
BUCLD 35 Proceedings  
To be published in 2011 by Cascadilla Press 
Rights forms signed by all authors 
The Roles of Phonotactics and Frequency in the Learning 

of Alternations 
 

Gaja Jarosz 
 
 

1. Introduction* 
 
Several recent studies have examined the acquisition of morpho-

phonological alternations, with apparently conflicting findings. Production and 
comprehension studies with both real and nonce words suggest that 3½ year old 
Dutch-learning children do not yet have productive knowledge of the morpho-
phonological voicing alternation (Zamuner, Kerkhoff, Fikkert, and Westrek 
2005; Zamuner, Kerkhoff, and Fikkert 2006; Zamuner, Kerkhoff, and Fikkert 
2007). Although five year olds perform well on real alternating words (Kerkhoff 
2007), even seven year olds are reluctant to extend alternations to novel forms 
(Kerkhoff 2004). At the same time, in an artificial language learning task, 
White, Peperkamp, Kirk, and Morgan (2008) find evidence that one year olds 
are already learning morpho-phonological alternations.  

This paper presents the results of computational simulations that may help 
explain these divergent findings. Given data representative of the Dutch voicing 
distribution, the computational model predicts learning curves consistent with 
the Dutch acquisition findings, with a long delay for alternating forms. The 
focus of this paper is on analyzing the behavior of the model to determine what 
properties of the input or assumptions about the learning process underlie the 
observed effects. The analyses reveal that two independent properties of the 
input distribution in Dutch conspire against the alternating segments in Dutch. A 
major focus of the analyses is on the interaction of prior phonotactic learning 
with the learning of alternations. A number of researchers have observed that 
phonotactic learning may be helpful in the learning of alternations (Hayes 2004; 
Prince and Tesar 2004; Jarosz 2006; Tesar and Prince 2003 / 2007). Despite the 
delay in the learning of voicing alternations in Dutch, the analyses suggest the 
observed effects are consistent with early phonotactic learning that aids in 
subsequent learning of alternations. 

The rest of the paper is organized as follows. Section 2 presents the learning 
model. Section 3 reviews experimental findings on the acquisition of the Dutch 
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voicing alternation and presents the results of the Dutch simulation. In Section 4, 
the predicted effects of the model are examined in three analyses of the model. 
Finally, Section 5 discusses the results of the analyses with respect to the 
acquisition findings. 

 
2. The Learning Model 

 
This section describes the learning model (Jarosz 2006), focusing on the 

assumptions and properties of the model most relevant to its predictions for the 
learning of phonological alternations and the interaction with phonotactic 
learning. See Jarosz (2006) for an in-depth description and technical details. 

Within a generative framework, learning a morpho-phonological alternation 
involves the learning of at least four major interacting components of morpho-
phonological knowledge. These include the learning of phonotactics, the 
learning of phonological mappings, the learning of underlying representations 
(URs), and the morphological analysis itself. For example, in order to learn the 
Dutch voicing alternation, the learner must determine that Dutch phonotactic 
knowledge includes a prohibition against word-final [d] but not [t] while 
allowing both [t]s and [d]s in other positions. The learner must determine the 
morphological relation between surface forms such as [bɛt] – ‘bed’ and [bɛdəәn]  
- ‘beds’ and decompose complex forms like [bɛdəәn] into their component 
morphs. The learner must also determine that the unfaithful mapping responsible 
for the alternations is devoicing word-finally. Finally, the learner must identify a 
single underlying representation for morphologically related forms, setting URs 
of alternating forms to /d/ and the URs of non-alternating forms to /t/. 

All simulations presented here rely on a learning model (Jarosz 2006) cast 
within a probabilistic variant of Optimality Theory (OT; Prince and Smolensky 
1993/2004). The model deals with the learning of three of these major 
subproblems: the phonotactics, the phonological mappings, and the URs. Like 
other work on learning in OT, the model makes the simplifying assumption that 
the morphological analysis is available to the learner. It is a probabilistic 
generative model with two components, a grammar and a lexicon of URs, both 
of which must be learned. Generation works just like in standard OT except that 
the production process is probabilistic. In order to generate a word, the learner 
first probabilistically selects a UR from the lexicon, then, given the UR, the 
learner uses the grammar to probabilistically map the UR to the surface form. 
The grammar is a probabilistic ranking of constraints (a probability distribution 
over rankings), and the lexicon encodes for each morpheme a probability 
distribution over possible underlying representations. The probability allows the 
model to represent uncertainty (such as at the beginning of learning or in cases 
of free variation), but in cases where surface forms are predictable, the lexicon 
and grammar can settle on unique URs and rankings, respectively. 

