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Abstract 

This study is a systematic analysis of the information content of a wide range of distributional cues to 

word boundaries, individually and in combination, in naturally occurring child-directed speech across 

three languages (English, Polish, and Turkish). The paper presents a series of statistical analyses 

examining the relative predictive strength of these cues, the overlap in the information about word 

boundaries they contain, and the variability in their relative strengths and interactions across the 

languages. We find that the information content of individual distributional cues is not constant across 

languages, with relative reliability of cues varying across languages and with individual cues providing 

much less information in Polish and Turkish than in English. However, we also find that when these cues 

are combined, the cumulative information content of a diverse array of distributional cues provides a 

significant source of information about word boundaries across all three languages. 
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Introduction 

 One of the first language learning tasks infants must solve is the segmentation of fluent speech 

into individual words. Speech signal is a continuous stream that does not reliably contain pauses or other 

language-independent cues to word boundaries. Nevertheless, based on exposure to the ambient language, 

infants are able to use a variety of acoustic and statistical cues to extract words from fluent speech by the 

time they are one year old. In particular, experimental work has shown that infants are capable of using 

phonotactics (Mattys & Jusczyk, 2001; Mattys, Jusczyk, Luce & Morgan, 1999), prosody (Jusczyk, 

Houston & Newsome, 1999; Mattys et al., 1999; Myers et al., 1996; Saffran, Newport & Aslin, 1996; 

Thiessen & Saffran, 2004), allophony (Jusczyk, Hohne & Bauman, 1999), coarticulation (Johnson & 

Jusczyk, 2001), and statistical regularities (Saffran, Aslin & Newport, 1996; Saffran et al., 1996) to 

segment fluent speech. Since the work of Saffran et al. (1996), research on infant speech segmentation 

has documented the abilities of infants to use a variety of statistical regularities in the speech signal to 

segment fluent speech (Jusczyk et al., 1999; Pelucchi, Hay & Saffran, 2009a; Thiessen & Saffran, 2003; 

Weiss, Gerfen & Mitchel, 2010). These distributional cues include transitional probabilities as well as 

related statistics calculated over sequences of units at various levels of linguistic representation, such as 

phonemes or syllables.  

 Although distributional cues have played a prominent role in experimental work with infants, the 

extent to which distributional cues provide reliable information about word boundaries in spontaneous 

child-directed speech remains controversial. Based on corpus analyses of child-directed speech, some 

authors have argued that distributional cues provide sufficient information for building an initial lexicon 

(Swingley, 2005), while others have argued that distributional cues are unreliable and that accurate 

segmentation requires strategies relying on principles or constraints derived from Universal Grammar 

(Gambell & Yang, 2006; Yang, 2004). Results of computational modeling work raise further questions 

about the reliability of distributional cues. Specifically, state-of-art segmentation models make limited use 

of the kinds of distributional cues explored in the experimental literature, relying primarily on other 

sources of information (Batchelder, 2002; Blanchard, Heinz & Golinkoff, 2010; Brent, 1999; Goldwater, 
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Griffiths & Johnson, 2009; Johnson, 2008b; Liang & Klein, 2009; Venkataraman, 2001). Additionally, 

with a few notable exceptions (Batchelder, 2002; Blanchard et al., 2010; Fleck, 2008), many models have 

been developed and tested only on individual languages, usually English. Indeed, performance on 

languages besides English has generally been markedly worse. In order to better understand the role that 

distributional cues play in infant speech segmentation across languages, it is crucial to determine how the 

availability of distributional information in spontaneous speech varies cross-linguistically. 

 The primary goal of the present work is to contribute to the debate regarding the availability of 

distributional cues in naturally occurring speech to young children by examining interactions of multiple 

cues across multiple languages. We use the term ‘distributional cues’ broadly to include any statistical 

regularities at the phonological level, such as regularities in relative stress and consonant phonotactics, 

not just regularities of syllable or phoneme sequences. We examine the extent to which distributional cues 

of the sort explored in the experimental literature are able to predict word boundaries in child-directed 

speech across three languages (English, Polish, and Turkish). All the cues we consider are statistics that 

can be associated with positions between adjacent phonemes in a corpus of transcribed speech. Crucially, 

as in the experimental studies, the distributional cues we consider are statistics that can be readily 

calculated from (transcripts of) continuous speech without prior knowledge of word boundaries. We 

investigate the reliability and the variation in the relative strengths of a variety of sequential statistics 

calculated at several levels of linguistic representation across the three languages. Much experimental 

work has investigated the effects that the presence of multiple cues to word boundaries has on infant 

speech segmentation (Johnson & Jusczyk, 2001; Mattys, 2004; Mattys et al., 1999; Mattys, White & 

Melhorn, 2005; Morgan & Saffran, 1995; Thiessen & Saffran, 2003; Thiessen & Saffran, 2004). 

