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This paper explores the relative merits of constraint ranking vs. weighting in the
context of a major outstanding learnability problem in phonology: learning in the
face of hidden structure. Specifically, the paper examines a well-known approach
to the structural ambiguity problem, Robust Interpretive Parsing (RIP; Tesar &
Smolensky 1998), focusing on its stochastic extension first described by Boersma
(2003). Two related problems with the stochastic formulation of RIP are revealed,
rooted in a failure to take full advantage of probabilistic information available in
the learner’s grammar. To address these problems, two novel parsing strategies
are introduced and applied to learning algorithms for both probabilistic ranking
and weighting. The novel parsing strategies yield significant improvements in
performance, asymmetrically improving performance of OT learners. Once RIP
is replaced with the proposed modifications, the apparent advantage of HG over
OT learners reported in previous work disappears (Boersma & Pater 2008).

1 Introduction

Much recent work in phonology, both theoretical and computational, has
explored the consequences of replacing the strict ranking of Optimality
Theory (OT; Prince & Smolensky 2004) with numerical weighting.
Research on weighted grammars, including Harmonic Grammar (HG;
Legendre et al. 1990, Smolensky & Legendre 2006), Linear OT (Keller
2000) and maximum entropy grammars (Johnson 2002, Goldwater &
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Johnson 2003, Jäger 2007), has identified a number of interesting
properties of constraint weighting. One property of weighted grammars
that has received much attention is their ability to model cumulative
effects. On the one hand, proponents argue that constraint weighting
elegantly captures gang interactions and other attested cumulative effects
(Keller 2000, Keller & Asudeh 2002, Goldwater & Johnson 2003, Jäger &
Rosenbach 2006, Coetzee & Pater 2008, Pater 2009a, b, Potts et al. 2010).
On the other hand, while some work has highlighted the ways in which
weighting predicts relatively restricted typologies (Pater 2009a, b, Potts
et al. 2010), other work has shown that the added power of weighting can
result in unusual typological overpredictions (Legendre et al. 2006, Bane &
Riggle 2009, Pater 2009b). There has also been discussion of the compu-
tational properties of ranked vs. weighted constraint grammars. From the
perspective of acquisition modelling, Jesney & Tessier (2011) have argued
that gradual learning of weighted constraint grammars can capture at-
tested intermediate stages that ranking cannot. Other work suggests a
learnability advantage for stochastically weighted over stochastically
ranked constraints (Boersma & Pater 2008) and highlights the link be-
tween weighted grammars and connectionist models in cognitive science
(Legendre et al. 2006, Soderstrom et al. 2006, Pater 2009a, Goldrick
2011). However, there is also work showing that, at least for some key
learning subproblems, there is no learnability advantage for weighting
over ranking (Bane et al. 2010, Magri 2012).

The present work contributes to this debate by exploring the relative
merits of ranking and weighting in the context of a major outstanding
learnability problem in phonology: the problem of learning in the face of
hidden structure. Specifically, this paper examines a well-known approach
to the structural ambiguity problem in OT, ROBUST INTERPRETIVE

PARSING (RIP; Tesar & Smolensky 1998), focusing on its extension to
probabilistic constraint-based grammars first described by Boersma
(2003). The RIP extensions of online learning algorithms for both prob-
abilistic OT (Boersma 1997, Boersma & Hayes 2001) and probabilistic
HG (Fischer 2005, Jäger 2007, Boersma & Pater 2008, Pater 2009a, b) are
analysed in the domain of metrical stress. Initial investigations of OT and
HG learners in this context suggest an advantage for HG (Boersma &
Pater 2008). These simulations, reviewed below in w2.4, serve as a starting
point for the in-depth investigations in the present paper. The paper
also introduces two novel interpretive parsing strategies that are applied
to both OT and HG learning algorithms, and presents detailed analyses
of the performance of all six learning algorithms.1 The overall findings
show that the advantage of HG over OT reported in previous work dis-
appears when RIP is replaced with the proposed parsing strategies.
Although the success rates of HG learners are substantially higher
than that of OT learners when the original formulation of RIP is used,

1 See Biró (to appear) for research on an alternative approach to improved inter-
pretive parsing.
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the proposed learning algorithms substantially and cumulatively im-
prove the performance of OT learners, ultimately yielding comparable
success rates for OT and HG learners. The analyses reveal the underlying
causes of the performance differences between the ranking and weighting
frameworks, and computational and theoretical implications are
discussed.
The remainder of the paper is laid out as follows. w2 reviews

previous work on learning stress and hidden structure, the OT and
HG frameworks, and relevant previous work on RIP and its application
in the stochastic setting. w3 introduces the first problem with the
original formulation of RIP for the stochastic setting, parsing with a
losing grammar. It also introduces a novel parsing strategy that solves this
problem, RESAMPLING RIP (RRIP), and presents simulations exploring
the performance of RIP and RRIP for both OT and HG learners. w4
introduces the second problem with the original formulation of RIP for
the stochastic setting, the parsing–production mismatch. This section also
proposes a second novel parsing strategy, EXPECTED INTERPRETIVE

PARSING (EIP), and compares the performance of all three parsing
strategies for both OT and HG learners. Finally, w5 and w6 present final
discussion and concluding remarks respectively.

2 Background: hidden structure and Robust
Interpretive Parsing

The present investigation of error-driven constraint-based learners falls
within a rich and growing literature on the learning of stress and hidden
structure in phonology. There has been work on the learning of hidden
metrical structure within a principles-and-parameters (Chomsky 1981)
framework (Dresher & Kaye 1990, Dresher 1999, Pearl 2011). Earlier
work also includes learning of surface stress patterns using connectionist
networks (Gupta & Touretzky 1994), dynamic systems (Goldsmith 1994),
data-driven learning (Daelemans et al. 1994) and automata-theoretic
approaches (Heinz 2009). Within OT and related constraint-based
frameworks, there is an extensive body of work on the learning of hidden
structure (Tesar 1998, 2004, 2006, 2008, 2011, Tesar et al. 2003, Prince &
Smolensky 2004, Alderete et al. 2005, Jarosz 2006a, b, to appear,
Merchant 2008, Merchant & Tesar 2008, Akers 2011). The RIP approach
to structural ambiguity investigated here is one prominent strand of
learnability research from this constraint-based perspective. RIP has
been applied to both strict and probabilistic variants of both ranking
and weighting frameworks (Tesar & Smolensky 1998, 2000, Apoussidou
& Boersma 2003, Boersma 2003, Apoussidou 2007, Boersma &
Pater 2008, Biró to appear), and RIP has also been adapted to the
learning of hidden lexical representations (Apoussidou 2006, 2007).
Although the constraint-based learning models rely on domain-general
learning strategies, many applications of RIP to the structural ambiguity
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problem have been tested in the domain of metrical phonology, and
this is the domain used to exemplify the models developed in the
present work.

RIP is an extension of constraint-based learning models that are
playing an increasingly pivotal role in the literature outside of learnability
proper, including much research on variation (see Coetzee & Pater 2011
for a review), gradience and phonotactics (Keller 2000, Hammond 2004,
Coetzee & Pater 2008, Hayes & Wilson 2008, Martin 2011 and many
more), acquisition modelling (see e.g. Smolensky 1996, Boersma & Levelt
2000, Hayes 2004, Tessier 2009, Jarosz 2010, Jesney & Tessier 2011)
and inductive bias (Hayes & Londe 2006, Wilson 2006, Hayes et al. 2009,
Daland et al. 2011, among others). The prominent role that constraint-
based learning has played in the phonological literature is an important
motivation for the current investigations into how such learners can be
extended to successfully cope with structural ambiguity. Successful
strategies for handling structural ambiguity have the potential to enrich
and broaden the scope of research in each of the areas above by making
accessible the modelling of empirical domains that rely on hidden struc-
ture or that interact with hidden structure. The RIP approach differs
from several of the earlier approaches mentioned above (Dresher & Kaye
1990, Goldsmith 1994, Dresher 1999, Heinz 2009) in providing a
fully general approach to structural ambiguity that divorces the learning
strategy from the substantive content of the phonological grammar. Like
most other OT learning models, the RIP approach relies on the architec-
ture of the grammar but is not tied to specific representations, constraints
or empirical domains (see Tesar 2004 for extensive discussion along these
lines). This means that, while the present paper exemplifies the approach
in a test system of metrical phonology, the proposed learning strategies
can be applied to any case of structural ambiguity. In other words,
the learning challenge undertaken by these approaches is a more general
learnability problem, which goes well beyond metrical phonology.
Phonological theory posits various abstract representations to explain
systematic regularities underlying surface patterns, including feet,
syllable structure, moras, autosegments and other prosodic structure.
Metrical phonology is one domain in which such structure plays a
central role, but it is important to keep in mind that further
developments of constraint-based learning in this domain contribute to a
deeper understanding of the challenges posed by phonological learning
more generally.

The remainder of this section reviews the Stochastic OT and Noisy HG
frameworks, as well as the error-driven learning approach inherent to the
Gradual Learning Algorithms for ranking and weighting (Boersma 1997,
Boersma & Hayes 2001, Boersma & Pater 2008). It then explains how
hidden structure poses a challenge for these learners (for related dis-
cussion see Tesar 2004). Finally, it presents the Robust Interpretive
Parsing approach to structural ambiguity, reviewing previous simulations
with RIP.
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2.1 Preliminaries: ranking, weighting and probability

Before we turn to the problem of hidden structure learning in Stochastic
OT and Noisy HG, these frameworks are briefly reviewed here (for
further reading see Boersma 1997, Boersma & Hayes 2001, Boersma &
Pater 2008, Pater 2009b, to appear). In Stochastic OT (Boersma 1997,
Boersma & Hayes 2001) constraints are associated with a ranking value
along a continuous scale. At evaluation time, random noise (sampled from
a normal distribution centred around zero) is added to the ranking value
of each constraint independently, and the resulting relative ordering is
interpreted as a strict ranking for optimisation. In this way, Stochastic OT
defines a probability distribution over total orderings of constraints, with
re-ranking likely for constraints with similar ranking values and unlikely
for constraints ranked far apart. The Gradual Learning Algorithm (GLA)
for Stochastic OT (Boersma 1997, Boersma & Hayes 2001) makes use of
the continuous scale by making small, repeated updates to the ranking
values of constraints during learning.
In Harmonic Grammar (Legendre et al. 1990, Smolensky & Legendre

2006, Pater 2009a, b), constraints are weighted rather than strictly ranked.
A candidate’s harmony is defined as a weighted sum of constraint
violations, with each violation multiplied by the weight of the corre-
sponding constraint. Constraint violations are generally expressed as
negative integers, and the candidate with the highest (closest to zero)
harmony is optimal. This is illustrated in the simple example in (1), with
three candidates and three constraints.

(1)

a.
b.
c.

Example illustrating HG evaluation

Candidate A
Candidate B
Candidate C

C1

Harmonyw=5

C2 C3

w=4 w=2 Harmony
(—1)Xw(C2)+(—1)Xw(C3)=—6

(—1)Xw(C1)=—5
(—2)Xw(C2)=—8

—1
—1

—2

—1

The weight of each constraint is multiplied by the number of constraint
violations, and summed over all constraints to yield the harmony, shown
on the right. This example illustrates how in HG, in contrast to OT,
lower-weighted constraints can overpower higher-weighted constraints:
here, Candidate B is optimal, with a harmony of q5, even though it
violates the highest-weighted constraint, while the other candidates do
not. In Noisy HG (Boersma & Pater 2008, Pater 2009b, to appear),
random noise is added to the constraint weights in the same way that it is
added to the ranking values in Stochastic OT. After noise has been added
to the weights in Noisy HG, the resulting weighting is used to calculate
the optimal candidate. Weighted grammars can be learned using an online
learning algorithm that relies on the perceptron update rule (Rosenblatt
1958, Soderstrom et al. 2006) and is otherwise identical to the Gradual
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Learning Algorithm for Stochastic OT. Following Boersma & Pater
(2008) and Pater (2009b), this paper refers to both algorithms as GLA,
and uses OT-GLA and HG-GLA to distinguish the ranking and
weighting versions respectively. Thus HG-GLA makes use of the con-
tinuous weighting scale by making small adjustments to constraint
weights, just as OT-GLA does for constraint-ranking values. This paper
focuses on learning in the Noisy HG version of weighted grammars;
however, the findings have implications for learning in related weighted
grammar frameworks such as maximum entropy grammars, which are
briefly discussed in w4.1 (Johnson 2002, Goldwater & Johnson 2003,
Fischer 2005, Jäger 2007, Hayes & Wilson 2008).