The goal of learning is to reproduce the learning data and its distribution. 
During learning both the grammar and lexicon are updated gradually in response 
to the learning data, making detailed predictions about phonological learning 



over time. The learning of the grammar and lexicon is divided into two stages: 
phonotactic learning and the learning of phonological alternations. During the 
phonotactic learning stage, the task of the model is to learn a probabilistic 
ranking of constraints that reproduces the observable distribution of surface 
forms, to learn the (probabilistic) phonotactics of the language. This is done by 
gradually updating the (initially uninformed) grammar but holding constant the 
lexicon, which at this point is a flat distribution over potential URs for each 
unanalyzed word. Then, prior to the second stage, the (idealized) morphological 
analysis takes place, associating each morpheme with its own (initially 
uninformed) distribution of potential URs. By hypothesis, this point during 
learning corresponds to the onset of production. During the phonological 
learning stage, the learner gradually settles on the URs for each morpheme and 
also refines the grammar to capture the mappings from URs to surface forms. 
The examination of the phonological learning stage is the primary focus of this 
paper since this is the stage that makes predictions for production.1 

 
3. The Dutch Simulation 

 
This section describes the Dutch simulation, which is modeled after a 

picture-naming task with Dutch children (Zamuner et al. 2005) and (Zamuner et 
al. 2007). This task - involving production of real words whose frequencies are 
known - provides the opportunity to examine the effects of frequency on 
learning of alternations in the model and to compare these predictions to the 
experimental results. 

 
3.1. Zamuner et al (2005, 2007) 

 
Zamuner et al. (2005) and Zamuner et al. (2007) examined Dutch children’s 

production of intervocalic [t]s and [d]s in a picture-naming task at two age 
groups, 2;7 and 3;7. The findings of the two studies were similar; the results of 
Zamuner et al. (2007: "ZKF") are summarized here. In order to examine the 
acquisition of alternations, ZKF compared production of stops in two 
morphological conditions. In the mono-morphemic condition, stops occurred 
intervocalically in morphologically simple nouns, e.g.  [wɑtəәr] - ‘water’ and 
[rɪdəәr] – ‘knight’.  In the bi-morphemic condition, stops also occurred in 
intervocalic position but were the stem-final stops of plural nouns, e.g. [bɛdəәn] – 
‘beds’ and [pɛtəәn]  - ‘caps’. Thus, the voiced stops in the bi-morphemic 
condition include the alternating /d/s. They also tested production of voicing 
word-finally in the corresponding singulars, e.g. [bɛt] – ‘bed’ and [pɛt]  - ‘cap’.  
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ZKF found that voicing was always produced correctly for the singulars, 
with both age groups only producing voiceless word-final stops. The accuracy of 
voicing in intervocalic position was more varied. Their results showing the 
average proportion of correct medial voicing in each condition are summarized 
in Table 1. In addition to a significant effect of Age, ZKF found significant 
effects of both morphology and voicing. Overall production of [t]s was 
significantly more accurate than production of [d]s (voicing effect), a result that 
is consistent with several other studies on the acquisition of voicing in Dutch 
(Kager, van der Feest, Fikkert, Kerkhoff, and Zamuner 2007; Kerkhoff 2007; 
van der Feest 2007). Also, production was overall significantly more accurate in 
the mono-morphemic condition than in the bi-morphemic condition 
(morphology effect). Thus, accuracy was lower for alternating /d/s than for non-
alternating /d/s, and accuracy on bi-morphemic /t/s was lower than for mono-
morphemic /t/s. 

