members x.

Let Yx be the sets of outputs, with members y. (I will abbreviate these.)

Let z ⊂ y denote the hidden structures z compatible with the output y. Zx is the set of hidden

structures available in the tableau for x.

Let w(i) indicate the ith weight, v(i) the ith element of a violation vector (etc.)

Nx is the MaxEnt normalization for a tableau with input x.

p and q are the predicted MaxEnt distribution and the empirical distribution, respectively.

1

3 Recurring gradients

∂

∂w(i)
Nx =

∂

∂w(i)

∑
y′∈Yx

∑
z′⊂y′

ew
T vxz′ def. (1)

=
∑
y′∈Yx

∑
z′⊂y′

vxz′(i)e
wT vxz′ chain rule (2)

=
∑
z∈Zx

vxz(i)e
wT vxz (3)

∂

∂w(i)
p(y|x) =

∂

∂w(i)

∑
z⊂y

p(y, z|x) hidden struc. def. (4)

=
∂

∂w(i)

∑
z⊂y

ew
T vxz

Nx
MaxEnt def. (5)

=
∑
z⊂y

(vxz(i)e
wT vxz)(Nx)− (ew

T vxz)(∂Nx
∂w(i)

)

N2
x

quotient rule (6)

=
∑
z⊂y

(vxz(i)e
wT vxz)(Nx)− (ew

T vxz)(
∑

z′∈Zx
vxz′(i)e

wT vxz′)

N2
x

see above (7)

=
∑
z⊂y

p(y, z|x)

vxz(i) −
∑
z′∈Zx

p(y, z′|x)vxz′(i)

 MaxEnt defs. (8)

=
∑
z⊂y

p(y, z|x)
(
vxz(i) − E[vx(i)]

)
def. exp. (9)

=
∑
z⊂y

(
p(y, z|x)vxz(i)

)
− p(y|x)E[vx(i)] (10)

2

∂

∂w(i)
log p(y|x) =

1

p(y|x)

∂

∂w(i)
p(y|x) chain rule (11)

=
1

p(y|x)

(∑
z⊂y

(
p(y, z|x)vxz(i)

)
− p(y|x)E[vx(i)]

)
above (12)

=

(∑
z⊂y

p(y, z|x)

p(y|x)
vxz(i)

)
− E[vx(i)] (13)

=

(∑
z⊂y

p(z|x, y)vxz(i)

)
− E[vx(i)] def. cond. prob. (14)

= E[vx(i)|y]− E[vx(i)] def. cond. exp. (15)

4 Gradients for Kullback-Leibler divergences

K-L divergence is not symmetric: D(p||q) 6= D(q||p), in general. We have been using D(q||p) up

til now in HGR. This is fairly typical, using the divergence which places the true values on the

left.

Computing the gradient is largely a matter of plugging in what we have from above:

D(q||p) =
∑
x∈X

∑
y∈Yx

q(y|x) log
q(y|x)

p(y|x)
def. (16)

∂D

∂w(i)
=

∂

∂w(i)

∑
x∈X

∑
y∈Yx

q(y|x)(log q(y|x)− log p(y|x)) log properties (17)

= −
∑
x∈X

∑
y∈Yx

q(y|x)

(
∂

∂w(i)
log p(y|x)

)
q constant w.r.t. w (18)

= −
∑
x∈X

∑
y∈Yx

q(y|x)
[
E[vx(i)|y]− E[vx(i)]]

]
see above (19)

E[vx(i)] is the expected amount of violation of the ith constraint, under the predicted distribu-

tion. Computing it therefore involves computing the distribution over full structures for a tableau

and weighting the violations. These are then summed. This is one-liner if done in matrix math,

as it probably should be.

E[vx(i)|y] is a similar expectation, but taken only over a certain output. To compute this, the

3

distribution over full structures compatible with a given output is computed and used to weight

violations. The one-liner is similar here, but it has to be embedded in some logic that subdivides

the data into sub-tableaux for each output.

q is the empirical distribution, and therefore involves no novel calculation.

In the maximum likelihood case, there is only a single winner in each tableau. The K-L

gradient thus reduces to the following, where y∗x is the target output for the input x.

∂D

∂w(i)
= −

∑
x∈X

∑
y∈Yx

q(y|x)
[
E[vx(i)|y]− E[vx(i)]]

]
above (20)

= −
∑
x∈X

∑
y=y∗x

[
E[vx(i)|y]− E[vx(i)]]

]
only one winner (21)

(22)

When there is no hidden structure, it is instead the conditional expectation that simplifies:

∂D

∂w(i)
= −

∑
x∈X

∑
y∈Yx

q(y|x)
[
E[vx(i)|y]− E[vx(i)]]

]
above (23)

= −
∑
x∈X

∑
y∈Yx

[
vxy(i) − E[vx(i)]

]
one full structure per output (24)

These combine trivially in the case where there is a single, fully specified target output for

every input:

∂D

∂w(i)
= −

∑
x∈X

∑
y=y∗xYx

[
vxy(i) − E[vx(i)]

]
one full structure, one winner (25)

This is all that is needed to implement K-L as found in HGR. It might be that someone would

want the other direction on K-L. It is here:

4

D(p||q) =
∑
x∈X

∑
y∈Yx

p(y|x) log
p(y|x)

q(y|x)
def.

(26)

∂D

∂w(i)
=

∂

∂w(i)

∑
x∈X

∑
y∈Yx

p(y|x)(log p(y|x)− log q(y|x)) logs

(27)

=
∑
x∈X

∑
y∈Yx

(
∂

∂w(i)
p(y|x))(log p(y|x)− log q(y|x)) (28)

+ p(y|x)(
∂

∂w(i)
(log p(y|x)− log q(y|x))) prod

=
∑
x∈X

∑
y∈Yx

(
∑
z⊂y

(
p(y, z|x)vxz(i)

)
− p(y|x)E[vx(i)])(log p(y|x)− log q(y|x)) (29)

+ p(y|x)(E[vx(i)|y]− E[vx(i)]) see above

=
∑
x∈X

∑
y∈Yx

p(y|x)(E[vx(i)|y]− E[vx(i)])(log p(y|x)− log q(y|x)) (30)

+ p(y|x)(E[vx(i)|y]− E[vx(i)]) cond exp

=
∑
x∈X

∑
y∈Yx

p(y|x)(E[vx(i)|y]− E[vx(i)])(log p(y|x)− log q(y|x) + 1)

The core expectation comparison is the same as before, but it is somewhat obscured. Note

that within this is the p-q divergence—p multiplied by the log difference between p and q. A form

reflecting this seems to more obfuscate than clarify, however.

N.B. I have not numerically checked the final form here for hidden structure,

though I have checked it for overt structure. I advise asking me or checking the result numerically

if you implement this.

5

