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[1] A multivariate, multisite daily weather generator is presented for use in decision-centric
vulnerability assessments under climate change. The tool is envisioned to be useful for a
wide range of socioeconomic and biophysical systems sensitive to different aspects of
climate variability and change. The proposed stochastic model has several components,
including (1) a wavelet decomposition coupled to an autoregressive model to account for
structured, low-frequency climate oscillations, (2) a Markov chain and k-nearest-neighbor
(KNN) resampling scheme to simulate spatially distributed, multivariate weather variables
over a region, and (3) a quantile mapping procedure to enforce long-term distributional
shifts in weather variables that result from prescribed climate changes. The Markov chain is
used to better represent wet and dry spell statistics, while the KNN bootstrap resampler
preserves the covariance structure between the weather variables and across space. The
wavelet-based autoregressive model is applied to annual climate over the region and used to
modulate the Markov chain and KNN resampling, embedding appropriate low-frequency
structure within the daily weather generation process. Parameters can be altered in any of
the components of the proposed model to enable the generation of realistic time series of
climate variables that exhibit changes to both lower-order and higher-order statistics at
long-term (interannual), mid-term (seasonal), and short-term (daily) timescales. The tool
can be coupled with impact models in a bottom-up risk assessment to efficiently and
exhaustively explore the potential climate changes under which a system is most
vulnerable. An application of the weather generator is presented for the Connecticut River
basin to demonstrate the tool’s ability to generate a wide range of possible climate

sequences over an extensive spatial domain.
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1. Introduction

[2] The reluctance of the global community to mitigate
greenhouse gas emissions and the legacy of past emissions
already produced spurs the need for climate change adapta-
tion. Recently, bottom-up or “decision-centric” approaches
to identifying robust climate change adaptations have
become more popular in the literature [Jones, 2001 ; John-
son and Weaver, 2009; Lempert and Groves, 2010; Prud-
homme et al., 2010; Wilby and Dessai, 2010; Brown et al.,
2011; Brown and Wilby, 2012]. These approaches focus on
a system of interest (e.g., agricultural lands, an ecosystem,
a reservoir, etc.) and systematically identify its vulnerabil-
ities to climate; this contrasts “scenario-led” methods that
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limit the analysis to a set of climate model projections that
may or may not reveal a system’s climate sensitivities. A
critical step in decision-centric methods involves testing
the performance of a system over a range of plausible cli-
mate changes to identify harmful climate states that could
cause the system to fail. As the literature on this topic is
relatively young, limited tools have been investigated for
the production of altered climate time series over which to
conduct the vulnerability assessment. This study presents a
new stochastic weather generator specifically designed to
aid these assessments. The model can be used to generate
time series of weather expressing various changes in the
climate at multiple temporal scales. Such time series may
be especially useful for exploring changes that are expected
to occur, such as increasing intensity and decreasing fre-
quency of precipitation consistent with the acceleration of
the hydrologic cycle, or changes to low-frequency climate
variability, that are not well simulated in current global cli-
mate model projections.

[3] Bottom-up or vulnerability-based approaches to cli-
mate change adaptation form a relatively new area of
research that attempts to appraise possible adaptations of a
system to climate stressors by first identifying the climate
vulnerabilities of that system over a wide range of potential
climate changes. After system vulnerabilities are identified,
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different adaptation strategies can be evaluated over threat-
ening climate states in order to identify robust adaptation
measures. The likelihood of harmful climate conditions can
also be assessed using available climate information,
including the most up-to-date climate modeling results
(e.g., global circulation model (GCM) projections). By
detaching the identification of system vulnerabilities from
climate projections produced by GCMs, bottom-up
approaches differ from more traditional top-down
approaches that depend on a limited number of internally
consistent climate scenarios to explore the range of poten-
tial climate change impacts [Christensen et al., 2004;
Wiley and Palmer, 2008]. It has been argued that bottom-
up methods are better equipped to provide more decision-
relevant information useful in identifying robust adaptation
measures under deep future uncertainty [Lempert et al.,
1996]. In part, this is because bottom-up approaches can
better explore a full range of plausible climate changes,
whereas GCM projections provide only a limited view and
do not delimit the possible range (although they are often
interpreted to do so) [see Stainforth et al., 2007; Deser
etal., 2012].

[4] Despite the growing interest in decision-centric
approaches, technical methods for actually conducting the
vulnerability assessment (i.e., generating perturbed climate
sequences over which to test system vulnerability) are rela-
tively underdeveloped. To date, only a handful of methods
have been utilized. The most popular approach has been to
apply simple change factors to the historic record of precip-
itation and temperature, effectively testing system sensitiv-
ities to mean climate shifts [Johnson and Weaver, 2009;
Gober et al., 2010; Lempert and Groves, 2010; Brown
et al., 2012]. Other studies have explored more detailed
changes, including shifts in intraannual climate [Prud-
homme et al., 2010] and high-order statistics (e.g., variance,
serial correlation) of annual hydroclimate data [Moody and
Brown, 2013]. While all of these approaches were appropri-
ate for their specific application, these methods exhibit lim-
ited ability to perturb the entire distribution of climate
variables or alter their behavior at multiple temporal scales.
For instance, none of the methods mentioned are equipped
to simulate climates exhibiting shifts in both long-term
(decadal) precipitation persistence and extreme daily pre-
cipitation amounts. Yet both of these changes are possible
under climate change [Timmermann et al., 1999; Collins,
2000; Intergovernmental Panel on Climate Change, 2007]
and may be important in a climate sensitivity analysis for a
particular system (e.g., a reservoir jointly managed for
flood risk reduction and water supply). Thus, there is a
need for more generalized and comprehensive tools to con-
duct climate vulnerability assessments for systems sensitive
to different climate variables across multiple temporal
scales.

