Notes on K-L divergence and MaxEnt learning

Robert Staubs

rstaubs@linguist.umass.edu

October 13, 2014

1 What is this?

Solving with numerical optimizers is greatly aided if we have an explicit, known gradient. MaxFEnt
offers us (relatively) easy answers in likelihood maximization and K-L divergence minimization.

Here I include some notes on how these gradients are derived, as well as comments on their
interpretation and implementation. These notes serve both as a tool for a successor to work such
as HGR, as well as a codification of things I have in scattered notes.

Among those contents are notes on the calculation of Hessians (second derivatives) for MaxEnt.
These are of potential use in optimization, but have not before been a part of HGR. Hessian
calculations will be added to this document when I can typeset them.

Please let me know if you have comments, questions, corrections, clarifications, etc.

2 Definitions

Let X be the set of inputs, with members =x.

Let Y, be the sets of outputs, with members y. (I will abbreviate these.)

Let z C y denote the hidden structures z compatible with the output y. Z, is the set of hidden
structures available in the tableau for x.

Let wy;) indicate the ith weight, v(; the ith element of a violation vector (etc.)

N, is the MaxEnt normalization for a tableau with input x.

p and ¢ are the predicted MaxEnt distribution and the empirical distribution, respectively.

Recurring gradients

0 0 wTv,.

0) y'eYy 2'Cy’

T
= E E Uwz’(i)ew Vet

y'eYy 2/ Cy’

T
— E w' v
- Ug2(i)€ Iz

ZEZ(E

pylz) = a(

Fur > ply, zlz)

zCy

0 ew! vaz
0 Z N.

W)

def. (1)

chain rule (2)

N2
zCy z
= Zp(yv Z’.%) Vgz(i) — Z p(yv Z/|x)varz’(i)
zCy 2/ €2,
= Zp(yv z]:v) (va}z(z) - E[vx(z)])
zCy

hidden struc. def. (4)

MaxEnt def. (5)

quotient rule (6)

see above (7)

MaxEnt defs. (8)

def. exp. (9)

(10)

a .
D log p(yla) = (yle) Bur, p(ylz) chain rule (11)

— 1|x) (Z (P(Z/,z\a?)vxz(i)) —p(y]a:)E[vx(i)O above (12)

zCy
p(y, z|z) >
= Vz(3) E[vz(z)] (13)
(ch p(ylz)
= (ZP(Z‘%?J)%Z@)> — Elvg ()] def. cond. prob. (14)
zCy
= Elvy@)|y] — Elvg) def. cond. exp. (15)

4 Gradients for Kullback-Leibler divergences

K-L divergence is not symmetric: D(p||q) # D(q||p), in general. We have been using D(g||p) up
til now in HGR. This is fairly typical, using the divergence which places the true values on the
left.

Computing the gradient is largely a matter of plugging in what we have from above:

D(qllp) = > Y alylx) log I; def. (16)

zeX yEY
OD ‘
= Z Z (y|z)(log q(y|x) — log p(y|z)) log properties (17)
(@) zex YEYy

= - Z Z (y|x) < 10gp(y|56)> g constant w.r.t. w (18)
reX yeYy

== Z Z q(y|z) [E[U:c(i)’y] - E[Ux(i)]]] see above (19)
zeX yEYz

Elvg] is the expected amount of violation of the ith constraint, under the predicted distribu-
tion. Computing it therefore involves computing the distribution over full structures for a tableau
and weighting the violations. These are then summed. This is one-liner if done in matrix math,
as it probably should be.

E [vx(i)\y] is a similar expectation, but taken only over a certain output. To compute this, the

distribution over full structures compatible with a given output is computed and used to weight
violations. The one-liner is similar here, but it has to be embedded in some logic that subdivides
the data into sub-tableaux for each output.

q is the empirical distribution, and therefore involves no novel calculation.

In the maximum likelihood case, there is only a single winner in each tableau. The K-L

gradient thus reduces to the following, where v is the target output for the input z.

= - Z Z y‘l‘ U:L"(z)‘y] - E[U:p(z)”] above (20)

zeX yEYac

= Z Z [E[Um(i)|y] - E[Um(i)]]] only one winner (21)

zeX y=y3

When there is no hidden structure, it is instead the conditional expectation that simplifies:

=— Z Z (ylz) [Elvgm |yl — Elvge)]]] above (23)

zeX yEYz

=— Z Z [Ua:y(i) —F [’Ux(i)]] one full structure per output (24)
zeX yeYy

These combine trivially in the case where there is a single, fully specified target output for

every input:

- Z Z [Vayt) — Elvgm)]] one full structure, one winner (25)
r€X y=y;Ya

This is all that is needed to implement K-L as found in HGR. It might be that someone would

want the other direction on K-L. It is here:

D(pllg) = > > p(ylr) log H def.

zeX yeY,
(26)
oD
5 p(y|z)(log p(y|z) — log q(y|)) logs
a:EXyEYx
(27)
p(ylz))(log p(y|x) — log q(y|x)) (28)
$€Xy€Ya:
9
+p(yll‘)(6w (log p(y|z) — log q(y|z))) prod

(%)

=YY O (0, 2l2)vass)) — p(yl2) Elvg()) (log plyla) — log q(yl)) (29)

zeX yeYy 2Cy

+ p(yl2) (Elvg(i)|y] — Elvg(;)]) see above
=Y p(yla)(Elvags) Y] — Elvas)) (log plylz) — log q(y|x)) (30)
rzeX yeYy
+P(y|$)(E[Ux(i)|y] - E[U:v(i)]) cond exp
= > > pln)(Elvagiy] — Elvem)) (log plylz) - logg(ylz) +1)
zeX yeYy

The core expectation comparison is the same as before, but it is somewhat obscured. Note
that within this is the p-g divergence—p multiplied by the log difference between p and ¢. A form
reflecting this seems to more obfuscate than clarify, however.

N.B. I have not numerically checked the final form here for hidden structure,
though I have checked it for overt structure. I advise asking me or checking the result numerically

if you implement this.