 
Table 1 - Proportion of Correct Voicing Intervocalically (from ZKF) 

 Bi-morphemic Mono-morphemic 
 [t] [d] [t] [d] 
Age 2;7 83% 5% 100% 28% 
Age 3;7 97% 13% 99% 75% 

 
Sections 3.2 - 3.3 show that these effects of morphology, voicing, and age 

are predicted by the probabilistic, generative model. Section 4 then examines the 
underlying causes of these effects in the model, revealing that the observed 
effects are a consequence of the Dutch distribution and the interaction of 
phonotactic learning with the learning of the voicing alternations. 
 
3.2. Simulation Method 

 
Table 2 summarizes the six types of items and their frequencies as provided 

to the learning model with examples (from ZKF) of each of the six types from 
Dutch. The simulation is based on ZKF’s picture-naming task and uses the same 
six types of items: singular nouns with /t/s and /d/s word-finally, corresponding 
plurals with intervocalic /t/s and /d/s, and mono-morphemic nouns with 
intervocalic /t/s and /d/s. The frequencies of the six item types used for the 
simulation are the total token frequencies of the lexical items from the picture-
naming task in child-directed speech as reported by ZKF. Importantly, however, 
the frequencies used in the simulation are consistent with the distribution of 
voicing in child-directed speech in Dutch overall. Of particular relevance to the 
simulation are that facts that plural /d/s are very infrequent, that there are more 
medial /t/s than medial /d/s overall, and that there are more singulars than plurals 
(Kerkhoff 2004; Kerkhoff 2007). 

The actual data provided to the learning model are shown in the last two 
(shaded) lines of Table 2. In order to ensure that only the relevant factors of 
voicing, morphology, frequency, and phonological context (word-final vs. 



medial) affected learning of stop voicing in the different types, all data items 
were of the form rɛ{t,d}(əә). The subscripts 1-5 are arbitrary labels for the 5 
morphemes in the input data: the four stems and one suffix. The subscripts 
encode the morphological analysis of the surface forms, telling the model which 
words are morphologically related to one another and which segments 
correspond to which abstract morphemes. 

 
Table 2 – The Learning Data and Frequency of Stops by Type (from ZKF) 

Singulars Bi-morphemic Plurals Mono-morphemic 
/t/→[t] /d/→[t] /t/→[t] /d/→[d] /t/ /d/ 
[pɛt] 

-‘cap’ 
[bɛt] 

-‘bed’ 
[pɛtəәn] 
-‘caps’ 

[bɛdəәn] 
-‘beds’ 

[wɑtəәr] 
-‘water’ 

[ridəәr] 
-‘knight’ 

11.8% 55.5% 8.6% 0.5% 19.3% 4.4% 
rɛt1 rɛt2 rɛt1əә5 rɛd2əә5 rɛtəә3 rɛdəә4 
 
The standard OT constraints used in the simulation are defined below in (1). 

This set of constraints makes available a range of analyses of the input data that 
the learning model must successfully navigate. For example, given these 
constraints, both intervocalic voicing and final devoicing are possible 
explanations of voicing alternations. Also, the presence of MAX in the constraint 
set makes it possible to avoid voicing word-finally by deleting rather than 
devoicing. Crucially, an appropriate ranking of these constraints will capture the 
Dutch pattern of voicing contrast intervocalically and devoicing word-finally. 
 
(1) Constraints 

a. *VOICE – No voiced obstruents 
b. *VOICECODA – No voiced obstruents in syllable coda position 
c. *VTV – No voiceless obstruents intervocalically 
d. IDENT[VOICE] – No change in voicing from input to output 
e. MAX – No deletion 
 
Given the learning data and frequency distribution shown in the last two 

lines of Table 2 and the constraints in (1), the learning model for this simulation 
must ultimately find the URs for each of the 5 morphemes and a ranking of 
constraints that accounts for phonotactic restrictions and the phonological 
mappings. During phonotactic learning the model ignores the morphological 
analysis (the subscripts in the last line of Table 2). It starts with an uninformed 
probabilistic ranking of constraints, with all constraints ranked equally such that 
any total ranking is equally likely. Its task during phonotactic learning is to find 
a probabilistic ranking that reproduces the distribution of surface forms, 
including word-final voicing neutralization with contrast intervocalically. Then, 
prior to the second stage of learning, morphological analysis takes place, and 
each of the 5 morphemes is associated with its own probabilistic UR. The UR 
distributions are initially uninformed with /t/ and /d/ being equally likely for 
each morpheme. During phonological learning, the model adjusts the UR 



distributions gradually as it settles on a UR for each of the morphemes: its task 
is to determine for example that the URs of morphemes 1 and 2 must have a /t/ 
and /d/, respectively. The model also gradually adjusts the probabilistic ranking 
learned during the first stage to ensure URs map correctly to their surface forms. 
 