[s] We propose stochastic weather generators as one
possible tool that can fulfill this need. Stochastic weather
generators are computer algorithms that produce long series
of synthetic daily weather data. The parameters of the
model are conditioned on existing meteorological records
to ensure the characteristics of historic weather emerge in
the daily stochastic process. Weather generators are a popu-
lar tool for extending meteorological records [Richardson,
1985], supplementing weather data in a region of data spar-

sity [Hutchinson, 1995], disaggregating seasonal hydrocli-
matic forecasts [Wilks, 2002], and downscaling coarse,
long-term climate projections to fine-resolution, daily
weather for impact studies [Wilks, 1992; Kilsby et al.,
2007 ; Groves et al., 2008 ; Fatichi et al. 2011, 2013]. Their
use for climate sensitivity analysis of impact models has
also been tested, particularly in the agricultural sector
[Semenov and Porter, 1995; Mearns et al., 1996; Riha et
al. 1996; Dubrovsky et al. 2000; Confalonieri, 2012].
These sensitivity studies systematically change parameters
in the model to produce new sequences of weather varia-
bles (e.g., precipitation) that exhibit a wide range of change
in their characteristics (e.g., average amount, frequency, in-
tensity, duration, etc.). By incrementally manipulating one
or more parameters in the model, many climate scenarios
can be simulated that exhaustively explore potential futures
that exhibit slight differences in nuanced climate character-
istics, such as the intensity and frequency of daily precipi-
tation, the serial correlation of extreme heat days, or the
recurrence of long-term droughts. Previous bottom-up cli-
mate impact assessments, which have relied heavily on
simple change factors to generate new climate sequences,
have not been able to test system vulnerabilities over such
a wide range of plausible climate changes. To the authors’
knowledge, only one study has used a weather generator to
investigate a system’s climate sensitivity in the context of a
decision-centric climate change analysis [Jones, 2000], and
this study only examined changes in mean temperature and
precipitation. The potential of weather generators for driv-
ing vulnerability assessments in bottom-up climate change
studies has not yet been adequately explored, particularly
with respect to nuanced aspects of climate variability.

[6] While the use of stochastic weather generators for
bottom-up risk assessments is very attractive in theory,
there are many challenges that arise in practical applica-
tion. As mentioned earlier, socioeconomic and biophysical
systems are often vulnerable not only to changes in mean
climate but also to changes in nuanced climate variability.
Therefore, the chosen weather generator should be able to
easily perturb any of these climate characteristics, which
not all models in the literature can easily accomplish [ Wilks
and Wilby, 1999]. Additionally, impact models often
require sequences of several weather variables at multiple
locations that exhibit a realistic covariance structure
between variables and across sites. The production of spa-
tially distributed, correlated weather variables continues to
challenge certain approaches to stochastic weather genera-
tion [Beersma and Buishand, 2003]. Weather variables can
also exhibit long-term persistence [Hurst, 1951; Kout-
soyiannis, 2003] on timescales up to decades that can sig-
nificantly impact system performance, requiring that the
chosen weather generator be capable of replicating (and
possibly altering in a bottom-up analysis) structured low-
frequency climate variability.

[7]1 The literature is rich with examples of stochastic
weather generators that can address some subset of the
challenges listed above. Both parametric and nonparamet-
ric models have been proposed to maintain correlation
structures between variables and across sites [Wilks, 1998,
1999; Rajagopalan and Lall, 1999; Buishand and
Brandsma, 2001; Wilby et al., 2003, Apipattanavis et al.,
2007]. Some have argued that nonparametric models may
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be more capable than their parametric counterparts to
reproduce the spatial covariance structure of multivariate
weather variables [Buishand and Brandsma, 2001], but the
ability to specify distributional shifts in weather variables
is often more straightforward using parametric approaches
[Wilks and Wilby, 1999]. Several models have also been
proposed to preserve low-frequency variability observed in
the historic record [Hansen and Mavromatis, 2001;
Dubrovsky et al., 2004; Wang and Nathan, 2007; Chen
etal.,2010; Fatichi et al. 2011; Kim et al., 2011], but these
approaches have not been generalized to multisite applica-
tions. After a substantial literature review, the authors were
only able to identify one stochastic weather generator in
the literature with the ability to specify distributional shifts
in weather variables while simultaneously maintaining
low-frequency climate variability and intervariable and
intersite correlations [Srikanthan and Pegram, 2009], and
the simulation of multidecadal climate persistence may still
be difficult with this model formulation. In the context of
vulnerability based climate change assessments, a new
model is required that can simultaneously simulate weather
variables exhibiting accurate correlations between variables
and across sites, appropriate long-term persistence at inter-
annual and interdecadal time scales, and shifted distribu-
tional characteristics hypothesized under climate change.

[8] This study presents a stochastic weather generator with
greater ability to support bottom-up vulnerability assessments
under climate change for a wide range of socioeconomic and
biophysical systems sensitive to different aspects of climate
variability and change. The proposed stochastic model
addresses all of the challenges mentioned above with several
components, including (1) a wavelet decomposition coupled
to an autoregressive model to account for structured, low-
frequency climate oscillations, (2) a Markov chain and
k-nearest-neighbor (KNN) resampling scheme to simulate
spatially distributed, multivariate weather variables over a
region, and (3) a quantile mapping procedure to enforce
long-term distributional shifts in weather variables under cli-
mate change. Parameters that govern each model component
can be altered to perturb various statistics of the climate sys-
tem at different temporal scales. The tool can be coupled
with impact models in a decision-centric risk assessment to
determine the potential climate changes under which a sys-
tem is most vulnerable. This allows the analyst to evaluate
system performance over a wide range of possible climate
changes to identify risk or to investigate specific climate
change effects that are of concern (e.g., less frequent but
more intense rainfall). An application of the weather genera-
tor is presented for the Connecticut River basin to demon-
strate the tool’s ability to generate a wide range of possible
climate sequences over an extensive spatial domain. The re-
mainder of the paper proceeds as follows. The proposed
weather generator is presented in section 2. The model is
evaluated in section 3, and section 4 demonstrates the ability
of the model to produce various climate sequences for use in
a bottom-up climate change analysis. The article then con-
cludes with a discussion in section 5.