2.2 Error-driven learning and hidden structure

OT-GLA and HG-GLA are both error-driven learning algorithms
(Rosenblatt 1958, Wexler & Culicover 1980, Tesar 1995, Tesar &
Smolensky 1998). Although the current paper focuses on learning in the
stochastic setting, this section also reviews Error-Driven Constraint
Demotion (EDCD) and its extensions to the problem of structural
ambiguity, since it is in this context that RIP was developed (Tesar 1995,
Tesar & Smolensky 1998). Error-driven learningmeans that updates to the
learner’s grammar are driven by errors made by the learner while pro-
cessing the learning data. Specifically, for each learning datum, the learner
uses its current grammar to generate its own output for that datum. If the
learner’s output does not match the learning datum, the learner compares
its output (the loser) to the learning datum (the winner) in order to de-
termine how to adjust the grammar. For example, suppose that the learner
is presented with the form [tE(tlEfOn)] while learning a language much
like Polish, with regular penultimate stress (Rubach & Booij 1985),
and that the learner must correctly rank constraints preferring right
and left alignment of feet, ALLFEET-R and ALLFEET-L respectively, and
constraints preferring right-headed and left-headed feet, IAMBIC and
TROCHAIC respectively. If the learner’s current ranking is ALLFEET-
R2IAMBIC2TROCHAIC2ALLFEET-L, the learner will generate the
incorrect [tE(lEtfOn)] for the input /tElEfOn/, as shown in (2), where W and
L denote winner and loser respectively.

(2)

AllFt-R Iambic AllFt-L/tElEfOn/ Trochaic
*
*

*

*
*

*
*
*

W
L

(’tElE)fOn
(tE’lE)fOn
tE(’lEfOn)
tE(lE’fOn)

/
a.
b.
c.
d.

Learner’s hypothetical grammar when presented with [tE’lEfOn]

As an error-driven learner, the learner will then compare the violations of
the loser with the violations of the winner in order to determine which
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constraints favour the winner and which favour the loser. The precise
update rules vary between EDCD, OT-GLA and HG-GLA, but all in-
volve adjusting the relative rankings or weighting of loser-preferring
and winner-preferring constraints so as to increase the harmony of the
winner compared to the loser. The EDCD learner demotes all un-
dominated loser-preferring constraints to a stratum immediately below
the highest ranked winner-preferring constraint (Tesar 1995, Tesar &
Smolensky 1998).
The update rules for the OT-GLA (Boersma 1997, Boersma & Hayes

2001) and HG-GLA (Boersma & Pater 2008; see also Rosenblatt 1958,
Soderstrom et al. 2006, Jäger 2007) learners are shown in (3a) and (b)
respectively. As shown in (3a), for each constraint i, OT learners
compare the violations of the winner W and loser L for constraint i,
i.e. ci(W) and ci(L) respectively (ci(X) is the number of violations which
constraint i (ci) assigns to candidate X). Constraint i’s ranking value r is
increased by e (the learning rate or plasticity) when the loser has more
violations than the winner, and decreased by e when the winner has
more violations than the loser (the sgn function returns q1 for negative,
1 for positive and 0 for zero). Thus e is added to the ranking values of
winner-preferring constraints and subtracted from those of the loser-
preferring constraints.

(3) OT-GLA update rulea.
Bri=eXsgn(ci(L)®ci(W))
HG-GLA update ruleb.
Bwi=eX(ci(L)®ci(W))

The update rule for HG is identical, as shown in (3b), except that the
plasticity is multiplied by the difference in the number of violations as-
signed to the loser and the winner. The HG update rule is an adapted form
of the perceptron update rule for training connectionist networks
(Rosenblatt 1958), which is itself an adaptation of the standard machine-
learning technique gradient ascent, whose online variant is known as
stochastic gradient ascent (see Jäger 2007 for in-depth discussion). In
sum, both OT-GLA and HG-GLA slightly decrease the ranking or
weighting of all loser-preferring constraints and slightly increase the
ranking or weighting of all winner-preferring constraints. In order to
calculate the update, both algorithms compare the violations assigned to
the loser to the violations assigned to the winner.
In the example in (2), candidate (c) is the winner for the penultimate

stress language, while the loser, the learner’s own output, is candidate (d).
Comparing the violations incurred by candidates (c) and (d), the learner
determines that IAMBIC favours the loser, and TROCHAIC favours the win-
ner, while the remaining constraints have no preference. Based on this,
the learner calculates the update rule, which indicates that IAMBIC must
be demoted, and in OT-GLA and HG-GLA that TROCHAIC must also
be promoted. Despite the differences in update rules between the three
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algorithms, the processing required to calculate the update is the same: a
comparison of the violations incurred by the winner and loser.

The learning strategy just described assumes that the learner is pro-
vided with full structural descriptions of the learning data. This means the
learner has access to hidden structure such as footing and syllabification,
as well as underlying representations, which are not available to the
human learner. Access to such hidden structure is crucial for identifying
the violations incurred by the winners, which, as just discussed, are crucial
for calculating the update. This is because every overt form is structurally
ambiguous and corresponds to numerous candidates, each with different
hidden structures and therefore distinct constraint violations. In the ex-
ample above, the learner was presented with a learning datum together
with hidden structure, the footing, i.e. [tE(tlEfOn)]. It is this footing that
identifies candidate (c) as the winner. In a more realistic learning context,
where the learner observes only the overt [tEtlEfOn], the learning datum
would be ambiguous between candidates (b) and (c). Without full struc-
tural descriptions, the learner cannot be sure which of (b) and (c) is actu-
ally the winner in this language. The problem is that the constraint
violations needed to calculate the grammar update depend on which
structure, or parse, is selected. The hidden structure is what determines
whether constraints like IAMBIC are violated. The example in the preced-
ing paragraph made the simplifying assumption that this hidden structure
was available to the learner. The same assumption is made by all
algorithms, such as EDCD and GLA, whose performance or proofs of
correctness presuppose access to full structural descriptions. This is un-
realistic, because children acquiring language do not have access to this
information. Indeed, determining whether (b) or (c) is the winner is part
of learning the grammar of the target language, since different languages
may parse a form like [tEtlEfOn] differently. In essence, full structural
descriptions provide the learner with parses, or analyses, of all the learning
data, providing the constraint violations of the learning data to which the
learner’s losers can be directly compared.

Structural ambiguity thus presents a difficult learning challenge,
because it obscures the constraint violations incurred by the learning data,
thereby obscuring the update needed to favour the winner (the learning
datum) over the loser (the learner’s output). In the example in (2), can-
didates (b) and (c) have drastically different consequences for the resulting
grammar. As explained above, selecting candidate (c) as the winner results
in an adjustment to the constraints IAMBIC and TROCHAIC. On the other
hand, if the learner mistakenly selects (b) as the winner, the update will
instead involve adjustment of ALLFEET-R relative to ALLFEET-L, leading
to a grammar that is more likely to align feet with the left edge of the word.
Furthermore, there is no way to definitively identify the correct parse for a
form in isolation – the correct parse can ultimately be determined only by
consulting other learning data. For example, in order to determine that the
correct analysis involves right-aligned trochees rather than left-aligned
iambs, the learner must process other forms that disambiguate between
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these possibilities, such as disyllabic forms with initial stress. In a more
realistic setting, with many more constraints contributing to the selection
of the correct hidden structure, the learning data are massively more
ambiguous than in this simple example (see e.g. Tesar 2004, Prince 2010).
Nonetheless, the learner must somehow effectively navigate this huge
ambiguous space of possibilities.

2.3 Robust Interpretive Parsing

Within OT, learning in the face of structural ambiguity has been a topic of
ongoing work since at least Tesar (1998) and Tesar & Smolensky (1998,
2000). In order to apply error-driven learning in the presence of structural
ambiguity, Tesar & Smolensky (1998) propose Robust Interpretive
Parsing (RIP), which provides an educated guess, based on the current
constraint ranking, about the structure of the observed datum.
Specifically, RIP uses the learner’s current hierarchy to select the most
harmonic candidate among the structural descriptions consistent with an
overt form. That is, for a given learning datum, RIP uses standard OT
evaluation, but limits candidates to those that share the learning datum’s
overt form, thereby selecting the most harmonic among the possible
structural descriptions, or parses, of the overt form according to the cur-
rent grammar. The parse produced by RIP is treated as the intended
winner and compared to the learner’s own output, which is generated by
applying the usual ‘production-directed parsing’: the process of mapping
the underlying form to its optimal structural description. As shown in (4),
this means that when the learner is presented with the unstructured overt
form [tEtlEfOn], it performs interpretive parsing by finding the most har-
monic candidate matching this overt form.

(4)

AllFt-R Iambic AllFt-L

RIP parse

/tElEfOn/ Trochaic
*
*

*

*
*

*
*
*

Robust Interpretive Parsing for [tE’lEfOn]

(’tElE)fOn
(tE’lE)fOn
tE(’lEfOn)
tE(lE’fOn)

a.
b.
c.
d.

In this example, only two candidates, (b) and (c), match the overt form.
According to the current ranking, candidate (c), [tE(tlEfOn)], is more
harmonic and is therefore selected as the RIP parse and winner. In this
case, this is the correct parse for a language like Polish that has right-
aligned trochees. Crucially, the learner is capable of identifying the correct
parse even though the current grammar is not the target grammar for the
penultimate stress language. This crucial property is why Tesar &
Smolensky refer to the interpretive parsing procedure as ‘robust’. If
learning is to be successful, it is essential for the learner to be able to assign
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structure to the learning data throughout the learning process. Parsing
must be possible even when the learner’s grammar differs from the target
grammar and does not generate the datum being processed (otherwise, the
learner would only be able to parse and learn from data consistent with its
initial grammar). This is exactly the solution which RIP provides. Once
the learner has assigned a structural description to the learning datum
using RIP, production-directed parsing is applied to the underlying form
/tElEfOn/, producing candidate (d), [tE(lEtfOn)]. The winner provided
by interpretive parsing, candidate (c), is compared to the result of
production-directed parsing, candidate (d), yielding an error. Given the
winner and the loser, the grammar update, comparing the violations of
the parsed winner to that of the loser, can proceed as usual, according to
the update rules discussed above.

As discussed by Tesar & Smolensky (1998), however, RIP is not fool-
proof. It can select the wrong parse for the target language, leading the
learner astray. This may happen, for example, if the learner in (4) is
actually trying to learn a language with left-aligned iambs, corresponding
to candidate (b). The learner can sometimes overcome such parsing
mistakes, given subsequent disambiguating data. However, the learner
can also get stuck in a perpetual loop of mistaken parses and grammars.
Tesar & Smolensky (2000) present simulation results for a RIP version of
Error Driven Constraint Demotion (RIP/EDCD) on a large metrical
phonology test set with structural ambiguity. They found that
RIP/EDCD learned just 60.5% of the languages in the system correctly
when starting from an unranked initial hierarchy. In fact, this success rate
assumes that learning produces stratified hierarchies and that pooling ties
are used to deal with tied constraints, which, as discussed by Boersma
(2009), can mask crucial rankings needed to uniquely select the target
output forms under strict ranking. As discussed below, the performance of
EDCD drops when evaluation assumes strict ranking. In general, these
results indicate that RIP’s potential to lead the learner astray is not just
hypothetical, since about half of the languages in the system cannot be
learned.

RIP has subsequently been extended in several directions. It has been
applied to the problem of structural ambiguity using OT-GLA
(Apoussidou & Boersma 2003, Boersma 2003, Apoussidou 2007) and
HG-GLA (Boersma & Pater 2008). Another line of work extends
Stochastic OT with lexical constraints, constraints that control the choice
of underlying representations, and uses RIP/GLA in this context to learn
a different kind of hidden structure, namely underlying representations
(Apoussidou 2006, 2007). The performance of these stochastic and
weighted variants of RIP is also mixed. Boersma & Pater report on
simulations comparing the performance of RIP variants of EDCD,
OT-GLA and HG-GLA on the test set used by Tesar & Smolensky
(2000). Their implementation of RIP/EDCD differs from Tesar &
Smolensky’s : rather than using pooling ties, they use permuting ties (see
Boersma 2009 for discussion), and they require EDCD to learn strict
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rankings. This lowers the performance of RIP/EDCD to 47%. They also
find that both OT andHG variants of RIP/GLA outperform RIP/EDCD,
with RIP/GLA for Noisy HG displaying the highest performance overall,
learning almost 89% of the languages in the system on average. While the
performance of RIP/HG-GLA is encouraging, Boersma & Pater find
that RIP performs poorly for both classical OT and Stochastic OT, with
RIP/OT-GLA learning only around 59% of the languages in the test set.
Overall, therefore, Boersma & Pater’s results suggest a strong advantage
for the HG learners in this context.
As noted above, much other work in OT and related constraint-based

frameworks has explored alternative approaches to the hidden structure
problem. The present paper, however, takes a closer look at how RIP has
been formulated for the stochastic setting, namely the applications of RIP
to OT-GLA and HG-GLA. After reviewing the previous computational
results more carefully, the following sections identify two main problems
with the formulation of RIP for the stochastic setting and propose ad-
justments to the parsing process that dramatically improve performance.