3.3. Simulation Results 

 
The model is successful, and the learning curves for both stages are shown 

in Figure 1. Figure 1(A) shows how the relative probabilities of the surface 
forms change gradually during the phonotactic learning stage. The graph shows 
that the model learns that forms with word-final voicing (D#) are illegal in 
Dutch as the probability of such forms drops quickly to 0. The model also learns 
that the other surface forms are possible in Dutch, and their relative probabilities 
at the end of phonotactic learning reflect the Dutch distribution, with word-final 
[t]s (T#) being most probable, followed by medial [t]s (T), and finally, medial 
[d]s (D). 
 

(A) Phonotactic Learning: 
Probability of Surface Forms 

(B) Phonological Learning: 
Probability of Correct Medial Voicing 

Figure 1 – Predicted Learning Curves for Dutch 
 
It is with this phonotactic knowledge that the model enters the phonological 

stage of learning. The graph in Figure 1(B) shows how the probability of 
correctly producing voicing changes over the course of learning for the four data 
items with medial stops. Since production relies on first probabilistically 
selecting a UR from the lexicon and then probabilistically mapping that UR to 
the surface form using the grammar, these production probabilities reflect the 
interaction of grammatical knowledge and knowledge of the URs as both are 
gradually updated over time. The curves for the singulars (rɛt1 and rɛt2) are not 
shown in the graph: the probability of correct voicing for these is already at 
100% at the beginning of phonological learning due to the phonotactic 
restriction against final-voicing. Examination of the curves for the medial stops 



reveals that learning is fastest for mono-morphemic /t/ (/T/-mono), followed 
closely by bi-morphemic /t/ (/T/-bi). Correct voicing for /d/ takes much longer, 
with faster learning for mono-morphemic /d/ (/D/-mono) than for bi-morphemic 
/d/ (/D/-bi). 

The learning curves in Figure 1(B), predicted by a probabilistic, generative 
model with early phonotactic learning, closely mirror the acquisition findings. 
Given data representative of the Dutch voicing distribution, the model predicted 
the effects of age, morphology, and voicing, as well as the lack of voicing word-
finally for singulars, matching the experimental results discussed above 
(Zamuner et al. 2007). The age effect follows trivially from the gradual (and 
improving) nature of learning. More interesting are the effects of morphology 
(an overall delay for bi-morphemic forms) and voicing (an overall delay for 
voiced [d]). The correspondence between the predicted learning curves and the 
experimental results is striking: the predicted curves at (approximately) 
iterations 15 and 30 closely match the younger and older age groups, 
respectively. A particularly noteworthy finding is the difference between mono-
morphemic /t/s and bi-morphemic /t/s in both the model and the experimental 
results. Since both /t/s are always realized as [t]s on the surface, what explains 
the difference? The following section explores the causes underlying these and 
other effects in the model. 

 
4. Model Analysis 

 
By manipulating the computational simulation in various ways, it is 

possible to determine what properties of the model or aspects of the Dutch 
distribution underlie these various effects. Understanding what underlies the 
observed effects in the model can provide a possible explanation for the delayed 
learning of voicing alternations in Dutch. This section presents analyses of the 
above simulation results, exploring in turn the voicing effect, the morphological 
effect, and the relationship between learning of phonotactics and alternations. 