2. The Weather Generator

[¢9] A flexible weather generator is desired that can
accurately reproduce various characteristics of the historic

climate regime while introducing the capacity to alter
many of these characteristics in a decision-centric climate
change analysis. The model considered in this work cou-
ples an autoregressive wavelet decomposition [Kwon et
al., 2007] for extracting and simulating low-frequency
structure in annual climate with a multivariate weather
generator [Apipattanavis et al., 2007] that effectively cap-
tures daily weather characteristics, including dry and wet
spell statistics, cross correlations between weather varia-
bles, and spatial correlations across multiple sites. The
two models are linked by conditioning the daily weather
generator on simulations of annual climate produced by
the autoregressive wavelet decomposition. Time series of
weather variables produced by the coupled modeling
approach are then altered in a third step used to enforce
distributional shifts in the climate. For precipitation, a
quantile mapping procedure is utilized to implement this
change. Long-term shifts in other variables are enforced
using simpler additive and scaling methods. A flow dia-
gram of the overall modeling framework is given in Fig-
ure 1. The various submodels and algorithms used are
described in detail below.

2.1. Wavelet Autoregressive Model for the
Preservation of Low-Frequency Structure

[10] Most daily weather generators produce weather sim-
ulations that tend to be overdispersed at interannual time-
scales and fail to reproduce observed low-frequency
persistence. Several studies have proposed methods to cor-
rect for overdispersion in weather simulations [Hansen and
Mavromatis, 2001; Dubrovsky et al., 2004; Wang and
Nathan, 2007 ; Chen et al., 2010; Fatichi et al. 2011; Kim
et al., 2011]. This study utilizes a relatively new approach
put forth in Kwon et al. [2007] that extracts low-frequency
signals in climate data using wavelet decomposition and
then stochastically simulates each signal using autoregres-
sive time series models. By simulating each signal sepa-
rately, the wavelet autoregressive model (WARM) can
better reproduce a time series of climate exhibiting a simi-
lar spectral signature to the observed data. In our methodol-
ogy, the WARM approach is applied to annual, area-
averaged precipitation over the region of interest. Each
year of generated annual precipitation is then used to
inform a single-year simulation of the daily weather gener-
ator (described below), embedding appropriate low-
frequency structure within the daily weather generation
process.

[11] Let X represent a time series of annual, area-
averaged precipitation for a region. The WARM approach
decomposes this series into H orthogonal component series,
z;, that represent different low-frequency signals, as well
as a residual noise component &.

H
X=> z+¢ (1)
h=1

[12] A simulation of X is generated with time series mod-
els of each low-frequency component and the residual
noise. Following Kwon et al. [2007], we consider linear
autoregressive (AR) models for each term:
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Figure 1. Schematic flowchart of the daily weather generation process conditional on annual simula-

tions of climate and subject to postprocess distributional adjustments.
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[13] Here, p; is the order of the AR model for the Ath
low-frequency component, p is the model order for the re-
sidual noise term, e and £ are independently and identically
distributed white noise processes, and ay, and 3, are the
AR model coefficients. Wavelet decomposition is used to
generate the low-frequency components and residual noise
term in equation (2). The wavelet transform is an analysis
tool that enables the decomposition of a signal into orthog-
onal components in both the time and frequency domain
[Torrence and Compo, 1998]. In-depth details on the
implementation of the wavelet transform and its use in the
WARM approach can be found in the supporting informa-
tion for this article. Time series models can be fit to each
low-frequency component and the residual noise term using
well-documented model-fitting procedures [Box and Jen-
kins, 1970]. A simulated time series of annual precipitation,
X, can then be generated by summing the simulations of
each component.

[14] The daily weather generator (presented in section
2.2) must be conditioned on the annual climate simulations
produced using WARM to embed appropriate low-
frequency structure within the daily weather generation
process. To achieve this, the WARM simulation is used to
generate a new climate data set for each simulation year
that is composed of a weighted resampling of historic
years. The daily weather generator is then iteratively fit to
each new data set for a given simulation year and run for

365 days. The methodology for conditioning the daily
weather generator on WARM simulations proceeds as
follows:

[15] 1. Generate a simulation of annual precipitation of
length T, using the WARM procedure.

[16] 2. For simulation year f,, calculate the Euclidean

distances d = \/ (¥,, — f()z between the WARM simulated

area-averaged precipitation value, ):c,a, and the vector of an-
nual, historic, area-averaged precipitation, X.

[17] 3. Order the distances from smallest to largest and
assign weights to the & smallest distances using a discrete
kernel function given as

K[a] = ()

[18] Here, j indexes the first k ordered distances . These
weights, which are greatest for the nearest neighbor and
smallest for the kth neighbor, sum to 1 and thus form a dis-
crete probability mass function. We follow the heuristic
approach suggested by Lall and Sharma [1996] and set k
equal to the square root of the number of years of historic
data.

[19] 4. Sample with replacement 100 of the k& nearest
neighbors based on the kernel weights from step 3. Deter-
mine the associated years of the 100 selected neighbors.
Gather all of the daily data from the 100 selected years into
a new data set to be associated with simulation year #,. We
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note that data may be repeated in this new data set because
years can be sampled more than once.

[20] 5.Build the daily weather generator using this condi-
tional data set and run it over the length of 1 year.

[21] 6. Repeat steps 1-5 for all T, years of the annual
WARM simulation.

2.2. Semiparametric Multivariate and Multisite
Weather-Generating Algorithm

[22] The daily weather generation process utilized in this
study is based on the methods proposed in Apipattanavis et
al. [2007]. That study coupled a Markov chain and KNN
resampling scheme to simulate spatially distributed, corre-
lated, multivariate weather variables over a region. The
Markov chain is used to better represent wet and dry spell
statistics while the KNN bootstrap resampler preserves the
covariance structure between the weather variables and
across space. Since the details of the method can be found
in Apipattanavis et al. [2007], only a brief overview will be
provided here.