2.4 The metrical phonology test set and previous results

The simulations presented in this paper rely on the same metrical
phonology test set used to evaluate RIP/EDCD, RIP/GLA for OT and
RIP/GLA for HG in previous work (Tesar & Smolensky 2000, Boersma
2003, Boersma & Pater 2008, Jarosz to appear).2 This allows for repli-
cation of and direct comparison with previously reported results using
RIP. This section presents that test set and reviews the previous results in
more detail.
This test set, first defined and examined by Tesar & Smolensky (2000),

consists of 124 constructed languages that can be modelled by the set of
twelve metrical structure constraints shown in (5).

(5) FtBin
Parse
Iambic
FootNon-fin
Non-fin
WSP
WordFoot-R
WordFoot-L
Main-R
Main-L
AllFeet-R
AllFeet-L

Each foot must be either bimoraic or disyllabic.
Each syllable must be footed.
The final syllable of a foot must be the head.
A head syllable must not be final in its foot.
The final syllable of a word must not be footed.
Each heavy syllable must be stressed.
Align right edge of the word with a foot.
Align left edge of the word with a foot.
Align head foot with right edge of the word.
Align head foot with left edge of the word.
Align each foot with right edge of the word.
Align each foot with left edge of the word.

2 I would like to thank Joe Pater for sharing the grammar and distribution files for the
Tesar & Smolensky test set, and Paul Boersma and Bruce Tesar for creating them.
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Most of these constraints are well known from the literature, with origins
in the early OT literature (McCarthy & Prince 1993, Prince & Smolensky
2004) and pre-OT metrical phonology (Liberman & Prince 1977, Prince
1990, Hayes 1995). One exception is the non-standard formulation of
the constraint favouring trochees: FOOTNON-FIN (Tesar 2000). The
interaction of these twelve constraints produces a complex artificial sys-
tem, inspired by natural language stress systems and capable of describing
a range of diverse metrical phenomena. The test system has the crucial
property of generating structural ambiguity – overt stress patterns in this
system are consistent with multiple structural descriptions, and successful
learning requires disentangling interdependent and ambiguous require-
ments made by the individual learning data.3 Tesar & Smolensky selected
124 languages from the factorial typology generated by this constraint set
to represent a wide range of metrical phenomena. Each language in the
system is defined by a set of surface stress patterns for 62 words that can
be generated from this constraint set. Words are sequences of light (L) or
heavy (H) syllables ranging in length between two and seven syllables
(e.g. [H L H L]). Each word is associated with a surface stress pattern
(e.g. [tH L rH L]), indicating placement of primary and secondary stress
(if any). Any given ranking or weighting of the constraints assigns a par-
ticular foot structure and stress pattern (e.g. [(tH L) (rH) L]). Indeed, it is
the footing that underlies the systematic stress patterns in the system. The
learner, however, is exposed only to the overt stress patterns (e.g. [tHL rH
L]) and must infer a ranking or weighting of constraints (and an associated
footing) capable of generating the observed surface stress patterns. The
learner is considered successful when it has acquired a grammar that is
consistent with all the learning data it is exposed to, i.e. when it assigns the
correct surface stress patterns to all the words of the language.4

In addition to examining the learning of various metrical patterns, this
system presents a more fundamental challenge to learning models. As
discussed earlier, much work in OT decouples the learning strategies from
the specific phenomena learners must cope with, focusing on developing
learners that are successful regardless of the exact constraints and rep-
resentations used (Tesar 1995, 2004, Boersma & Pater 2008, Pater 2008,
Magri 2012). This consideration has played an important role in OT
learnability from the beginning: Tesar’s (1995) foundational work proved
that, in general, constraint demotion is guaranteed to converge on
any target language in its hypothesis space, given fully structured data.

3 As discussed earlier, the learning problem undertaken here is the general problem of
learning weightings and rankings given structurally ambiguous data, and this
metrical phonology test set provides one domain in which to examine this learning
challenge. While there are some theories of stress (Gordon 2002) and stress learning
(Daelemans et al. 1994, Gupta & Touretzky 1994, Heinz 2009) that do not rely on
hidden structure, the problem of hidden structure in other domains, such as syl-
labification, remains to be dealt with.

4 If there are multiple weakly equivalent grammars consistent with the learning data,
learning is deemed successful when the learner converges on any one of them (since
the learning data does not disambiguate between them).
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One can ask an analogous question about learning in the context of
structural ambiguity (see e.g. Tesar 2004): can a given learning algorithm
successfully learn a grammar for any structurally ambiguous language in
its hypothesis space, regardless of the constraint set? Testing learners on
this test set therefore also addresses this more general question. Viewed
from this perspective, the test set provides a relatively large and diverse set
of challenging target languages to the learners, which compares favourably
with previous work in terms of the number of systems tested. For
example, Heinz (2009) considers 109 stress patterns, Gupta & Touretzky
(1994) considered 19 and a number of previous studies examine only a
handful of stress systems. Thus, from this computational perspective,
good performance on this system reflects the ability to handle a wide range
of patterns.
Another perspective, and one that is an important direction for future

work, is that of typology and its interaction with learnability. While it is
important to determine whether a fully general and feasible solution
to structural ambiguity exists, the possibility that successful learnability
relies on substantive or formal restrictions on the hypothesis space
must also be investigated. Accordingly, it is important to investigate the
learnability of attested stress systems and to determine whether structural
ambiguity in natural language has particular formal properties that are
crucial to its learnability. Metrical phonology is an especially promising
domain for such research, since stress typology has been extensively
studied, large typologies of stress systems have been developed and large
stress databases are available (Hayes 1995, Gordon 2002, van der Hulst
et al. 2010). A number of the previous studies discussed earlier examine
learning of attested languages (Dresher & Kaye 1990, Goldsmith 1994,
Gupta & Touretzky 1994, Heinz 2009), and this is an important direction
for future work with constraint-based learners as well. While the Tesar &
Smolensky system was inspired by stress typology, it is nonetheless an
artificial system, with no direct correspondence to attested languages. In
addition, recent theoretical and typological developments have identified
some problematic predictions made by the constraints it assumes
(McCarthy 2003, Hyde 2007, Pruitt 2010). Development of large test sets
for constraint learning based on natural language stress typologies will
require the integration of theoretical, computational and typological work
in order to create a computational implementation of a theory (or theories)
of constraints that can be used to model the entire typology. Given
the significant recent developments in all of these areas, this presents
an exciting opportunity for integration of work from these diverse
perspectives.
Thus the test set is not without limitations, but it allows for the primary

concerns of the present work to be addressed: namely, the relative per-
formance of different learning models on structurally ambiguous learning
data, and the finding from previous work suggesting an advantage for HG
on the basis of experiments with this test set. As discussed above, Tesar &
Smolensky (2000) and Boersma & Pater (2008) report on RIP simulations

Learning with hidden structure 39



with this test set. The results for RIP/EDCD, RIP/OT-GLA and RIP/
HG-GLA are summarised in Table I.5

Boersma & Pater allowed each run of each algorithm a maximum of
1,000,000 iterations, where an iteration corresponds to the processing of
one overt form. The reported performance is the average of ten separate
runs for each algorithm. Performance of RIP/EDCD in both studies
was deemed successful when the algorithm had converged to a hierarchy
that correctly predicted the stress patterns for each of the 62 forms in
the language, making no further errors on the data. As shown in Table I,
RIP/EDCD learns roughly between 47% and 60% of the languages in
the system correctly, depending on whether pooling or permuting ties are
used. As discussed above, the permuting tie simulations make the more
standard assumption that target languages must be total rankings. For
RIP/OT-GLA and RIP/HG-GLA, Boersma & Pater set the learning
rate (plasticity) to 0.10, the evaluation noise to 2 and the initial weights/
ranking values to 10. They consider a language to be successfully learned
if, when evaluation noise is set to zero, the resulting ranking/weighting
correctly generates the stress patterns for all 62 forms in the language.
Using these evaluation criteria, they find the performance of RIP/
OT-GLA to be about 59%, and that of RIP/HG-GLA to be about 89%,
as shown in Table I.

As Boersma & Pater discuss, these results look promising for
stochastic approaches and for weighted constraints. The following
sections, however, take a closer look at the RIP/GLA algorithms for OT
and HG, identifying two main problems with how RIP has been
formulated in the stochastic setting. These problems turn out to have
significant consequences for the performance of the stochastic RIP
learning algorithms.

Table I
Performance of RIP algorithms reported in previous work.

RIP/EDCD (pooling ties)
RIP/EDCD (permuting ties)
RIP/OT-GLA
RIP/HG-GLA

60·48%
46·94%
58·95%
88·63%

algorithm languages learned source

Tesar & Smolensky (2000)
Boersma & Pater (2008)
Boersma & Pater (2008)
Boersma & Pater (2008)

5 Boersma & Pater (2008) also report on results of applying RIP to non-noisy OT-
GLA andHG-GLA (which perform worse than their noisy counterparts), as well as
a variant of Noisy HG which they call Exponential HG (whose best performance is
similar to HG-GLA). The focus in the present work is on the more widely used
noisy variants of GLA, and therefore only these results are reviewed here.
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3 Problem 1: parsing with a losing grammar

To see the first problem with the original formulation of RIP for GLA,
first formulated for the stochastic setting by Apoussidou & Boersma
(2003) and Boersma (2003), consider the more explicit formulation of the
algorithm given in (6).

(6) Robust Interpretive Parsing for GLA
1. Initialise Stochastic Grammar: G0

Iterate over d in D:2.
Sample G¢~Gi
Parse=RIPG¢ (d)
Input=uf(Parse)
Output=OptimiseG¢ (Input)
If Output≤Parse:

a.
b.
c.
d.
e.

Gi+1=Update (Gi, Parse, Output)i.

Learning begins by selecting an initial Stochastic OT (or in later work,
Noisy HG) grammar, G0, as shown in step 1. For example, the ranking or
weighting values of all constraints may initially be set to 10. Then, as
indicated in step 2, the learner iterates over the dataD, learning one datum
d at a time, by randomly sampling from the set of learning data. Each
learning datum d is an overt form, without abstract structure. For each
datum d, the learner samples a ranking/weighting, GD, from the current
stochastic grammar Gi by adding evaluation noise to the ranking/weight-
ing values of Gi (step 2a). The learner then uses GD to perform Robust
Interpretive Parsing on d (step 2b) to produce the Parse. The Parse is a
fully structured candidate from which the learner extracts the underlying
representation to arrive at the Input (step 2c). Note, however, that, in the
context of grammatical stress, this amounts to stripping away abstract
structure and stress: parsing is not necessary in order to arrive at the
underlying form, since it is directly recoverable from the learning datum
(for example, the underlying form of [L tH L] is /L H L/). Next, the
learner uses GD again to generate its own Output (step 2d). Finally,
the learner compares the fully structured Output it generated to the
structured Parse (step 2e). If they do not match, the learner compares
their violations and updates the grammar Gi (2e.i) using the update rules
defined earlier in (3), yielding the updated grammar, Gi+1.
What is crucial about the above formulation is that the same grammar

GD is used for production (step d) and for interpretive parsing (step b).
Apoussidou & Boersma do not provide the explicit formulation of the
algorithm in (6), but it is clear from their discussion of the procedure that
the algorithm uses the same grammar for parsing and production. In
particular, Apoussidou & Boersma (2003: 111) note:

In RIP/GLA, the interpretation step is done within Stochastic OT, i.e.
after adding a bit of evaluation noise to the constraint rankings, and this
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same temporary ranking is then used for the generation of the learner’s
own form; the adjustment step proceeds as usual, i.e. with reranking of
all the constraints that prefer the adult form or the learner’s form.

As explained in the following section, the use of the same grammar for
production and interpretive parsing turns out to be problematic.

3.1 Reformulating RIP: resampling

The problem with the original RIP application in the stochastic setting is
highlighted when the algorithm is slightly reformulated as in (7) below.
The original formulation defines an error in terms of a mismatch between
the fully structured Output and the fully structured Parse. It may there-
fore appear that forms whose overt stress patterns match may be counted
as errors if their foot structure differs. However, in the present learning
context, where underlying representations are fixed for each learning da-
tum (since they are recoverable from the learning datum), this situation
can never arise during learning – whenever the Output and Parse match in
their overt stress pattern, they necessarily match in their full structural
descriptions. If the Output matches the stress contour of the learning
datum, this means the most harmonic candidate according to GD is a can-
didate with the observed stress contour. In this context, where underlying
forms are held fixed for interpretive parsing, the set of candidates com-
peting with one another for interpretive parsing will be a subset of the
candidates competing with one another in production, namely the subset
whose overt portion matches the learning datum. Thus the candidate
selected as optimal in production is also a candidate for interpretive
parsing. If GD selects a particular candidate as optimal among the full set of
candidates, it will also select the same candidate as optimal in a subset
containing that candidate. This is true regardless of whether weighting or
ranking is used.