 
4.1. The Voicing Effect 

 
The model predicts slower learning for voiced /d/ than for voiceless /t/ 

overall: indeed, both mono-morphemic and bi-morphemic medial /t/s are learned 
more quickly by the model than the mono-morphemic and bi-morphemic medial 
/d/s.  As work on acquisition of voicing in Dutch has noted, one possible 
explanation for the slower acquisition of [d] may be the low frequency of voiced 
consonants in Dutch (Kager et al. 2007; Kerkhoff 2007; van der Feest 2007).  
The input distribution (Table 2) provided to the model reflects this statistical 
bias: medial /t/s have an overall frequency of 27.9% (19.3% + 8.6%) while 
medial /d/s have an overall frequency of 4.9% (4.4% + 0.5%). In the 
computational model, it is possible to examine the effect of this statistical bias 
directly by altering the input distribution. Figure 2(A) shows the learning curves 
during phonological learning for ‘Anti-Dutch’, which is identical to the one for 



Dutch in Figure 1(B) above except that the frequencies of medial /t/s and /d/s are 
reversed. Specifically, in Anti-Dutch the frequencies of [rɛt1əә5], [rɛtəә3], [rɛd2əә5], 
and [rɛdəә4], are 0.5%, 4.4%, 8.6%, and 19.3%, respectively. This means the 
Anti-Dutch input distribution has the same overall proportions of mono-
morphemic, bi-morphemic, and singular forms as the Dutch distribution, but 
medial /d/s (27.9%) are more frequent than medial /t/s (4.9%) overall.  

In contrast to the simulation for Dutch, the curves for Anti-Dutch in Figure 
2(A) show slower learning for voiceless (/T/s) than for voiced (/D/s). This effect 
obtains even though the overall frequency of [t]s is higher than the frequency of 
[d]s if all positions are considered. This is because the effects of frequency are 
context-specific and grammatical in nature. Because both Dutch and Anti-Dutch 
prohibit voicing word-finally, in both simulations the model learns during 
phonotactic learning that *VOICECODA must be highly ranked. High ranking of 
*VOICECODA has no impact on medial voicing, however. So also during 
phonotactic learning, the model ranks *VOICE highly in Dutch and *VTV highly 
in Anti-Dutch to account for opposite biases favoring medial [t]s in Dutch and 
medial [d]s in Anti-Dutch. These statistical phonotactic biases then shape the 
learning curves during phonological learning. 
 

(A) Probability of Correct Medial 
Voicing for Anti-Dutch 

(B) UR Learning in Dutch 

Figure 2 – Learning Curves for Anti-Dutch (A) and Dutch URs (B) 
 

In sum, this manipulation reveals that the model’s delayed learning of [d]s 
can be attributed to the high frequency of medial [t]s in the Dutch distribution, 
resulting in a probabilistic grammatical preference for medial [t]s. The 
manipulation reveals this is a big part of the explanation for the slow learning of 
alternating /d/s. In Anti-Dutch, which has the opposite frequency bias, 
alternating /d/s do not show a particularly slow learning curve. Importantly, 
however, the morphological effect in Anti-Dutch remains the same as in the 
original Dutch simulation, with slower learning for bi-morphemic stops than for 
corresponding mono-morphemic stops. Thus, the morphological effect must be 
due to some other property of the model or input; this is addressed next. 



4.2. The Morphological Effect 
 
While the voicing effect can be attributed to a global grammatical 

preference, the explanation of the morphological effect can only be attributed to 
a difference in the learning of URs for bi-morphemic forms as opposed to mono-
morphemic forms. This is because the constraints used in the simulation make 
no reference to morphological status in any way. The grammar, therefore, 
cannot distinguish morphologically complex forms from morphologically 
simple forms, and any morphological difference can only be attributed to the 
URs. This fact can be confirmed by examining the learning curves for the URs 
themselves for the original Dutch simulation, shown in Figure 2(B). The figure 
reveals that the mono-morphemic forms are quicker to converge on their target 
URs than the bi-morphemic forms. Specifically, it takes the model longer to 
settle on the underlying /t/ for [rɛt1əә5] than for [rɛtəә3], and longer to settle on 
underlying /d/ for [rɛd2əә5] than for [rɛdəә4].  

Why does the model predict slower UR learning for bi-morphemic stops? 
The slower learning of underlying /t/ for [rɛt1əә5] than for [rɛtəә3] is particularly 
illuminating. Both /t/s always surface as [t], and the overall frequency of 
morphemes 1 and 3 are comparable, with both occurring about 20% of the time 
in the data. The only difference is that some of the occurrences of morpheme 1 
are in the singular, placing the stem-final /t/ in word-final position. In contrast, 
all occurrences of the /t/ in morpheme 3 occur medially. This suggests learning 
of underlying voicing in word-final position is slower than in medial position.  