[23] Assume a simulated, daily time series of R weather

Sl = 1,27...,T} is desired

at L different locations, where xﬁy, represents the ith weather
variable (e.g., precipitation) at time ¢ and location /, and T
is the length of the simulation. A weather generation
scheme is designed to simulate area-averaged weather vari-
ables, X, that can then be immediately disaggregated to
individual locations. The weather generation approach is
based on the common practice of first simulating precipita-
tion occurrence, S;, as a chain-dependent process. A three-
state (extremely wet (S;=2), wet (S;=1) or dry (S;=0)) Mar-
kov chain of order 1 is used to simulate the occurrence of
area-averaged precipitation across the L locations. The
number of states and chain order can be chosen to maxi-
mize performance while maintaining model parsimony
using quantitative criteria such as Akaike’s information cri-
terion [Akaike, 1974], though this study simply follows the
chain structure suggested in Apipattanavis et al. [2007].
Nine transition probabilities (poo, Po1. Po2. P1o, P11, P12, P2o,
P21, P22) for the three-state Markov chain are fit to the area-
averaged precipitation occurrence time series by month
using the method of maximum likelihood. Here, p,,
denotes the probability of precipitation state b occurring,
given the occurrence of state a on the previous day. A
threshold of 0.3 mm is chosen to distinguish between wet
and dry days at the area-averaged scale, while the 80th per-
centile of area-averaged precipitation (by month) is used as
the threshold for extremely wet conditions. Again, these
values are taken directly from Apipattanavis et al. [2007].

[24] Area-averaged precipitation occurrence can be
simulated from the fitted Markov chain using standard pro-
cedures well documented in the previous weather genera-
tion literature. After simulating the occurrence of area-
averaged precipitation states, a vector of weather variables
X must be simulated and then disaggregated to each of the
L locations. A KNN resampling algorithm of lag-1 is used
to generate the values for all the weather variables. This
algorithm follows a six-step process:

[25] 1. Let X;_; be a vector of area-averaged weather
variables already simulated for day ¢/—1. Also assume,

: U IV
variables X' = {M,mxz,w-

without loss of generality, that the Markov chain had simu-
lated day r—1 and day ¢ as wet days.

[26] 2. Partition the historic record to find all pairs of
days in a 7 day window centered on day ¢ (if day # is 15 Jan-
uary, then the window includes all historic days from 12 to
18 January) that have the same sequence of area-averaged
precipitation states simulated by the Markov chain for day
t—1 and day ¢ (in this case, two wet days in a row). Assume
there are O such pairs, each containing 2 days of area-
averaged weather, X; and X;.

[27] 3. Calculate the weighted Euclidean distance, d,,
between the simulated, area-averaged vector of weather
variables, X,_;, and each of the O vectors of historic, area-
averaged variables:

[28] Here, X;,—1 denotes the ith area-averaged weather
variable already simulated for time ¢—1, X! denotes the
same area-averaged weather variable on the first day of the
gqth historic pair sampled in step 2, X; is the mean of the ith
area-averaged weather variable across all time steps, and w;
denotes the weight. In this study, each weight w; is set
equal to the inverse of the standard deviation of the ith
weather variable, though there are methods in the literature
for selecting weights in KNN resampling procedures to
produce optimal forecasts [Karlsson and Yakowitz, 1987].
By centering each variable in the distance equation about
its mean and dividing by its standard deviation, we stand-
ardize values and give near-equal importance to each vari-
able in the nearest-neighbor calculation. Prior to
normalization, transformations may be required for non-
Gaussian weather variables.

[29] 4. Order the distances d, from smallest to largest.
The & smallest distances are assigned weights using the
same discrete kernel function presented in equation (3).
Again, we follow the heuristic approach suggested by Lall
and Sharma [1996] and set k = /O.

[30] 5. Sample one of the k-nearest neighbors based on
the weights developed in step 4 and record the historic date
associated with that selected neighbor. Then, use vectors of
weather variables X’ on the successive day to the recorded
date for each of the L locations to simulate the multivariate,
multisite weather for day 7.

[31] 6. Repeat steps 1-5 for all 7 days of the simulation.

[32] To begin the algorithm and generate initial values
for all weather variables, data for a random day from the
simulation starting month is selected from the historic re-
cord that is consistent with the first precipitation state simu-
lated by the Markov chain.

2.3. Quantile Mapping Technique to Enforce Long-
Term Climate Changes

[33] By just using the coupled models of sections 2.1 and
2.2, it is not feasible to generate weather outside of the range
of historic variability, nor is it possible to change the distribu-
tion of those variables. In the context of a vulnerability assess-
ment, this capability is critically important, particularly for
precipitation, which often dominates system performance. The
approach developed here incorporates a quantile mapping
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of an original time series of April precipitation simulated by the weather generator. The blue point repre-
sents a sample precipitation value to be adjusted. (b) The cdf for the fitted gamma distribution to the
original simulation of April precipitation (black), as well as the target cdf used to make the adjustments
(red). (c) The rectangle delimits an inset, shown in detail. Here, the precipitation value represented by
the blue point in Figure 2a is mapped to a new precipitation value via four steps. (d) The new, adjusted
precipitation time series, including the adjusted point (blue), is shown.

method to alter the distribution of daily precipitation. Altera-
tions to other weather variables are treated more simply using
standard add1t1v9 or multiplicative factors.