Consequently, in the original formulation of RIP, errors only occur
when the Output and Parse differ in their overt forms. Therefore, the
comparison between the winner and loser can be converted from applying
to fully structured forms to applying to the overt forms without affecting
the behaviour of the algorithm. This is exactly what the reformulation in
(7) does.

(7) Reformulated Robust Interpretive Parsing for GLA
1. Initialise Stochastic Grammar: G0

Iterate over d in D:2.
Sample G¢~Gi
Input=uf(d)
Output=OptimiseG¢ (Input)
If overt(Output)≤d:

a.
b.
c.
d.

Parse=RIPG¢ (d)
Gi+1=Update (Gi, Parse, Output)

i.
ii.
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Note that in the formulation in (6), the RIP step 2b was needed in order
to generate the Parse to which the Output could be compared and
from which the Input was derived. In the reformulation, RIP parsing is
not necessary for checking whether an error has been produced, since only
the overt portion of the learning datum is consulted (step 2d). Also, as
discussed above, the Input can be recovered directly from the learning
datum without parsing. This means the parsing step can therefore be
moved inside the conditional, as shown in step 2d.i of the reformulated
algorithm. This reformulation does not affect the behaviour of the
algorithm, but it does serve to highlight a peculiar aspect of interpretive
parsing. Specifically, from the reformulation it is clear that parsing is only
relevant in case the selected grammar GD generates an error. At the point
when parsing is required, the learner knows GD is the wrong grammar,
since GD generated an error for this form. What is odd about this use of
interpretive parsing in the stochastic setting, then, is that the learner
nonetheless uses the known-to-be-incorrect GD for interpretive parsing. In
the original formulation of RIP in classical OT (Tesar & Smolensky
1998), the learner has no better alternative. In classical OT, the learner’s
current grammar is a single, categorical ranking, and the learner has
no choice but to use this ranking, its current best guess about the target
language, for RIP. In the stochastic setting, however, each grammar
defines a distribution over rankings (or weightings), and the learner’s
current knowledge about the target language is richer. The learner has a
whole distribution of rankings or weightings available for parsing, and
does not need to rely on a ranking or weighting that produced an error.
A simple modification to RIP, Resampling RIP (RRIP), solves this

problem, and is defined in (8).

(8) Resampling Robust Interpretive Parsing for GLA
1. Initialise Stochastic Grammar: G0

Iterate over d in D:2.
Sample G¢~Gi
Input=uf(d)
Output=OptimiseG¢ (Input)
If overt(Output)≤d:

a.
b.
c.
d.

Sample G§~Gi
Parse=RIPG§ (d)
Gi+1=Update (Gi, Parse, Output)

i.
ii.

iii.

The only difference between the algorithms in (7) and (8) is that the new
algorithm samples a new grammar for interpretive parsing: this is shown
in step 2d.i. Specifically, if the learner’s output fails to match the learning
datum, the learner simply samples another grammar GF from Gi, and uses
it for interpretive parsing. This is the simplest possible way for the learner
to reference its stochastic grammatical knowledge, relying only on mech-
anisms (sampling a random grammar) that are needed anyway. To see
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the effect of this resampling, consider a learner which has not yet settled
on the target grammar, but whose current stochastic grammar generates
the target ranking or weighting with some probability. This is the situ-
ation the learner starts out in if all constraints are ranked or weighted
equally. Initially, all rankings or weightings are equally likely, and, as
learning progresses, the distribution over rankings or weightings narrows,
focusing gradually on more suitable grammars. If the learner samples an
incorrect GD for production and makes an error, the original RIP algo-
rithm will nonetheless consistently use GD for parsing. In contrast, RRIP
will select another grammar, according to its current knowledge about
which rankings or weightings are likely. Whereas RIP is doomed to use an
incorrect ranking or weighting for parsing, RRIP’s resampling makes it
possible for the learner to select a correct ranking or weighting to use for
interpretive parsing, increasing the likelihood that the resulting parse will
be correct for the target language. Put differently, when the learner’s
ranking or weighting fails to produce the observed stress pattern, the
learner falls back on its rich stochastic grammatical knowledge to select
another ranking or weighting it has some confidence in. It uses its sto-
chastic grammar to select with high probability those rankings or weight-
ings that provide the current best guess about the hidden structure. There
is a chance that resampling will end up selecting the same parse, but,
unlike RIP, RRIP also has a chance of selecting a different grammar, and
it does so in proportion to its confidence in different grammars.6 In this
way, the learner takes advantage of the rich information represented by
its stochastic grammar.

Clearly, the computational differences between RIP and RRIP are
minimal. The computational cost of resampling is negligible, since
selecting a random ranking or weighting from the current stochastic
grammar can be done very efficiently. In fact, RRIP has a potential com-
putational advantage, since it performs parsing (and resampling) only
when there is an error, whereas RIP automatically parses each overt form.
It is worth noting that the reformulation in (7) is crucial for the resampling
modification. Simply resampling from the grammar in (6) prior to pro-
duction would not work, since in (6) errors are defined in terms of fully
structured candidates. Such a learner would count as errors not only
outputs that fail to match the datum, but also outputs that match the
datum but, due to a random and arbitrary difference between GD and GF,
differ from the parse with respect to their structure. The randomly

6 An anonymous reviewer asks whether it might be possible to constrain resampling
further by requiring that GF be distinct from GD. This is an appealing possibility
which is worth exploring; however, it is not immediately clear how ‘distinct’ would
be defined for continuous weightings, and even distinct rankings are often weakly
equivalent, selecting the same optima. Therefore the expected gain of such a re-
striction is not obvious, while implementing it would come with an additional
computational cost that is not trivial. In any case, the present focus is on exploring
the consequences of a simple and minimal modification of RIP, and w4 shows there
is a more fundamental problem with RIP that resampling on its own cannot
address.
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occurring differences in grammars between the two samplings would
therefore lead to many spurious errors and grammar updates. Of course,
such a variant would be equivalent in behaviour to RRIP (albeit less
efficient) if, in addition to resampling, the error was defined in terms of
overt forms only, as in (7) and (8). In sum, there are two crucial compu-
tational differences between RIP and RRIP: (i) RRIP selects a new
random ranking or weighting for parsing rather than using the one used in
production, and (ii) it defines errors as mismatches in overt forms rather
than fully structured forms.
The next section explores the effect these differences have on

performance. The simulations focus on RIP and RRIP versions of GLA
for OT and HG. The modifications in RRIP would have no effect on the
performance of EDCD, since in EDCD there only is one ranking that can
be used for parsing. However, it is useful to keep in mind the performance
of RIP/EDCD reported in previous work and summarised in Table I, as it
provides a point of reference for performance of RIP in classical OT.

3.2 Resampling Robust Interpretive Parsing simulations
and results

Simulations were performed in order to compare the performance of
HG and OT variants of RIP/GLA and RRIP/GLA. As discussed earlier,
all simulations were performed with the grammatical stress test system
developed by Tesar & Smolensky (2000). One goal of the simulations is to
replicate Boersma & Pater’s (2008) results and to determine the robustness
and variability of RIP for OT and HG. Simulations of RIP for both OT-
GLA and HG-GLA were therefore performed with the parameters used
by Boersma & Pater: learning rate (plasticity) of 0.10, evaluation noise of
2 and initial ranking/weighting values of 10. Following Boersma & Pater,
all runs were allowed a maximum of 1,000,000 iterations for learning.
Also following Boersma & Pater, success was defined as correct generation
of stress patterns for all 62 overt forms in a language, using the learner’s
grammar with evaluation noise set to zero. Since the algorithms are non-
deterministic, ten runs each of RIP/OT-GLA and RIP/HG-GLA with
these parameter settings were performed, in order to calculate average
performance and variation in performance from run to run.
In addition, simulations with a range of other parameter settings

were performed, in order to examine sensitivity of the algorithms to the
learning parameters. Specifically, in addition to the learning rate of 0.10,
both OT and HG variants of RIP were tested with learning rates of 0.05,
0.25 and 0.50. Finally, all the same manipulations were performed for the
new RRIP algorithm for both the OT and HG versions. The results of
these 160 simulated learners on the 124 languages in the system (a total
of 19,840 separate runs) are summarised in Table II, which shows the
average percentage of languages learned correctly and the sample standard
deviation for each algorithm/plasticity combination.
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Consider first the simulations shown in the shaded cells of Table II,
which replicate the results reported by Boersma & Pater (2008), sum-
marised earlier in Table I. The performance for RIP/HG-GLA shown
here (88.71%) is nearly identical to the results reported by Boersma &
Pater (88.63%). The performance of RIP/OT-GLA, 56.13%, is a few
percentage points lower than the earlier result of 58.95%. This difference
of 2.82 is suspiciously high for the sample standard deviation of 1.62. The
discrepancy may be due to a difference in terminating conditions. All
performance results presented here assume that learning continues for the
maximum number of iterations as long as the learner’s stochastic grammar
continues to make errors, even if the grammar with noise removed
correctly generates the data. Occasionally, learners temporarily enter a
grammar that makes no errors with evaluation noise removed, but because
their stochastic grammars have not actually converged, they later change
their grammars to ones that do produce errors on subsequent iterations.
In the results reported here, learners were only counted as successful if
they made no errors on subsequent iterations. If, however, these learners
were counted as successful and the subsequent iterations ignored, the
performance of RIP/OT-GLA in the current simulations would increase
to 59.84%, comparable to Boersma & Pater’s result of 58.95%. Thus,
apart from what may be a difference in terminating conditions, the present
simulations do replicate Boersma & Pater’s reported results. Importantly,
the present results replicate the major effects identified by Boersma &
Pater.

The results confirm Boersma & Pater’s finding that RIP/HG-GLA
dramatically outperforms RIP/OT-GLA. Furthermore, the results in
Table II show performance of RIP/OT-GLA and RIP/HG-GLA at
several additional learning rates. These results indicate that learning rate
does affect the performance of the algorithms, with the HG learners
showing rather more sensitivity to learning rate. RIP/HG-GLA performs
better at lower learning rates, while RIP/OT-GLA performs somewhat
better at higher learning rates. In general, however, the variation in

56·13
88·71
82·58
89·27

(1·62)
(0·66)
(1·91)
(0·94)

Table II
Success rate (in %) of RIP and RRIP across various parameter settings. Sample
standard deviation is given in parentheses. Shaded cells replicate the results of

Boersma & Pater (2008). Best scores for each model are shown in bold.

RIP/OT-GLA
RIP/HG-GLA
RRIP/OT-GLA
RRIP/HG

algorithm

learning rate (plasticity)

55·81
88·79
84·19
89·44

(1·82)
(0·97)
(1·91)
(0·71)

0·05 0·10

56·21
85·48
81·13
87·58

(2·15)
(1·57)
(2·29)
(1·79)

0·25

57·50
82·90
80·08
82·98

(2·28)
(2·92)
(3·09)
(1·84)

0·50
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performance on runs of RIP/OT-GLA and runs of RIP/HG-GLA is very
small in comparison to differences in performance between the OT-GLA
and HG-GLA algorithms. RIP/HG-GLA performs significantly better
than RIP/OT-GLA across all learning rates tested (p<0.001; Welch
two-sample t-test), confirming that the substantial difference in perform-
ance between RIP/OT-GLA and RIP/HG-GLA is meaningful.
The results most central to the present work concern the performance

of RRIP relative to RIP. As shown in Table II, the difference in per-
formance between RIP/OT-GLA and RRIP/OT-GLA is substantial : the
gain in performance is apparent across parameter settings and is about
25 percentage points. Whereas RIP/OT-GLA learns only 56–58% of
the languages correctly, RRIP/OT-GLA learns 80–84% of languages
correctly, depending on learning rate. This difference in performance
between RIP/OT-GLA and RRIP/OT-GLA is substantial, and highly
significant across all learning rates (p<0.001; Welch two-sample t-test).
RRIP/OT-GLA appears to be a little more sensitive than RIP/OT-GLA
to learning rate, with better performance at lower learning rates. Despite
the increase in performance for OT-GLA, RRIP/OT-GLA nonetheless
performs worse than RRIP/HG-GLA; this difference is significant at all
learning rates (p<0.05; Welch two-sample t-test). Finally, the effect of
using RRIP rather than RIP with HG-GLA is less clear. Performance
of RRIP/HG-GLA is numerically better than RIP/HG-GLA, but the
difference is small, and significant only at learning rate 0.25 (p<0.05;
Welch two-sample t-test). Based on these parameter settings, therefore, it
is not entirely clear whether RRIP/HG-GLA is an improvement over
RIP/HG-GLA. However, w4.4 explores additional parameter settings for
HG-GLA, where the difference in performance between RIP and RRIP
becomes clearer.