 

Phonological Learning: Probability of Correct Voicing 
Figure 3 – Dutch Learning Curves by Proportion of Word-Final Context 
 

The simulation results pictured in Figure 3, showing learning curves for 
different rates of occurrence in word-final context, confirm this. This simulation 
is a variant of the original Dutch simulation with several distinct lexical items 
making up the bi-morphemic /t/ and /d/ types. The frequencies of the lexical 
items were chosen in such a way as to maintain the same overall frequencies for 



the six types as in the original simulation, but the various lexical items within 
each type varied in the relative frequency of occurrence in word-final context. 
Specifically, the overall frequency of plural /d/ and singular /d/ were still 0.5% 
and 55.5%, respectively. However, one of the lexical items (stems) with target 
/d/ (labeled /D/-10 in the figure) occurred 10 times more frequently in the 
singular, word-final context than in the plural, medial context. Items /T/-0 and 
/D/-0 never occur in word-final context and thus correspond to the mono-
morphemic /t/ and /d/, respectively. /T/-1.3 and /D/-111 are the bi-morphemic 
curves from the original Dutch simulation since 1.3 and 111, respectively, are 
the relative proportions in the original data. The results show that varying the 
rate of word-final context derives a continuum of learning curves, with slower 
learning for higher rates of word-final context. 

This manipulation shows that the different rates of occurrence in word-final 
context are responsible for different rates of UR learning in mono-morphemic 
versus bi-morphemic forms. It is not an accident that the phonological context in 
which UR learning is slower is one in which voicing contrast is neutralized in 
Dutch, while the context in which UR learning is faster is one that permits a 
voicing contrast. It is precisely because of the model’s existing phonotactic 
knowledge that learning of URs is slower in a neutralizing context. This effect 
of phonotactic knowledge is examined directly next. 

 
4.3. The Effect of Early Phonotactic Learning 

 
The effect of existing phonotactic knowledge can be examined directly in 

the model by examining the impact of the early stage of phonotactic learning. 
An early stage of phonotactic learning is built-in to this implementation of the 
model, but its impact can be minimized by allowing phonotactic learning to 
continue for only one iteration2. The results of just such a simulation, which is 
otherwise identical to the original Dutch simulation, are shown in Figure 4(A). 
Reducing the impact of early phonotactic learning has a number of noteworthy 
effects. Although all the curves for medial stops are plotted in this graph, it is 
impossible to distinguish the curves for mono-morphemic and bi-morphemic /t/s 
because they are right on top of one another. The curves for the /d/s are lower, 
with bi-morphemic /d/s learned most slowly. Thus, although bi-morphemic /d/s 
are still learned most slowly, there is no longer a difference predicted between 
mono-morphemic /t/s and bi-morphemic /t/s. The morphological effect, which 
applied to both /t/s and /d/s in the original simulation, is no longer observed. In 
general, as compared to the original simulation, the learning curves in Figure 
4(A) are consistent with a phonotactically ‘naïve’ learner that learns 
phonological alternations primarily on the basis of the surface realizations, 
penalizing /d/s for their low frequency and additionally penalizing bi-
morphemic /d/s for their unfaithful surface realizations in the singular. 

                                                             
2 One iteration corresponds to one pass through the data and a small grammatical 

update as shown in Figure 1(A). 



This overall pattern of results can be understood in terms of the 
consequences of phonotactic knowledge of neutralization for the learning of 
underlying representations. Specifically, the word-final context is less 
informative about underlying voicing to a learner with knowledge of word-final 
voicing neutralization than to a phonotactically naïve learner. Knowledge of 
voicing neutralization tells the learner that both /d/ and /t/ are possible 
underlying representations for a word-final [t]. Therefore, occurrences of stops 
word-finally are not informative about underlying voicing to a phonotactically 
informed learner. In contrast, a phonotactically naïve learner will be more likely 
to take the surface realization of voicing word-finally as evidence for an 
underlying voiceless specification. As a result, the phonotactically naïve learner, 
as compared to the phonotactically informed learner, should learn bi-morphemic 
/t/s more quickly and bi-morphemic /d/s less quickly. This is exactly what 
happens. Figure 4(B) compares the learning curves for bi-morphemic /t/s and 
/d/s with early phonotactic learning (from the original simulation in Figure 1(B)) 
to the learning curves for bi-morphemic /t/s and /d/s with minimal early 
phonotactic learning from Figure 4(A). As this figure shows, early phonotactic 
learning dramatically improves learning of alternating /d/ and results in 
somewhat slower learning of bi-morphemic /t/. 
 