[34] Let X = be daily, nonzero precipitation values for
month m and location / simulated from the daily weather gen-
erator. Assume the simulated precipitation amounts can be
modeled by a theoretical cumulative distribution function
Fom (xo|m) with parameters 1. A “target” cumulative distribu-

tion function, F* mz(xo|n ), is introduced that represents the

projected dlstrlbutlon of future precipitation under a climate
change. For simplicity, we assume that F o and F*, , arise
X, )
from the same distribution but differ between their parameter
sets, nj and 1 . The parameter set 1 can be altered to control
how the distribution of future precipitation differs from the his-
toric observations. Many possible changes in precipitation
characteristics are possible through adjustments to n , includ-
ing shifts in the mean, standard deviation, or extremes. For
example, assume historic and projected precipitation for month
m follow two-parameter Gamma distributions with shape and
scale parameters N = {x, 0} and | = {x , 0 }. The parameter

. . C e ~om,l
set )| can be estimated by fitting a Gamma distribution to X :l

Then, a new mean y* and variance o>* can be specified for

the target Gamma distribution, and the parameter set 1 can be
inferred using the relationships between the parameters and
the first two moments, ;* = x* x * and 0% = k* x 0**. If
changes in the first two moments do not sufficiently account
for particular shifts in higher order statistics that are of interest,
the target parameter set 1 can be further tailored to better
impose this change. Once the parameter set 1 of the target
distribution is specified, a quantile mapping procedure can be
used to alter the distribution /7, . of simulated nonzero precip-

»
itation to match that specified by F};m_, (Figure 2). To do this,
we first determine the exceedance probability of the tth value
of synthesized precipitation for month m, xl'ftl, from the cdf
F - Then, the target cdf ’f .. 18 used to map this exceedance

P X,
probability to a new precipitation amount, (% 1)*, that is con-

sistent with the specified distribution for climate-altered
monthly precipitation:
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[35] This procedure is repeated for each nonzero precipi-
tation amount synthesized by the weather generator.

3. Model Evaluation

[36] To evaluate the performance of the proposed
weather generator, we apply it to daily weather data distrib-
uted across the Connecticut River basin in the New Eng-
land region of the United States. Daily precipitation and
maximum and minimum temperature are the variables
included in the analysis. The data are available between 1
January 1949 and 31 December 2010 as gridded observa-
tions with a spatial resolution of approximately 144 km?
[Maurer et al., 2002]. The Connecticut River basin drains
over 31,000 km? and contains a large number (260) of grid
cells, enabling an evaluation of the multisite performance
of the approach. The spatial extent of the proposed model
application is quite large, and so adequate performance of
the model at this spatial scale greatly supports its use for
vulnerability assessments of large, spatially expansive sys-
tems. For evaluation, the model is run 50 separate times,
each 62 years long (the length of the historic record). We
examine the reproduction of multiple characteristics of
each weather variable at several different time scales.

[37] Figure 3 shows the mean, standard deviation, and
skew of nonzero daily precipitation amounts, daily maxi-

mum temperature, and daily minimum temperature for all
combinations of months and grid cells. The median values
of these statistics are taken over the 50 different simula-
tions for comparison against the historic statistics. The
results suggest good performance for all variables and sta-
tistics except for the skew of daily precipitation, which
tends to be underestimated in the simulations for some grid
cells.

[38] Correlations of a given variable across sites and cross
correlations between different variables for a given site are
shown in Figure 4. Again, median values across the 50 simu-
lations are shown. Both types of correlation are very well
preserved, as is expected given the resampling techniques
used to generate the daily weather sequences. The simula-
tions also capture the average number of dry and wet days
across all sites and months rather well (Figure 5). There is a
slight underestimation of the average lengths of wet and dry
spells, particularly for those grid cells with larger spell
lengths, but this underestimation is slight (less than a day).

[39] The spread of lag-1 autocorrelations across the 50
different simulations are shown in Figure 6. For each vari-
able, the distribution of this statistic is shown for the average
autocorrelation across all sites. There is a negative bias in
the lag-1 autocorrelations for daily precipitation, although
this bias is slight. Similarly, the simulations tend to consis-
tently underestimate the autocorrelation in the temperature
fields, but again this bias is actually rather small in magni-
tude. The slight underestimation of serial correlation for all
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entire simulation/observed record.

variables could likely be improved by increasing the order
of the Markov chain, but no such correction was made here.

[40] To explore the reproduction of extremes, Figure 7
shows the distribution of 10 and 20 year maximum annual
precipitation events, as well as the average number of
extreme heat days, across the 50 simulations. The precipita-
tion extreme value estimates were developed for each grid
cell by fitting a Generalized Extreme Value (GEV) distribu-
tion to the time series of annual maximum precipitation at
that location. The temperature extremes were taken as the av-
erage number of days per year above 32°C. The distributions
for the average of these statistics across all locations are
shown for the ensemble of 50 simulations. The model tends
to underestimate the magnitude of extreme rainfall events,
although the spread of model simulations contains the
observed value for the 10 year event and nearly reaches the
observed value for the 20 year event. For temperature
extremes, the model again shows a slight negative bias,
although the range of simulations does contain the observed
value. Overall, there is a moderate negative bias in the
extremes, an effect that can often emerge in weather genera-
tors that rely on data resampling [Lee et al., 2012].

[41] Statistical comparisons for annual precipitation
totals and temperature averages are shown in Figure 8. The
mean precipitation and temperature fields are well pre-
served at the annual timescale. The standard deviation of
precipitation is adequately captured for all but a few grid

cells. The standard deviation of both temperature fields
tends to be undersimulated, particularly for those grid cells
exhibiting greater annual temperature variability. The skew
for all three variables is not well captured by the model,
although we note that there is significant uncertainty in the
observed skew values due to the small number of annual
observations available for its calculation. For precipitation
and maximum temperature, the skew is overestimated for
those grid cells with small skew values and underestimated
for those grid cells with larger skew values. This particular
model discrepancy may be due to the fact that basin-
averaged climate fields are being used to drive the model
over a large and somewhat heterogeneous region.

[42] Finally, the power spectra of annual precipitation
values are examined in Figure 9. One low-frequency com-
ponent (H=1) with significant periods between 1 and 4
years was modeled in the WARM approach. The mean
simulated power spectrum across the 50 simulations
matches that seen for the observations reasonably well.
Most importantly, the mean simulated spectra become stat-
istically insignificant at around the same period length (~4
years) as in the observations. Furthermore, the observed
spectra are completely within the 95% uncertainty bounds.