3.3 Discussion

This section has identified a problem with Robust Interpretive Parsing as
first formulated for RIP/OT-GLA by Apoussidou & Boersma (2003) and
Boersma (2003). It has also introduced a simple modification to the al-
gorithm, Resampling RIP, and illustrated the effects of this modification
for both OT-GLA and HG-GLA at a variety of settings. Resampling RIP
dramatically affects the performance of OT-GLA, improving learning
success rates as compared to RIP by about 25–30%, depending on learn-
ing rate. RRIP also results in some minimal improvement for HG-GLA,
although this improvement is not significant at all learning rates. In ad-
dition to improving performance, RRIP is also potentially more efficient
than RIP, because it eliminates the need to parse every observed datum,
instead parsing only in case of errors. It does have to resample a new
grammar when there is an error, but the added computational cost of
resampling is very small. Overall, RRIP presents significant advantages
over RIP, especially where the success rates of OT-GLA are concerned.
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With respect to the computational merits of HG relative to OT,
the disproportionate improvement of RRIP as compared to RIP for OT
means that RRIP substantially narrows the performance gap between
Stochastic OT and Noisy HG. Although HG-GLA still outperforms
OT-GLA under the new interpretive parsing formulation, the difference
is much smaller, shrinking from a gap of about 30 percentage points under
RIP to one of about 5 or 6 under RRIP. Thus, RRIP significantly weakens
the advantage for HG over OT suggested by Boersma & Pater’s results.

These results raise the question of whether there is some parsing strat-
egy that could yield even greater improvements in performance – is RRIP
making full use of the learner’s stochastic grammatical knowledge? It
turns out the answer is no: despite its dramatic improvements over RIP,
RRIP is not making full use of the learner’s stochastic grammatical
knowledge. This is the main topic of the next section, which introduces a
more general problem with RIP and RRIP, and a new algorithm that
addresses it. w4 also addresses several additional questions, including why
RRIP/HG-GLA shows so little improvement over RIP/HG-GLA.

4 Problem 2: the parsing–production mismatch

The previous section showed that the original formulation of RIP uses a
less than optimal procedure for interpretive parsing. The section in-
troduced an alternative to RIP, one that capitalises on the richness of the
learner’s stochastic grammatical knowledge by indirectly referencing
the distribution of rankings or weightings represented by the learner’s
stochastic grammar. This distribution provides a rich source of infor-
mation about learner’s grammatical knowledge. It is more than a single
ranking or weighting – it represents the learner’s confidence in each of the
possible rankings or weightings, a confidence that shifts gradually during
learning towards the target grammar. At any given point during learning,
this distribution provides the most complete information about the lear-
ner’s grammatical knowledge and its current best guess about the relative
likelihood of various rankings or weightings. The rich information con-
tained in this distribution is exploited by the interpretive parsing com-
ponent of the algorithm by (re)sampling rankings or weightings, and using
these to select the most harmonic parse. Sampling makes use of the dis-
tribution indirectly, without ever explicitly calculating the probability
with which parses are generated.

Viewing interpretive parsing in this way, as sampling from a probability
distribution over parses under the current grammar, reveals a more gen-
eral problem with RIP. Put simply, RIP is problematic because it creates a
mismatch between production and interpretive parsing. The probability
with which RIP selects parses is distinct from the probability of those
parses under the grammar, and this parsing–production mismatch is the
source of the second problem for RIP. This section first discusses this
mismatch in more depth, and then proposes an alternative parsing strategy
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that samples parses according to their relative probability. Finally, it
presents the results of OT-GLA and HG-GLA simulations using the
alternative parsing strategy.

4.1 The mismatch

The parsing–production mismatch is equally relevant for RIP and RRIP.
Both procedures rely on selecting a ranking or weighting randomly
according to the stochastic grammar, and then using that ranking or
weighting to identify the most harmonic of the possible parses. The
problem is that the probability with which this two-step parsing process
generates parses does not match the relative probabilities of producing
those parses under the stochastic grammar.
To see this mismatch, consider the example in (9), in which stress and

footing is assigned to the input /L L L/.

(9) AllFt-L IambicAllFt-R/L L L/ Trochaic

*
*

*

*
*

*

*
*

(‘L L) L
(L ‘L) L
L (‘L L)
L (L ‘L)

a.
b.
c.
d.

Suppose the learner’s current Stochastic OT grammar has a tie between
ALLFEET-L and ALLFEET-R, for example by ranking both constraints
at 300, and the next highest-ranked constraint is TROCHAIC, at 200,
and finally IAMBIC, at 100. Such a Stochastic OT grammar will
generate two rankings with equal probability: ALLFEET-L2ALLFEET-
R2TROCHAIC2IAMBIC and ALLFEET-R2ALLFEET-L2TROCHAIC2IAM-
BIC. Assuming a standard noise setting of 2, all other rankings will
have a probability so low as to be zero for practical purposes. The two
rankings generate two distinct outputs. If ALLFEET-L is highest-ranked,
the output will be [(tL L) L], candidate (a), whereas if ALLFEET-R is
highest-ranked, the output will be [L (tL L)], candidate (c). Thus, this
grammar generates each of [(tL L) L] and [L (tL L)] approximately 50%
of the time. Note that these outputs have different stress patterns, and
that each stress pattern is generated with a unique structure. In particular,
the grammar generates the pattern [L tL L] using right-aligned trochees:
[L (tL L)].
Suppose the learning datum is [L tL L] and the learner must use its

stochastic grammar to parse this datum. To perform Robust Interpretive
Parsing, the learner restricts optimisation to (9b) and (c), those candidates
that match the overt stress pattern. Given [L tL L], what parses does RIP
generate? The generated parse depends on the relative ranking of
ALLFEET-L and ALLFEET-R, with both relative rankings occurring about
50% of the time under the current grammar. Thus, RIP will select both
candidate (b), the parse [(L tL) L], and candidate (c), the parse [L (tL L)],

Learning with hidden structure 49



about 50% of the time. In other words, RIP identifies two possible parses
for [L tL L], and generates them with equal probability. The problem is
that, as discussed above, the grammar only generates [L tL L] using one of
these parses, namely [L (tL L)]. In other words, according to the learner’s
current grammar, [L (tLL)] is the only possible parse of [L tLL], but RIP
fails to reflect this categorical restriction imposed by the grammar. Put
differently, the learner’s current grammar already reflects the ranking
conditions inherent to selecting trochees. After all, the grammar ranks
TROCHAIC above IAMBIC, indicating its preference for trochees. RIP,
however, fails to capitalise on this knowledge during interpretive parsing,
allowing incompatible parses to be generated.7

The failures of RIP to rely on accumulated grammatical knowledge are
not restricted to categorical ranking information. Suppose that TROCHAIC,
instead of being strictly ranked above IAMBIC, is partially tied with it,
so that the probability of TROCHAIC2IAMBIC is 90%, with the opposite
ranking occurring 10% of the time. This grammar, which is otherwise
the same as the one above, has some probability of generating candidates
(b) and (d). In particular, this grammar generates each of (a) and (c) with
45% probability and each of (b) and (d) with 5% probability. Thus the
new grammar generates [L tL L] using two different structures, but it
considers the right-aligned parse to be nine times more likely than the left-
aligned parse. All the same, RIP is oblivious to this statistical preference.
For the choice between candidates (b) and (c), the relative ranking of
ALLFEET-L and ALLFEET-R is decisive, making the relative ranking of
TROCHAIC and IAMBIC irrelevant. Since ALLFEET-L is highest-ranked
50% of the time, candidate (b), the parse [(L tL) L], is selected 50% of the
time. Thus, although in production the grammar generates [(L tL) L] nine
times less often than it generates [L (tL L)], in parsing RIP generates both
structures equally often. In this example, RIP fails to reflect the soft pref-
erences inherent in the learner’s current grammar, in the same way that it
failed to reflect the categorical restrictions imposed by the grammar in the
example above.

RIP therefore fails to reflect the probability distribution which the
grammar assigns to the data. This occurs because, by restricting the set of
candidates, RIP changes the constraint interactions that are relevant for
selecting candidates. The set of candidates consistent with an overt form is
generally a small subset of the full space of candidates. This smaller space
changes the relative probabilities of the parses, because fewer constraint
interactions are relevant for selecting optima among this reduced set of
candidates. In the example above, the presence or absence of candidates
(a) and (d) alters the constraint interactions. In production, the relative
ranking of lower-ranked foot-form constraints is crucial, but in parsing,
the absence of (a) and (d) means foot-form constraints are irrelevant.
Ranking conditions crucially rely on the set of alternatives, and when RIP

7 The example discussed in this paragraph also holds for the version of RIP/EDCD
for classical OT with ‘permuting ties’ (Boersma 2009).

50 Gaja Jarosz



alters this set, it alters the likelihood of the various parses relative
to one another. Clearly, any parsing procedure must alter the absolute
probabilities of candidate parses if the production grammar assigns any
probability to forms with other stress contours. The problem, however,
concerns the relative probability assigned to competing parses when
mismatching candidates are added or removed from the competition. In
the second example above, candidates (b) and (c) are generated with 5%
and 45% probability respectively in production, a relative proportion of
1 to 9, but RIP generates both parses with equal probabilities of 50%,
a proportion of 1 to 1. In this way, reducing the candidate set can dra-
matically alter the relative probabilities of candidate parses from their
relative probabilities in production.
It is this mismatch in the relative probabilities which is the problem,

and occurs in RIP versions of both Stochastic OT and Noisy HG, because
in both frameworks the relative probability of two candidates depends on
what else is in the candidate set. Interestingly, the mismatch appears to
be less severe for probabilistic weighting than for probabilistic ranking,
at least for the kinds of constraint interactions and hidden structures
typically found in stress systems. Consider again the example in (9), this
time in a weighted grammar. Suppose that in the learner’s current
Noisy HG weighting ALLFEET-L and ALLFEET-R have weights of 300,
TROCHAIC 200 and IAMBIC 100, as shown in (10).

(10)

AllFt-L IambicAllFt-R/L L L/ Trochaic

Example illustrating lack of parsing–production mismatch in HG

w=300 w=300 w=200 w=100

Harmony
(—1)Xw(AllFt-R)+(—1)Xw(Iambic)
(—1)Xw(AllFt-R)+(—1)Xw(Trochaic)
(—1)Xw(AllFt-L)+(—1)Xw(Iambic)
(—1)Xw(AllFt-L)+(—1)Xw(Trochaic)

a.
b.
c.
d.

=—400
=—500
=—400
=—500

(‘L L) L
(L ‘L) L
L (‘L L)
L (L ‘L)

a.
b.
c.
d.

—1
—1

—1
—1 —1

—1

—1

—1

In contrast to the analogous example in OT, the Noisy HG example does
not exhibit a severe mismatch. Just as in OT, this grammar generates
candidates (a) and (c) with equal probability, roughly 50%, in production.
The weightings of the foot-form constraints limit candidates to those
parsed with trochees, while noise allows ALLFEET-L and ALLFEET-R to
vary in relative weighting, producing variation between left-aligned
and right-aligned trochees. Unlike in OT, however, RIP selects candidate
(c) with near certainty as the parse for [L tL L]. This is because what
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matters in HG is the overall difference in the weighted sum of violations
between the two candidates. The foot-form constraints, weighted 100
points apart, are decisive in parsing, just as they are in production.
Although the alignment constraints have high weights, their relative
weighting is of little consequence, because it is the difference in
overall harmony that determines the winner. Noise cannot overwhelm the
100-point harmony difference between candidates (b) and (c). Therefore,
in this example RIP succeeds in making use of categorical grammatical
knowledge favouring trochees.

Probabilistic weighting is not totally immune to the parsing–production
mismatch problem, however. Mismatches do occur, especially when
decisive constraints are variably weighted or when variably weighted
constraints have multiple violations. For example, in a case identical to
(10) except with the weight of IAMBIC set to 198, so that foot-form
constraints can vary in weight, there is a statistical mismatch.8 Under this
weighting, candidates (a), (b), (c) and (d) have approximately 42%, 8%,
42% and 8% probability respectively. Therefore, in production, candi-
date (c) is more than five times as likely as candidate (b). RIP, however,
selects candidate (c) about 76% of the time, about three times as often
as candidate (b). This example is qualitatively similar to the second OT
example above: a strong statistical preference for trochees in production
is not fully respected in parsing. Quantitatively, the mismatch is not
as severe as in OT, however, since RIP merely weakens the statistical
preference without eliminating it entirely. In general, strict ranking
creates more opportunities for the parsing–production mismatch, because
crucial relative rankings can be made completely irrelevant when
the candidate set is reduced (as in (9)). On the other hand, in HG all
differences in weighting, even for constraints with low weights, are always
relevant for both the full and reduced set of candidates. Nevertheless,
statistical mismatches occur in both frameworks, because the presence or
absence of alternative candidates affects the relative probabilities with
which parses are selected as optimal.