(A) Phonological Learning without 
Prior Phonotactic Learning  

(B) Phonological Learning of Bi-
Morphemic Stops with and without 
Prior Phonotactic Learning 

Figure 4 – The Effect of Early Phonotactic Learning  
 

In sum, the model’s early phonotactic learning enables the learner to 
differentiate phonological contexts according to how informative they are about 
underlying voicing. Surface realizations in neutralizing contexts are not 
informative about underlying voicing whereas surface realizations in contrastive 
contexts are. Accordingly, a phonotactically informed learner is less likely to be 
mislead by the surface voicelessness of alternating /d/s word-finally. In this way, 
phonotactic knowledge helps with the learning of alternating /d/s. In contrast, 
since surface realizations of /t/s word-finally match the target underlying 
specification, ignoring these realizations hurts the learning of bi-morphemic /t/s. 



5. Discussion 
 
This paper has shown that a probabilistic, generative model given input data 

representative of the Dutch voicing distribution predicts a delay in the learning 
of voicing alternations. The analyses of the model show that the delay for 
alternating /d/s results from two cumulative effects, both of which derive from 
the frequency distribution of Dutch. The voicing effect is a grammatical effect 
due to the statistical bias favoring medial [t]s to medial [d]s in the Dutch data. 
The morphological effect results from the interaction of input frequency, 
specifically the frequency of stem-final stops word-finally, with early 
phonotactic learning. Early phonotactic learning causes the model to treat word-
final context as uninformative about underlying voicing, and the high relative 
frequency of alternating /d/s in word-final context delays their subsequent 
learning. In spite of the delays in learning of alternating /d/s, computational 
simulations show that early phonotactic learning helps the learning of 
alternations, with even slower learning expected in the absence of early 
phonotactic learning. 

Understanding the behavior of the model can help explain the delay in the 
learning of voicing alternations in Dutch. The analyses show that even with 
phonotactic knowledge, the learning of alternating /d/s takes a long time from 
the onset of phonological learning. This delay occurs even though the model 
assumes morphological analysis is complete and treats the alternation as a 
regular, fully productive process. The implication of the model is that Dutch 
children’s delay in the learning of voicing alternations may likewise be due, at 
least in part, to the frequency distribution in Dutch. If, as recent experimental 
results from artificial grammar learning suggest (White et al. 2008), learning of 
alternations is already underway by the time children are one year old, the 
simulations presented here help explain why this process takes so long in Dutch. 
The analyses highlight in particular the potential role of the low frequency of 
alternating /d/s in medial context in Dutch. If the model is on the right track, 
voicing alternations in nouns that occur more frequently in the plural should be 
acquired earlier than alternations in nouns with low frequency of occurrence in 
the plural. This is a concrete prediction derived from the model that can be 
tested in future acquisition studies. More generally, the model predicts that 
acquisition of phonotactically driven alternations should be slower in 
neutralizing contexts than in contrastive contexts. Another prediction of the 
model is that statistical biases in the lexicon favoring one of the alternating 
segments can interact with the learning of alternations. A statistical bias against 
voiced medial segments in Dutch leads to an overall preference for voiceless 
segments in the model. However, Section 4.1 reveals that learning of 
alternations should be faster in the absence of such a bias. These predictions can 
be checked against findings from languages with different voicing distributions.  

As discussed in Section 2, this model does not learn to morphologically 
analyze the phonological surface forms, a process that is likely to interact with 
the subproblems of phonological learning examined here. Further modeling 



work is needed to determine how morphological analysis interacts with the 
learning of morpho-phonological alternations and in what ways it depends on 
the input distribution. Nonetheless, the simulations presented here illustrate that 
the interactions of phonotactic learning, learning of phonological mappings, and 
the learning of URs already create a complex system with predictions that can 
be hard to foresee. Computational modeling generates these predictions, helping 
to explain developmental findings and develop hypotheses for further testing. 
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