[43] Overall, the performance of the model for most sta-
tistics is either good or adequate, with only some moderate
discrepancies in the higher-order statistics. This is promis-
ing given that the model is being applied to a very large
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length per month, across all grid cells. Median values across the 50 different simulations are shown

against the observed values.

region subject to various changes in topography, which can
often be quite challenging for weather generation proce-
dures. Furthermore, we note that these performance statis-
tics are comparable to those seen in the weather generator
presented in Srikanthan and Pegram [2009], which is the
only other weather generator in the literature with the abil-
ity to specify distributional shifts in weather variables
while simultaneously maintaining low-frequency climate
variability and intervariable and intersite correlations.

4. Model Demonstration for a Climate Stress
Test

[44] The daily weather generator was specifically
designed to facilitate a decision-centric climate risk assess-
ment of systems sensitive to several components of the cli-
mate at various temporal scales. In the modeling
framework presented here an emphasis was placed on alter-
ing precipitation patterns in the climate system because this
variable often dominates the performance of biophysical
and socioeconomic systems. Several parameters can be
adjusted in the model to vary different components of pre-
cipitation (see Table 1). These include the parameters for
the target distribution in the quantile mapping scheme, the
transition probabilities of the Markov chain, the coeffi-
cients of the AR model for low-frequency components, and

the standard deviation of white noise for those AR models.
By changing these parameters, shifts in daily precipitation
amounts, daily persistence, interannual persistence, and
interannual variability can be implemented in a bottom-up
climate change assessment. The exact outcome of some of
these perturbations will be known a priori, such as with the

0.92
1

Lag 1 Serial Correlation
0.14 015 0.16 0.17 0.18
|

Precipitation Max. Temp. Min. Temp.

Figure 6. Distributions of lag 1 serial correlation values
for precipitation and maximum and minimum temperature
across the 50 model simulations. The average serial corre-
lation across all grid cells is shown. Observed values are
shown by the red triangles. All serial correlations are taken
across the entire simulation/observed record.
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Figure 7. Distributions of the 10 and 20 year precipita-
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days per year (>32°C), across the 50 model simulations.
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shown. Estimated from the observed data are shown by the
red triangles. All precipitation extreme value estimates are
derived from a fitted GEV distribution.

quantile mapping procedure, while outcomes from other
perturbations can only be approximated prior to the simula-
tion due to the stochastic formulation of the model. This is
the case for changes in annual persistence forced by altera-

tions to the parameters of the WARM model. Furthermore,
scaling factors and delta shifts can be applied to other cli-
mate fields (e.g., daily temperatures, wind speeds, etc.) to
explore other system sensitivities to potential climate
changes. Many of these changes, including those related to
the quantile mapping, delta shifts, and transition probabil-
ities, can be implemented differently by month, allowing
for seasonal climate changes to be explored.

[45] To demonstrate how this model could be used in a
decision-centric climate risk assessment, the weather gen-
erator is used to generate several sequences of weather rep-
resenting various types of climate change for the
Connecticut River basin. Five types of climate change are
examined here, including alterations to the mean of daily
precipitation, the coefficient of variation of daily precipita-
tion, the daily persistence of precipitation, the magnitude of
low-frequency variability, and the level of persistence in
that low-frequency variability. All adjustments are applied
as step changes in the model rather than trended changes.
The model parameters being changed and the magnitude of
their perturbation are given in Table 2. Various combina-
tions of these changes are presented below in order to illus-
trate the types of climate change that can be explored with
the tool, as well as the potential, unintended consequences
that may arise in other variables from the imposed parame-
ter changes.
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Figure 9. Power spectra for annual precipitation. The
observed spectra (black solid) are compared against the
mean power spectra (dashed blue) of the 50 simulations,
along with range bounded by the 2.5th and 97.5th percen-
tiles of the power spectra for the ensemble (gray). Also
shown is the 95% significance level (red dotted) developed
from a red noise background process. The power spectra of
the observations and simulations become statistically sig-
nificant if they rise above the red dotted line.

[46] Figures 10a and 10b show the changes to the distri-
bution of nonzero daily precipitation at one grid cell in
April caused by increasing the mean and coefficient of vari-
ation, respectively, for that month by 30% in the quantile
mapping procedure. All other components of the climate
system were kept unchanged from their historic, fitted val-
ues. Comparisons are made against a baseline model run
with no changes imposed. When the mean value is
increased in the quantile mapping approach, the entire dis-
tribution of daily precipitation values is shifted upward
(Figure 10a). These values are shifted in such a way to
ensure that the variability of precipitation (i.e., the coeffi-
cient of variation) does not change. Correlations between
precipitation and maximum temperature are examined to
determine whether mean changes under the quantile
mapping procedure degrade relationships between precipi-

tation and other variables (Figure 10d). For mean changes,
these relationships appear well preserved. The distribution
of daily April precipitation looks quite different when the
mean is kept constant but the coefficient of variation is
increased (Figure 10b). Here, the distribution is stretched to
increase the highest events (>0.85 nonexceedance level)
while lowering all of the remaining, smaller precipitation
values in order to maintain the same mean value. This
stretching of the distribution causes distortions in the corre-
lations between precipitation and temperature, producing a
negative bias in the correlation values across most grid
cells (Figure 10e).

[47] Figure 10c shows the average number of dry days
per month across all grid cells for a model run under base-
line transition probabilities in the Markov chain and a run
with increased persistence in dry days. As expected, the run
with a greater persistence in dry days exhibits an increased
number of these events. Unlike the results from the quantile
mapping procedure, however, the change in this statistic
for each grid cell can only be determined after imposing
the alternative model parameterization and exploring the
resulting climate sequence, because daily precipitation per-
sistence is being modeled (and altered) at the basin-average
scale. We also note that alterations to daily precipitation
persistence can change the distribution of certain tempera-
ture statistics that depend on the occurrence of precipita-
tion. For instance, increases in dry day persistence also lead
to more extreme heat days (>32°C) across most grid cells
(Figure 10f).