The above discussion has implications for the learning of structural
ambiguity in a variant of stochastic weighted grammars known as maxi-
mum entropy grammars (Johnson 2002, Goldwater & Johnson 2003,
Jäger 2007). As discussed above, the relative probability of two candidates
in Stochastic OT and Noisy HG depends on what other candidates are
considered. This is not so in maximum entropy grammars, in which the
probability of a candidate is calculated directly from the harmony:
specifically, it is proportional to the exponential of the candidate’s
harmony. Since the harmony does not depend on other candidates, the
relative probabilities of two candidates are fixed, regardless of what other
candidates are considered. This means that, by the very definition of
candidate probability in these models, maximum entropy grammars are

8 These probabilities were estimated by simulating production and parsing for this
tableau 1,000,000 times.
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not subject to the parsing–production mismatch problem. RRIP for
maximum entropy grammars will therefore select parses according to
their production probabilities. The consequences of this observation for
learning in the face of structural ambiguity are not explicitly explored
here, but future work must also consider RRIP versions of maximum
entropy grammars.
RIP is attractive because it provides a simple way to use the learner’s

current grammar for both production and parsing. However, as this sec-
tion has shown, using the same procedure for parsing and production
actually results in incompatible parsing and production distributions for
both OT and HG, and a failure to fully exploit existing grammatical
knowledge during interpretive parsing. The following sections explore the
consequences of this mismatch in more depth by introducing and testing
learning models without a parsing–production mismatch.

4.2 Expected Interpretive Parsing

How could the learner better exploit its current stochastic grammatical
knowledge during parsing? A general solution to this question comes
from the statistical learning literature. The well-known Expectation-
Maximisation (EM) algorithm (Dempster et al. 1977) is a general
procedure for learning in the face of hidden structure and has been applied
to learning with a variety of language models. Formally, EM characterises
learning as maximisation of LIKELIHOOD, which is a measure of fitness,
quantifying the grammar’s ability to generate the language data. A major
advantage of EM is that, with each iteration of learning (where an iteration
is a pass through the learning data), the learner is guaranteed to improve
its ability to generate the learning data (or to converge). Thus EM
provides a general approach to hidden structure that indicates how to
learn from ambiguous data so as to improve the overall fitness of the
grammar based on the most complete information available in the current
stochastic grammar. Informally, EM uses its current grammar to parse
the learning data, assigning parses in proportion to their probability under
the grammar. It then updates the grammar based on these ‘expected’
parses, rewarding grammars that are capable of generating the data with
high likelihood. The essential insight of EM is that parses should be
weighted by the learner in proportion to the probability with which the
current grammar generates them.
In fact, EM was Tesar & Smolensky’s original inspiration for RIP,

which they reinterpreted for a non-probabilistic classical OT setting.
The stochastic grammar setting provides the opportunity to make this
connection tighter, since probability is an essential component of EM’s
solution to hidden structure. However, as shown in the previous section,
the original formulation of RIP for the stochastic setting does not fully
exploit the connection with EM, since in RIP/OT-GLA and RIP/HG-
GLA parses are not selected according to their probability under the
grammar. Other work within the probabilistic constraint ranking setting
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does explore this connection: Jarosz (2006a, b) adapts EM to the problem
of learning probabilistic OT grammars, and illustrates the capacity of
these models to deal with hidden structure in the general case, learning
both structural ambiguity and underlying representations in several
computational case studies. However, the full EM calculations are com-
putationally costly, involving explicit enumeration and calculation of
the expected probabilities of possible parses (or their components) for all
the learning data in batch. The present work investigates an alternative
solution that harnesses the basic insight underlying Jarosz’s model
and EM’s solution to hidden structure but relies on the sampling strategy
inherent to the online error-driven learners, OT-GLA and HG-GLA.

EM’s basic insight can be applied to OT-GLA and HG-GLA simply
by selecting parses in proportion to their probability under the learner’s
current grammar. The formulation in (11) defines this new parsing
algorithm for GLA, Expected Interpretive Parsing (EIP).

(11) Expected Interpretive Parsing (EIP) for GLA
1. Initialise Stochastic Grammar: G0

Iterate over d in D:2.
Sample G¢~Gi
Input=uf(d)
Output=OptimiseG¢ (Input)
If overt(Output)≠d:

a.
b.
c.
d.

Parse~P(parse|Gi, d)
Gi+1=Update (Gi, Parse, Output)

i.
ii.

This formulation is identical to the one for RRIP in (8), except that
resampling and Robust Interpretive Parsing steps are replaced with sam-
pling from the conditional probability of the parse given the current
grammar and the learning datum: P(parse|Gi, d) (step 2d.i). Thus EIP
defines the probability according to which parses should be sampled as
the probability of those parses under the current grammar, the relative
production probabilities discussed in the previous section. Consider again
the example in (9), and a grammar, GA, with FOOTNON-FIN2IAMBIC. For
this grammar and the overt datum [L tL L], the probability of the trochaic
parse, P([L (tL L)]|GA, [L tL L]), is 100%, while the probability of the
iambic parse, P([(L tL) L]|GA, [L tL L]) is 0%. For the second grammar
discussed earlier, with FOOTNON-FIN2IAMBIC only 90% of the time, these
parsing probabilities would be 90% and 10% respectively.

In EIP, interpretive parsing is defined as sampling from these
distributions. Whereas in true EM parses (or their components) are
enumerated, and the grammar update is weighted by this probability, in
EIP this weighting is accomplished indirectly by repeated sampling from
this distribution. More probable parses are sampled more often, causing
their respective updates to the grammar to be made more often. In sum,
EIP addresses the parsing–production mismatch problem discussed in the
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last section by defining the parsing procedure in terms of the current
production grammar. In this way, EIP resurrects the connection with EM
that originally inspired RIP, applying EM’s approach to hidden structure
to two online sampling learning algorithms for stochastic constraint-based
grammars.

4.3 Expected Interpretive Parsing simulations and results

The previous sections showed that (R)RIP does not parse according to the
current (production) grammar, and introduced an algorithm, Expected
Interpretive Parsing, that does parse according to the current grammar.
This section presents simulations illustrating how parsing consistently
with the learner’s production affects performance.
As discussed earlier, an advantage of RIP is that parsing can be

accomplished by using standard optimisation, albeit with a different can-
didate set. Sampling parses from the conditional probability P(parse|Gi, d)
requires another computational approach. The simulations presented here
use a Monte Carlo method of rejection sampling which relies on the
learner’s production module. Specifically, in case of an error on datum d,
the learner’s current grammar is used to generate output forms for the
underlying form of d. As soon as one of the output forms matches the overt
stress pattern of d, it is used as the parse. Outputs that do not match the
surface stress pattern of d are discarded. By using only those samples that
match the overt stress pattern, this method effectively samples from the
conditional probability of various parses of d, given its overt stress pattern
and the current grammar, exactly the probability distribution required
for EIP.
Consider once again the example in (9) and the grammarwith FOOTNON-

FIN2IAMBIC. If the learner needs to generate a parse for [L tL L], the
learner will simply use the current grammar to generate outputs for /L L
L/ until one matches [L tLL], in which case that output will be used as the
parse. Recall that this grammar generates each of [(tL L) L] and [L (tL L)]
about 50% of the time. Since only [L (tL L)] matches the stress pattern of
the datum and only outputs matching the overt stress pattern are used as
parses, the sampler generates outputs until it generates [L (tL L)], and
then uses this output as its parse. In this example, the chance of parsing
[L tL L] as [L (tL L)] is therefore 100%, as required by EIP. In the
example grammar with FOOTNON-FIN2IAMBIC only 90% of the time,
the grammar again has a 50% probability of generating [L tL L], but this
grammar generates [L tL L] with two different parses. It generates
[L (tLL)] with 45% probability and [(L tL) L] with 5% probability. Since
the sampler only keeps those outputs that match the stress pattern, its
chance of parsing [L tL L] as [L (tL L)] is 45/50, or 90%, and its chance of
parsing [L tL L] as [(L tL) L] is 5/50, or 10%. In both examples, since the
probability of selecting the overt stress pattern is 50%, the sampler has a
50% chance each time it generates an output of keeping it as the parse.
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In general, the number of outputs that need to be generated until
a match is found depends directly on the probability of the overt
form under the grammar. In general, the more likely the overt form
is according to the current grammar, the more quickly a parse for it
will be found. This parsing method thus has the advantage that
parsing becomes more efficient as learning continues, and the learner’s
grammar becomes more and more likely to generate the surface
stress pattern of the target language. However, if the learner’s grammar
generates the overt form with very low probability, it can take many
samples before a match is found, meaning that selecting a parse can
require more effort when the learner’s current grammar is very far from
the target grammar.

One further detail is crucial in implementing this sampling method for
EIP. When the learner converges on a grammar that is incorrect for the
target language, i.e. when learning is unsuccessful, the learned grammar
often fails to generate one or two of the data forms in the language entirely,
assigning (near) zero probability to them. Without some terminating
condition, the sampler will loop indefinitely in these cases, since it cannot
generate a matching stress pattern for such data forms. In the simulations
reported here, this problem was avoided by allowing each form a maxi-
mum of 1000 samples from the grammar to generate a parse. If 1000
samples failed to provide a parse of the datum, the learner did not make an
update to its grammar and did not learn from this error.9 The remaining
simulation details are identical to the earlier set-up for RIP and RRIP. All
learning rate/algorithm combinations were repeated ten times for each of
the 124 languages (constituting a total of 9920 separate runs of EIP), as
before, with average success rates and sample standard deviations calcu-
lated.

The performance results of EIP for OT-GLA and HG-GLA at the four
learning rates are shown in Table III. The results for RIP and RRIP are
repeated from Table II for convenience.

Comparing EIP/OT-GLA to the other OT-GLA variants reveals that
Expected Interpretive Parsing dramatically improves performance over
RIP and RRIP. Whereas RRIP’s performance of roughly 81–84% is
dramatically higher than RIP’s performance of roughly 56–58%, EIP’s
performance of about 93–94% is substantially higher than both RIP and
RRIP. On average, EIP improves upon the performance of RRIP by
about 10 percentage points, and this difference is highly significant at all
learning rates (p<0.001; Welch two-sample t-test). For the HG learners,
examination of EIP/HG-GLA’s performance at the parameter settings
tested indicates that EIP/HG-GLA performs comparably to RRIP/HG-
GLA and RIP/HG-GLA. Comparing performance of EIP/OT-GLA

9 1000 was chosen on the basis of initial testing indicating that this was a sufficient
sample to reliably produce parses for the learning data. In general, a higher cut-off
increases the chances that the learner will be able to parse and learn from each
learning datum, but it also increases processing time early in learning and for un-
successful runs.
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and EIP/HG-GLA suggests that HG-GLA no longer has an edge over
OT-GLA. Indeed, for the parameters tested here, EIP/OT-GLA’s per-
formance is better than EIP/HG-GLA’s performance by several points.
However, the following sections explore HG-GLA’s performance with
different parsing strategies at a wider range of parameter settings, and
shows that the above results do not represent HG-GLA’s best perform-
ance.

4.4 Parameter settings and probabilistic ranking vs. weighting

One puzzling aspect of the above results is the apparent lack of effect of
parsing strategy on the HG-GLA. The best performance of HG-GLA
reported above is about 88–89%, regardless of the strategy adopted. One
aspect of this puzzle is why EIP/HG-GLA fails to improve over RRIP/
HG-GLA. A possible answer to this question was alluded to in the earlier
discussion of the parsing–production mismatch. The mismatches dis-
cussed earlier were much more severe for OT than for HG. If these ex-
amples are representative of the kinds of constraint interactions that
typically occur in stress systems such as this one, mismatches may be
dramatically less pervasive in HG than in OT on typical learning trials.
Weak mismatches would cause RRIP to perform similarly to EIP, since
the only difference between these two algorithms is the distribution ac-
cording to which parses are sampled. Since RIP and EIP perform com-
parably, the results are largely consistent with this possibility. However, if
the parsing–production mismatch in HG is weak, rather than non-exist-
ent, some improvement would be expected from EIP. Furthermore, the
parsing–production mismatch does not explain why RIP/HG-GLA and
RRIP/HG-GLA perform comparably. Why does parsing strategy seem to
have no effect whatsoever on HG-GLA? This section considers this
question more carefully and reveals that part of the explanation lies in

56·13
88·71
82·58
89·27
93·95
88·31

(1·62)
(0·66)
(1·91)
(0·94)
(0·57)
(1·02)

Table III
Success rate (in %) of RIP, RRIP and EIP across various
parameter settings. Sample standard deviation is given in

parentheses. Best scores for each model are shown in bold.

RIP/OT-GLA
RIP/HG-GLA
RRIP/OT-GLA
RRIP/HG-GLA
EIP/OT-GLA
EIP/HG-GLA

algorithm

learning rate (plasticity)

55·81
88·79
84·19
89·44
93·87
88·23

(1·82)
(0·97)
(1·91)
(0·71)
(0·78)
(0·56)

0·05 0·10

56·21
85·48
81·13
87·58
93·71
85·56

(2·15)
(1·57)
(2·29)
(1·79)
(1·69)
(1·96)

0·25

57·50
82·90
80·08
82·98
92·82
83·23

(2·28)
(2·92)
(3·09)
(1·84)
(1·29)
(2·57)

0·50
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differences in how the parameter settings affect learning in HG-GLA as
opposed to OT-GLA.

The simulations presented here include a range of parameter settings
for all the algorithms. These provide a reasonable starting point for ex-
ploring how parameter settings affect performance in the various algo-
rithms. Although the results presented here consider the same range of
parameter settings for Stochastic OT and Noisy HG algorithms, this
range provides a more complete picture of the performance range for
Stochastic OT than it does for Noisy HG. There are three parameters to
set : initial weights or ranking values, learning rate and noise. If all the
constraints are initially tied, as they are in these simulations, the initial
ranking values for the OT learners are irrelevant, since all that matters
is whether one constraint is ranked higher or lower than another – its nu-
merical value is not important. In other words, if noise is held constant, it
does not matter whether the ranking values of two constraints are 1 and
10 or 1001 and 1010. Therefore, for Stochastic OT, if constraints start
out tied, there are only two meaningful parameters: noise and learning
rate. It is possible to hold one parameter constant and vary the other to get
a good idea of the performance range. This is exactly what the current
results reflect. The same range of performance would be expected for
higher/lower noise values, with best performance shifted to higher/lower
learning rate values. Since the best performance for EIP/OT-GLA occurs
at one of the intermediate parameter values tested, it is likely that this
combination of parameter settings is close to the best possible perform-
ance EIP/OT-GLA can achieve on this test set. The best performance of
RIP/OT-GLA shown in the results above occurs at the highest learning
rate tested. To determine whether performance of RIP/OT-GLA im-
proves at even higher plasticity values, two additional parameter settings
were tested, with ten runs each: plasticity of 1.0 and plasticity of 2.0. The
results indicate that higher learning rates cannot save RIP/OT-
GLA – performance at these higher learning rates is on average 57.18%
and 56.35% respectively. It is possible that some plasticity value inter-
mediate between the range of 0.25 and 2.0 would slightly improve
performance, but the results indicate that 57% is a good estimate of the
best performance for RIP/OT-GLA on this test set. Finally, performance
of RRIP/OT-GLA is highest at the lowest learning rate, so it is worth
checking whether even lower learning rates would improve performance.
In fact, they do not – performance at a learning rate of 0.01 drops to
83.17%. Overall, the results for RIP, RRIP and EIP versions of the
OT-GLA presented here provide good estimates of the best performance
that can be expected from these algorithms on this test set. This means we
can be reasonably confident that the performance gains of EIP/OT-GLA
over RRIP/OT-GLA and RRIP/OT-GLA over RIP/OT-GLA are
robust, and representative of the range of possible parameter settings.

In contrast, the performance range for the variants of the HG-GLA
algorithms presented here is not likely to be similarly comprehensive.
This is because the current results represent a smaller portion of the space
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of crucial parameter combinations for HG-GLA, simply because
more parameter settings are crucial for the HG-GLA. Indeed, all
three parameter settings – initial weights, noise and plasticity – have
consequences for the HG-GLA, and their possible combinations create a
large space of possibilities. A weighting difference of 10 and 1 is not
equivalent to a weighting difference of 1010 and 1001. This is because
harmony in HG depends on a multiplicative interaction between
constraint weights and their violations, which means that the relative
harmony of two candidates may depend on the ratio of their weights.
Consider the simple example in (12).

(12)

a.
b.

Example illustrating HG’s sensitivity to absolute weights

Candidate A
Candidate B

C1

w=3

C2

w=1 Harmony
0Xw(C1)+(—3)Xw(C2)=—3
(—1)Xw(C1)+0Xw(C2)=—3—1

—3

Each violation of C2 incurred by Candidate A is added to the candidate’s
total score. This means in order for Candidate A to win, the weight of C1

must be more than three times that of the weight of C2. Therefore, if the
weights of C1 and C2 are 10 and 1 respectively, Candidate A is optimal.
However, if the weights of C1 and C2 are 1010 and 1001 respectively,
Candidate B is optimal. Thus, because optimality is determined in terms
of multiplicative weighting interactions in HG, the absolute weight
assigned to a constraints initially during learning matters. If the learner
starts out with C1 and C2 with weights of 1, the weights will only have to
shift by a total of about 2 for Candidate A to be selected as optimal. In
contrast, if the learner begins with both constraints weighted at 100, it
will take many more iterations (or a much higher learning rate) to reach a
weighting with C1 weighted three times higher than C2. The metrical
stress system investigated here involves forms with multiple feet, stresses
and syllables, and therefore candidates with multiple violations for
constraints are very common, often yielding multiplicative weighting
interactions.
A further consequence of this multiplicative interaction is that Noisy

HG is less sensitive to evaluation noise, and the interaction between noise
and weighting is more complex. Consider again the example above, and
suppose that both C1 and C2 are weighted or ranked equally at 10. In
Stochastic OT, regardless of the noise setting, Candidates A and B are
equally likely to be generated. Not so in Noisy HG. In Noisy HG with a
standard noise setting of 2, the chances that the weight of C1will randomly
be selected to be three times higher than C2 are very low. This means
Noisy HG will almost always generate candidate B. Note that this inter-
acts in a non-trivial way with the weighting value: if the constraints are
both tied at 100 rather than 10, with noise still set to 2, the probability of
generating Candidate A becomes vanishingly small.
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Since the test system investigated here does involve a number of
gradient constraints that frequently assign multiple violations, the effect of
a given level of noise should be weaker for Noisy HG than for Stochastic
OT. If this is true, it is possible that the lack of an effect of the parsing
mechanism for HG-GLA could be due to a lack of sufficient noise. If,
despite the noise, Noisy HG grammars are consistently selecting the same
candidates as the winners, there would be no effect of resampling and no
effect of parsing strategy. In other words, if Noisy HG is so insensitive to
noise as to assign nearly all probability to a single candidate, the parsing
strategy should be largely inconsequential.

This possibility was investigated in two ways. First, the expected
interpretive parsing outcomes of Stochastic OT and Noisy HG were
qualitatively examined at the initial weighting/ranking of 10 and noise of
2, with learning updates turned off. This was done in order to determine
whether the choice of OT vs. HG affected the variability in parses. A
grammar with all constraints tied generates a wide range of rankings and
weightings, and provides an opportunity to observe the variability in
parsing outcomes that operates in all target languages before any learning
has taken place. In Stochastic OT, there is indeed a great deal of variation
between the parses selected for the overt forms. In contrast, parses selec-
ted by Noisy HG are much more consistent, with most overt forms being
consistently parsed in only one way. Thus it is clear that the same level of
noise results in much more parsing variation in Stochastic OT than in
Noisy HG. This raises the question of how the performance of HG-GLA
would be affected if noise were increased. To investigate this, additional
runs of each of the HG-GLA variants were performed at noise settings of
4 and 8. All runs used a learning rate of 0.10, and were set up as before,
with initial weights of 10. As before, each run was repeated ten times, with
the average and sample standard deviation calculated.

The results are summarised in Table IV, with the previous results of
HG-GLA with noise set to 2 repeated for convenience.

These results are consistent with the hypothesis discussed earlier,
namely, that it is insensitivity to noise that causes the HG-GLA

91·05
92·42
94·19

(1·11)
(0·78)
(0·74)

Table IV
Success rate (in %) of RIP and RRIP across various parameter settings. Sample

standard deviation is given in parentheses. Best scores are shown in bold.

RIP/HG-GLA
RRIP/HG-GLA
EIP/HG-GLA

algorithm

noise

88·71
89·27
88·31

(0·66)
(0·94)
(1·02)

2 4

90·89
90·97
91·94

(1·14)
(1·60)
(1·26)

8
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algorithms to show no effect of parsing strategy. When noise is increased
to 4, EIP does yield an improvement in performance over RRIP, and
RRIP does yield an improvement over RIP. These gains in performance
are relatively small, but they are both highly significant (p<0.01; Welch
two-sample t-test). This means that better parsing can yield better per-
formance for both HG-GLA and OT-GLA. Furthermore, the results also
indicate that, for a learning rate of 0.10 and initial weights of 10, overall
performance is best at noise set to around 4, with lower performance when
noise is increased to 8. These results increase the upper range of the per-
formance for the HG-GLA algorithms presented in the previous section
(and in previous work). Importantly, the performance of EIP/HG-GLA
at noise set to 4 is comparable to the best performance of EIP/OT-GLA
(p>0.1; Welch two-sample t-test).
In sum, the discussion and simulations in this section have shown that

HG-GLA is highly sensitive to the combinations of parameter settings.
While varying one parameter in the OT-GLA provides a fairly compre-
hensive view of its range of performance, the space of crucial parameter
settings is more complex for the HG-GLA, and requires more extensive
exploration. Additional exploration of this space revealed that the amount
of variability produced at a noise setting of 2 in this stress system is quite
limited. This explains why the choice of parsing strategy has little effect at
this noise setting. At higher settings, differences between the parsing
strategies emerge, and indicate that EIP does improve performance over
RRIP, which in turn is better than RIP. The gains in the performance are
small compared to the gains for OT-GLA, but they nonetheless indicate
that parsing strategy doesmatter for HG-GLAwhen the noise level is high
enough to produce some variability in parses. Parsing with a known loser
(RIP) leads to poorer performance than resampling (RRIP). Likewise, the
parsing–production mismatch problem does exist for Noisy HG, albeit
weakly, and leads to poorer performance of RRIP in comparison with
EIP. As discussed above, the interactions of parameter settings for
HG-GLA are complex, and further work is needed to provide a compre-
hensive picture of how the performance of HG-GLA in the domain of
hidden structure depends on the various parameter settings, the types of
constraints (gradient or binary) and their interactions.

4.5 Discussion

The preceding sections introduced a parsing strategy, Expected
Interpretive Parsing, and explored the consequences of parsing consist-
ently with production for both Stochastic OT and Noisy HG. The results
of the simulations revealed that EIP/OT-GLA is a substantial improve-
ment over RRIP/OT-GLA. Recall that the only difference between
RRIP and EIP is the distribution according to which parses are sampled.
Therefore, the extent to which EIP performs differently from RRIP is an
indication of the extent to which RRIP is not doing expected parsing.
Since there is a substantial difference in performance, it is clear that, on
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average, parses generated by RRIP for OT-GLA are very different
from parses generated by EIP for OT-GLA. These simulations therefore
indicate that the parsing–production mismatch is a pervasive and serious
problem for RIP versions of OT-GLA, and not just artefacts observed
in rare and artificially constructed examples, such as the ones discussed
in w4.1. The results also revealed that, due to a difference in constraint
interaction, Noisy HG produces less variability during parsing (and pro-
duction) than Stochastic OT for the same level of noise. When noise is
increased to produce some variation in parsing, EIP/HG-GLA improves
significantly over RRIP/HG-GLA. This indicates that the parsing–
production mismatch problem also exists for Noisy HG, just as it does for
Stochastic OT, although the severity of the mismatch appears to be
weaker in HG, at least for the kinds of constraint interactions that occur in
the stress system examined here. The preceding sections have identified
the parsing–production mismatch problem, demonstrated that it has sig-
nificant consequences for learning in Stochastic OT and Noisy HG and
identified some ways in which OT and HG may differ with regard to this
problem. A complete understanding of the ways in which the severity of
the mismatch depends on choice of framework, the kinds of constraints
and the kinds of hidden structure is an important question for future
work.