[48] Finally, we present a sample of model runs exhibit-
ing changes to the magnitude, variability, and frequency of
annual precipitation. The model runs are compared against
an ensemble of GCM projections to demonstrate how the
weather generator can produce a much wider range of
potential climate changes than the limited view afforded by
the GCMs. Figure 11 shows the mean, coefficient of varia-
tion, and lag-1 autocorrelation coefficient for annual pre-
cipitation averaged over the entire Connecticut River basin.
The statistics from several climate scenarios are presented,
including those from the observed record, 234 downscaled
GCM projections for the 2050-2099 period, and many dif-
ferent weather generator runs. The GCM projections were
gathered from the World Climate Research Program’s
(WCRP’s) Coupled Model Intercomparison Project phase 5
(CMIP5) multimodel data set and were downscaled using
the bias-correction spatial disaggregation technique [Wood

Table 1. Model Parameters That Can Be Altered to Perturb the Climate System at Various Temporal Scales

Timing
Interannual/
Climate Field Model Component Parameter Effect Daily Seasonal Interdecadal
Precipitation Quantile mapping Target distribution Change entire distribution of daily X X
parameters (1 ) precipitation by month
Daily weather Transition Alter the daily persistence of daily X X
generator probabilities (p,5) precipitation by month
WARM Coefficients of the Adjust the persistence of X
AR model (o) low-frequency signals
WARM Standard deviation of Adjust the magnitude of X
AR white noise (o) low-frequency signals
Temperature Daily Weather Delta Shifts (6,) Shift the daily temperature X X
Generator values by month
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Table 2. Climate Changes Included in the Stress Test”

Climate Change Model Parameter Adjusted Size of Adjustment”
Mean precipitation Mean of daily precipitation (') +30%
Precipitation variability Coefficient of variation of daily precipitation <f1—> +30%
Daily precipitation persistence Transition probabilities po ; and pg o —0.2 (po.1)
+0.2 (po,0)

Magnitude of low-frequency variability Standard deviation of white noise for all AR models (o, o¢) +30%
Persistence of low-frequency variability Lag-1 coefficient for low-frequency component (cv;) —0.2

?All adjustments are applied as step changes in the model rather than trended changes.

PAll values show the size of the change above baseline values.
et al., 2004; Reclamation, 2013]. Three, 20 member decrease in the lag-1 autocorrelation of annual

ensembles of weather generator runs, each 62 years long,
are presented. The first set is run under baseline conditions,
while the second set is run with a 30% reduction in mean
precipitation and a 30% increase in the standard deviation
of annual precipitation. The final ensemble is run with a
30% increase in mean precipitation, a 30% reduction in the
standard deviation of annual precipitation, and a significant

Precipitation

precipitation.

[49] Several conclusions emerge from the results in Fig-
ure 11. First, the ensemble of 2050-2099 GCM runs shows
an increase in mean precipitation over the historic average,
with a mean increase of 110% and a range of 100% and
122%. These projections show a slight decline in the aver-
age coefficient of variation, but this change is largely
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driven by an increase in the mean with little change in the
standard deviation. Also, the projections exhibit much
lower serial correlation values than that seen in the
observed record, with only a handful of scenarios showing
comparable levels of persistence. The historic (1950-2000)
time period from these projections (not shown) exhibit the
same low level of persistence as the future scenarios, sug-
gesting that the downscaled GCM projections may not ex-
hibit realistic, higher-order climate characteristics over an
aggregate region. Importantly, the magnitude, variability,
and persistence of annual precipitation under these future
GCM projections only exhibit a limited range of possible
outcomes. This narrow view of possible future climate out-
comes limits the utility of these projections in a climate
change risk analysis, in which all climate possibilities, par-
ticularly high-impact, low-probability events, are important
to the discovery and quantification of risk.

[50] In contrast, the 20 member ensemble of weather
generator runs under baseline conditions exhibit climate
characteristics that are directly comparable to the observed
record. The magnitude, variability, and lag-1 autocorrela-
tion of annual precipitation are all relatively unbiased. Fur-
thermore, the ensemble of runs presents a range of
plausible climates that could occur even without climate
change, providing an analyst with climate sequences that
could be used to test the robustness of a system to internal
climate variability.

[51] A much wider range of possible future outcomes
can be explored using the proposed weather generator. Fig-
ure 11 exhibits two possible combinations of change simu-
lated by the model, including a set of climate sequences
with significantly less but more variable annual precipita-
tion, as well as a set of climate sequences with more annual
precipitation, but with depressed variability and persist-
ence. These two sets of changes are just a sample of what
could be simulated by the weather generator, but their ex-
pansive range across climate change space demonstrates
how the model could be used to explore a wide range of
possible climate outcomes under climate change. This
affords analysts more flexibility in how they examine the
weaknesses of a system of interest and enables a more thor-
ough exploration of climate risk. Given the tendency of
planners and managers to underestimate the possibility of
potential hazards, we feel that there are significant advan-
tages to exploring system weaknesses over a wide range of
possible climate outcomes, an analysis made possible by
the proposed weather generator.

5. Discussion

5.1. Model Limitations

[52] It is important to recognize the limitations of any
tool when trying to infer insight from model results. While
the weather generator presented in this study was designed
to simulation multiple forms of climate variability at sev-
eral different time scales, there are certain components of
climate variability that are still challenging for the model to
account for or modulate. For one, a resampling algorithm
drives the model, so at the daily time scale the tool implic-
itly assumes that the spatial correlation structure of the
weather variables is stationary. This may not be the case
under future climate changes, yet such a change cannot be
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Figure 11. The mean, coefficient of variation, and lag-1
serial correlation coefficient of annual precipitation. Statis-
tics for several climate scenarios are shown, including (1)
the observed record (red), (2) future (brown) BCSD down-
scaled GCM projections from the CMIP5 archive, (3) 20
baseline weather generator simulations (blue), (4) 20 simu-
lations with a decreased mean and increased standard devia-
tion (green), and (5) 20 simulations with an increased mean,
decreased standard deviation, and decreased autocorrelation
(magenta). The observed lag-1 serial correlation is 0.19.