The performance gains of EIP as compared to RRIP highlight the se-
verity of the parsing–production mismatch problem, revealing that
learning success rates can be substantially improved when parses are
sampled according to their conditional probability given the (production)
grammar. The preceding sections also introduced a concrete method for
generating samples from the conditional probability in practice. As ex-
plained above, the amount of effort needed to generate a parse using this
method of rejection sampling varies, and parsing can be expensive when
the grammar generates the overt portion of the datum with low prob-
ability. However, the results presented here illustrate that this method can
be used successfully in practice. For this fairly complex stress system, a
cut-off of 1000 output samples is sufficient to demonstrate the substantial
gains in performance provided by EIP, and at the same time makes it
feasible to test tens of thousands of learning runs, as reported above.
Overall, the procedure yields a learning algorithm that allows for extensive
empirical testing in its current form. Nonetheless, an important avenue
for future work is to determine whether it is possible to improve on the
computational efficiency of this method, for example by identifying a way
to sample directly from the conditional probability. This would require
a method that (i) uses the current stochastic ranking or weighting and
(ii) generates only output forms that match a given overt form in such a
way that (iii) the relative probabilities of the output forms correspond to
their relative production probabilities. A method incorporating all three
properties that improves upon the one used here is not readily apparent.
Note that RIP satisfies the first two properties, but as the preceding sec-
tions have shown, violates the third property. One approach would be to
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rely on elementary ranking conditions (Prince 2002, Riggle 2009) to con-
strain parsing. While this possibility is appealing, it is important to keep
in mind that in the context of hidden structure, elementary ranking con-
ditions are themselves hidden. A fully structured winner is needed in
order to define a ranking condition, and the learner does not know the full
structure. Furthermore, even if ranking conditions could be used in some
way to limit generation of parses to those that match a given overt form,
it is not obvious that property (iii) would be satisfied. In sum, further
investigation into alternative procedures for performing EIP is warranted;
however, the current rejection sampling method provides a concrete and
empirically testable implementation of the algorithm that can be used in
practice.
An important motivation for the present work was the comparison

between Stochastic OT andNoisy HGwith respect to their computational
properties. The current simulations explore a sizeable portion of the
parameter space for both Stochastic OT and Noisy HG, using three
different learning algorithms. Although previous work and the simula-
tions with RIP presented in w3.2 suggest an advantage for Noisy HG, the
new algorithms proposed here narrow the gap in performance between
OT and HG. Indeed, the results of simulations with EIP do not support
a performance advantage for either HG-GLA or OT-GLA. Overall,
the results indicate that the suboptimal parsing strategy of RIP affects
the OT-GLA disproportionately more than HG-GLA, and that once a
parsing strategy that takes advantage of the learner’s stochastic gram-
matical knowledge is used, the performance of OT-GLA learners rivals
that of HG-GLA learners.
Although the new parsing strategies significantly improve the per-

formance of both HG and OT learners, none of the learners succeeds in
learning all the languages in the system. A complete explanation for the
learners’ imperfect performance is beyond the scope of this paper, but a
few observations relevant to this question can be made about their failures.
While all the learners explored here are non-deterministic, the perform-
ance of the individual learning models exhibits a good deal of consistency
across multiple runs. That is, for a given combination of framework,
parsing strategy and other parameter settings, the individual runs tend to
produce similar results, with some languages consistently learned, some
consistently not learned and others exhibiting variable outcomes. In other
words, different target languages appear to be more or less difficult to
learn for these models. However, which languages are more or less diffi-
cult varies significantly by learner, especially between the OT and HG
learners. The HG learners are less consistent in their learning outcomes
than the OT learners, and there is no single language that all learners fail
to learn.10 Understanding the formal properties responsible for making

10 One example language that shows up frequently in the set of failures is a target
language that all OT learners fail on. In this language, stress is always penultimate
except for disyllabic forms with light initial syllables, in which case stress is final. An
analysis of this pattern makes use of non-finality and iambic feet to account for the
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some languages harder to learn than others is an important question
for future research, and could be the key to further improvements in
performance.

5 General discussion

This paper has focused primarily on success rates of learning algorithms
in the limit, but there are other computational considerations that should
be explored in future work. One important consideration, and one that has
played a prominent role in the literature on learnability within Classic OT
from the very beginning, is one of algorithmic efficiency. Starting with the
earliest work on OT learnability, the learnability results for the constraint
demotion family of learning algorithms included proofs not only of their
correctness, but also of their data complexity (Tesar 1995, Tesar &
Smolensky 1998). While the data complexity of the constraint-demotion
family is well understood, further work is needed to better understand
the data complexity of learning models in the face of structural ambiguity.
Another important consideration is how much computation time
or memory is required to process each data form. The discussions in w3.1
and w4.3 addressed this aspect of the proposed parsing strategies,
RRIP and EIP. Given the more complete picture of these algorithms’
performance in the later sections of the paper, the balance between
these various considerations is now clearer. As discussed earlier, since
RRIP parses data forms and resamples only when there is an error,
it requires less effort on average to process each datum than
RIP. Furthermore, the results of simulations in w3 and w4 show that
RRIP/OT-GLA has better performance than RIP/OT-GLA across the
board. In this case, therefore, there appear to be no drawbacks to RRIP as
compared to RIP, only significant performance advantages. For HG, the
improvement of RRIP over RIP is minimal and not consistently present,
but there again seem to be no drawbacks to RRIP, and only the possibility
of some performance gains, again a win-win situation. Things are
not quite as straightforward in the case of EIP, since there are some
computational trade-offs with the rejection-sampling implementation of
EIP parsing. While the procedure potentially requires more processing
time for each datum, this added effort is balanced by substantial gains
in performance for the OT learners. The processing time per datum
can be restricted with good results on this test set; nonetheless, it is
an open question whether a more efficient parsing method could push

general pattern of penultimate stress (e.g. [º ss(s ts)s]), and a ranking of
FOOTBIN2NON-FIN to account for the final stress in disyllabic light-initial forms
(e.g. [(Lts)]$[(tL)s]). Further work is needed to determine the ultimate source of
failures on languages such as this one, but one possibility that should be investigated
is that learners can be led astray by an overwhelming amount of evidence consistent
with a preferred (but incorrect) analysis. In this case, 60 of the 62 learning data have
penultimate stress, which may be leading the learner to prefer right-aligned tro-
chees.
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the balance even further in favour of EIP. Because the performance
gains of EIP for HG are minimal, the advantage of EIP/HG-GLA over
RRIP/HG-GLA is less clear.
In general, this paper has argued that the performance gains afforded by

RRIP and EIP are due to these parsing strategies’ better reliance on the
learner’s accumulated grammatical knowledge. If RRIP is making better
use of available information than RIP, and EIP is making better use of
available information than RRIP, is there some strategy that could make
even better use of information than EIP and improve performance even
further? This is a question that requires further work, but there are rea-
sons to think the answer is yes. There is often a trade-off between the
amount of computation or memory spent on each learning datum and the
amount of data needed for successful learning. One way to view what EIP
is doing is that it is using its current grammar to estimate the distribution
over possible parses of each overt form, and making updates to its gram-
mar based on this distribution. In EIP, the estimation of this distribution
is spread out over time, since only one sample parse is used to calculate
the update to the grammar each time there is an error. It would be possible
to extend EIP to take multiple sample parses for each overt form and
calculate an update from this more complete estimate of the distribution
over parses. Such a learner would bring EIP even closer to the original
inspiration for RIP, Expectation-Maximisation. However, such a learner
would also require much more effort to process each overt form. An in-
teresting direction for further work is to develop a model that makes fuller
use of the distribution over parses when processing each overt form and
exploring the consequences for accuracy and data complexity. Another
computational avenue to explore for potential performance improvements
is to investigate the role that OT-GLA’s known non-convergence (Pater
2008) plays in the context of hidden structure. While OT-GLAworks well
in most cases (for simulations see e.g. Boersma & Hayes 2001), it may be
that performance of RRIP/OT-GLA and EIP/OT-GLA could be further
improved if the OT-GLA update rule were replaced with the provably
convergent update rule proposed by Magri (2012). In fact, there is related
work that indicates Magri’s update rule does yield improvements in the
context of structural ambiguity (Biró to appear). A promising direction for
further research is to explore whether the parsing improvements proposed
here can yield cumulative improvements in conjunction with Magri’s
update rule for OT-GLA.
Another important area for further work is the development of a better

understanding of how general properties of constraints and representa-
tions affect learnability in the context of hidden structure. This paper has
examined the computational properties of six learning algorithms in a
particular stress system. Using this test system allows direct comparison
with previous work (Tesar & Smolensky 2000, Boersma 2003, Boersma &
Pater 2008, Jarosz to appear). It also allows for further investigation
into Boersma & Pater’s initial findings suggesting an advantage for HG
learners, which were determined on the basis of simulations with this
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test set. Furthermore, the findings in this paper have highlighted several
formal properties of this system which dramatically affect the results,
and whose consequences should be explored more generally. One of these
properties is the parsing–production mismatch problem and how it differs
between HG and OT. This paper has identified the mismatch problem
and shown that its presence has significant consequences for successful
learning. The discussion and simulation results also suggest that the
mismatch problem may be more severe for OT than for HG. More gen-
erally, however, what properties of constraints, representations or mode of
constraint interaction underlie the parsing–production mismatch prob-
lem? Are there restrictions on constraints or representations that could
eliminate or reduce the severity of the mismatch? If so, the performance
differences between RRIP and EIP would be minimised, bringing the
performance of RRIP closer to EIP, eliminating or weakening the need for
the more costly parsing computations of EIP. Likewise, if it can be shown
that the mismatch problem is less severe in HG than in OT as a direct
consequence of weighting, this would be a potential advantage for HG-
GLA, and HG, on the problem of learning with structural ambiguity. As
discussed earlier in w4.1, the parsing–production mismatch, by definition,
does not exist in maximum entropy grammars. The present findings
therefore motivate exploration of learning with structural ambiguity
within the maximum entropy grammar framework. Since maximum en-
tropy grammars are not subject to the parsing–production mismatch
problem, the application of RRIP to maximum entropy grammars will
result in the expected parsing, making the more costly computations of
EIP unnecessary.

While the parsing–production mismatch clearly plays an important
role in the success of these learners, it is not the only obstacle to successful
learning (as evidenced by EIP’s imperfect performance). Likewise,
OT-GLA’s non-convergent update rule cannot explain all the unsuc-
cessful runs of EIP/OT-GLA, since the HG learners do not succeed on all
the languages either. This means there are other obstacles to learnability
that must be considered. As discussed earlier, an important question for
further work on learning hidden structure is whether successful learning
depends on some formal or substantive restrictions on the hypothesis
space. While much work on learnability in OT has relied on general
learning strategies independent of the constraints and representations,
some recent work within the classical OT setting explores formal restric-
tions on the hypothesis space that enable more effective strategies for
hidden structure learning (Tesar 2008, 2011). An important avenue for
further work is determining whether formal restrictions such as those
considered by Tesar can shed light on hidden structure learning in the
stochastic setting as well. Another important direction is to explore
the relationship between learnability and the properties of structural
ambiguity in natural language typology. As discussed in w2, the
constraints and mode of constraint interaction underlying the Tesar &
Smolensky stress system are not uncontroversial (McCarthy 2003,
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Hyde 2007, Pruitt 2010), and it is important to determine the conse-
quences for learnability of different theoretical assumptions. Further ex-
ploration of formal learnability restrictions on the hypothesis space must
proceed in conjunction with typological and theoretical work examining
the nature of the formal system underlying the kinds of structural ambi-
guity found in the phonological systems of natural languages. In general,
the computational, typological and theoretical considerations are inter-
connected, and integrating these approaches promises to contribute to a
deeper understanding of the formal and empirical consequences of HG
and OT as well as to more successful strategies for dealing with hidden
structure and other learnability challenges.

6 Conclusion

In sum, the focus of this work is on an outstanding learnability problem,
the problem of learning phonology in the face of structural ambiguity and
how models of learning in this context can be improved and compared.
This paper has identified two problems with the formulation of Robust
Interpretive Parsing in the stochastic setting, proposed two new parsing
strategies and presented in-depth explorations of the consequences of the
parsing strategies for learning algorithms in both HG and OT. The first
problem, parsing with a known loser, has an easy solution, RRIP, which
dramatically and disproportionately improves performance of OT-GLA.
The second problem, the parsing–production mismatch, is a more general
issue with RIP in the stochastic setting that appears to affect Stochastic
OT more severely than Noisy HG. The proposed solution to this
problem, EIP, again substantially and disproportionately improves the
performance of OT-GLA. With both parsing improvements, OT-GLA
and HG-GLA yield comparable end-state success rates. This in-depth
analysis, therefore, indicates that once a broad range of computational
approaches is considered, there is no evidence of an advantage for HG in
this learning context. These results have theoretical implications, since
basic questions of learnability are an important consideration in the
evaluation of the theoretical frameworks of HG and OT.
This paper has also identified several properties of the stress system

that have learnability consequences, which must be investigated further
in order to better understand the relative computational merits of OT
and HG more generally. In addition, the simulation results highlight
differences between Stochastic OT and Noisy HG with respect to the
modelling of variation. Variation is a major area of research in theoretical
phonology (see Coetzee & Pater 2011 for a review), and these results
motivate further exploration of the consequences of these differences
for theories of variation. Overall, the results contribute to a deeper
understanding of the relative merits of the HG and OT theoretical
frameworks and the nature of the learning problem in the context of
structural ambiguity.
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