simulated with this model. At interannual timescales, the
tool currently simulates low-frequency variability based on
an annual precipitation time series and ignores any signal
in the annual temperature data. Also, it may be difficult to
estimate robust parameters for certain low-frequency sig-
nals in the WARM model if the length of the annual precip-
itation time series is not sufficiently long. One approach to
circumvent both of these issues would be to replace the an-
nual precipitation time series with an alternative climate
proxy that relates to both precipitation and temperature
(such as an ENSO index), for which there is more data
available through climate reconstructions [Kwon et al.,
2009]. This requires, however, that a significant climate
proxy with a long record can be found for the region of in-
terest. Additionally, if monotonic trends, as opposed to
quasi-oscillatory variability, are present in the annual data,
then the WARM approach may identify spurious low-
frequency components [Kwon et al. 2007]. Such trends, if
identified, should be removed from the data before building
the WARM model, but distinguishing trends from low-
frequency oscillations is not straightforward. Finally, this
model is data intensive, and therefore may be difficult to
use in data-sparse regions. Despite these limitations, how-
ever, this tool does provide a step forward in the simulation
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of climate across multiple temporal and spatial scales for
use in vulnerability assessments of human and ecological
systems.

5.2. Determining Scenario Plausibility, Selecting the
Scenario Range, and Linking to Climate Science

[53] The model presented here was designed to support
decision-centric climate change studies by enabling an ana-
lyst to test a system under a wide range of plausible climate
scenarios and identify potential climate hazards. However,
the analyst faces two immediate questions when trying to
conduct this “climate stress test”: (1) what constitutes a
plausible climate change? and (2) how large should the
range of climate changes be? Finding limitations on how
far the climate can be perturbed before the scenario should
be considered implausible is a difficult task. Expert opinion
may be useful in defining these bounds, as may very large
simulation ensembles of simpler (computationally faster)
climate models [Piani et al. 2005]. However, the plausibil-
ity of each climate change scenario may not be critical
when identifying system hazards as long as implausible
changes are discounted or disregarded later in the analysis
when developing estimates of climate risk [Brown et al.,
2012]. The important factor is to determine how far the cli-
mate must change before the system no longer functions
properly so that the analyst is aware of the potential climate
hazards. Therefore, a promising strategy in bottom-up
approaches may be to identify those climate variables and
time scales that influence the performance of the system
and then extend the range of climate changes for those vari-
ables wide enough to stress the system to failure. When
those failures emerge, judgments can be made regarding
the plausibility of the conditions causing them; they need
not be made earlier. In practice, there may be computa-
tional challenges for exploring so many scenarios, but with
parallel computing capabilities, the cost of an additional
simulation run is often rather small. Also, adaptive sam-
pling techniques may be utilized to reduce the number of
simulations needed to discover performance thresholds in
climate change space.

[s4] Once performance thresholds in climate change
space are identified, information on the likelihood of harm-
ful climate states can be used to estimate climate risks fac-
ing the system. If certain scenarios used in the stress test
are truly implausible, then the likelihood assessment should
reveal this and discount these scenarios when estimating
climate risk. Downscaled GCM projections are a logical
starting place to garner this likelihood information, and
recently, there have been significant efforts in the climate
science community to develop formal probability distribu-
tions of global and regional climate variables from these
projections. These approaches utilize initial condition
ensembles [Stainforth et al., 2005], perturbed physics
ensembles [Rougier et al., 2009], multimodel ensembles
[Tebaldi et al., 2005], or combinations thereof [Sexton et
al., 2012] to develop pdfs of response variables. Expert
opinion can also be valuable in forming these likelihood
estimates, as can data from the paleorecord. In addition,
imprecise probabilities could be utilized to express uncer-
tainty regarding the estimated values [Rinderknecht et al.,
2012]. Potentially, more reliable probability estimates may
be developed for discrete thresholds (i.e., the likelihood of

climate change beyond a threshold associated with system
failure), rather than continuous probabilities across the
entire climate space. In all of these cases, the probabilities
of change should likely be considered subjective, but they
can still be coupled with the results of the vulnerability
assessment to quantitatively appraise the robustness of dif-
ferent adaptation measures across the range of climate
change space [Moody and Brown, 2013]. More research is
needed to explore approaches for gathering this probabilis-
tic information and coupling it with the results of an exten-
sive vulnerability assessment.

6. Conclusion

[s55] The most recent scientific knowledge suggests that
the impacts of climate change on socioeconomic and bio-
physical systems could be very significant, yet they remain
highly uncertain. Recently, decision-analytic approaches
have been proposed to better handle this uncertainty and
frame adaptation studies under climate change in terms
more relevant for decision makers. These approaches, often
bottom-up by design, require an understanding of system
sensitivities to various changes in the climate system to bet-
ter identify vulnerabilities and develop an understanding of
potential risks to the system. However, technical methods
for conducting these vulnerability assessments are rela-
tively underdeveloped in the literature. This study pre-
sented a stochastic weather generator that can help
facilitate the discovery of system vulnerabilities to several
components of the climate system. When coupled with
impact models, the weather generator enables a more com-
plete identification of system vulnerabilities that can help
inform risk management strategies and the selection of
robust adaptation measures.

[s6] The tool is designed to work not only for specific
sites but also for systems that cover large spatial extents,
such as trans-state river basins or ecosystems. However,
future work is needed to explore how spatially expansive
the model can be made before its skill degrades. Future
studies will also utilize the weather generator tool to con-
duct stress tests on various socioeconomic and biophysical
systems in order to appraise potential improvements from
available adaptation measures.

[57] As climatic records continue to show increasing
nonstationary in their probabilistic behavior, decision mak-
ers across a range of fields will seek actionable information
that directly informs a choice between measures they can
take to safeguard their system from further shifts in the cli-
mate. The high degree of uncertainty that surrounds these
changes hinders the utility of a traditional predict-then-act
framework for adaptation decision making. A shift in phi-
losophy may be needed to provide the information truly
needed to adapt our society to potential environmental
changes that we cannot foresee. This study hopefully adds
to a developing body of literature exploring new methods
to analyze and present climate change adaptation informa-
tion that can help better inform decision makers as they
navigate an uncertain future.
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