However, the extent to which multiple coinciding cues to word boundaries exist in the primary language 

data and the extent to which distinct cues capture complementary information are unclear. Accordingly, a 

central focus of the present study is to determine the extent to which distinct cues reflect complementary 

information about word boundaries by examining the interaction of multiple cues in spontaneous spoken 

language. 
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 In sum, the goals of the present study are to examine the availability and the richness of 

distributional cues to word boundaries in naturally occurring child-directed speech as well as the 

variability in the interaction and strengths of these cues across languages. We approach these questions by 

systematically analyzing the predictive power of a large set of distributional cues to word boundaries 

individually and in combination in child-directed speech across the three languages. Specifically, in a 

series of statistical analyses, we use logistic regression modeling to predict word boundaries on the basis 

of various distributional cues. Our analyses investigate how much information about word boundaries 

could in principle be extracted by learners with no prior knowledge of word boundaries. Our findings 

indicate that distributional cues are a rich source of information about word boundaries across languages 

when the combined contribution of many diverse cues is considered. Although there is overlap in 

information across cues, there is also a significant amount of complementary information available when 

cues are combined. Our results suggest that computational models of segmentation have yet to fully 

utilize the cumulative information available via the array of distributional cues. We also find that cue 

reliability across languages is variable and reflects the phonological structures of the languages. 

Distributional Cues to Word Boundaries in Spontaneous Speech 

 As discussed above, experimental findings demonstrate that infants are capable of relying on a 

variety of distributional cues, alone or in combination, for word segmentation. Most of these results have 

been obtained on the basis of exposure to artificial languages carefully constructed to contain the 

particular regularities in question while controlling for other factors. The complementary questions 

investigated in the present work are whether the sorts of regularities used in these experiments are present 

in spontaneous speech to young children and how they vary and interact across languages.  

One way to measure the availability of various sources of information in naturally occurring 

child-directed speech is by applying computational models of word segmentation to such data. Although 

there is a large literature on computational approaches to word segmentation, modeling work can be 

divided into two main approaches: boundary-finding models that focus on identifying word boundaries, 

and lexicon-building models that involve the learning of a lexicon of words together with the 
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segmentation of the input corpus (for similar discussion, see Daland & Pierrehumbert, 2011; Frank, 

Goldwater, Griffiths & Tenenbaum, 2010). There are many important differences between models within 

these broad classes (for extensive discussion see e.g. Brent, 1999; Goldwater et al., 2009). However, the 

distinction between these approaches most relevant to the present goals is that boundary-finding 

approaches rely exclusively on distributional cues similar to those explored in behavioral studies, while 

lexicon-building approaches necessarily rely on additional information and biases associated with 

extracting a lexicon from the speech input. As a result, performance of existing boundary-finding models 

provides the best estimate of the information content of distributional cues because performance of 

lexicon-building models reflects additional learner biases and information sources. 

The poor performance of certain boundary-finding models has lead some authors to conclude that 

distributional cues are an unreliable source of information about word boundaries and that learning must 

rely on principles of Universal Grammar (Gambell & Yang, 2006; Yang, 2004). Specifically, Yang and 

Gambell tested the segmentation strategy suggested by Saffran et al. (1996), placing word boundaries 

between adjacent syllables whose transitional probabilities were lower than the transitional probabilities 

of surrounding syllable transitions. When applied to transcribed English child-directed speech, this 

strategy correctly identified just 23 percent of the target words and just 42 percent of the words predicted 

by the model were actual words1. Some models relying on statistical regularities perform better, 

especially when they rely on multiple distributional cues (Aslin, Woodward, LaMendola & Bever, 1996; 

Cairns, Shillcock, Chater & Levy, 1997; Christiansen, Allen & Seidenberg, 1998; Daland & 

Pierrehumbert, 2011; Swingley, 2005; Xanthos, 2004). For example, Christiansen et al. (1998) found that 

a simple recurrent network (Elman, 1990) relying on several kinds of sequential statistics correctly 

identified about 43 percent of the target words and posited actual words about 45 percent of the time. 

Brent (1999) tested several boundary-finding strategies using distributional cues and found somewhat 

                                                        
1 The performance measures reported in this section correspond to precision (accuracy) and recall (completeness), 

respectively, (or their harmonic mean, f-score) calculated over word tokens; these measures are defined in (2) below. 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 7 

higher performance, in the range of 45 to 55 percent, on spontaneous child-directed speech in English.  

 However, even this performance does not rival the performance of state-of-the-art lexicon-

building segmentation models (Batchelder, 2002; Blanchard et al., 2010; Brent, 1999; Fleck, 2008; 

Goldwater et al., 2009; Johnson, 2008b; Johnson & Goldwater, 2009; Liang & Klein, 2009; Monaghan & 

Christiansen, 2010; Venkataraman, 2001). Testing on the same corpus as Brent (1999), Johnson and 

Goldwater (2009) report the highest unsupervised segmentation performance to date (around 88). Earlier 

segmentation results relying on similar generative models also perform well above the distributional 

models discussed above (Batchelder, 2002; Blanchard et al., 2010; Brent, 1999; Goldwater et al., 2009; 

Johnson, 2008b; Liang & Klein, 2009; Venkataraman, 2001). For example, the algorithm proposed by 

Brent (1999) correctly identifies about 69 percent of the target words and predicts actual words about 67 

percent of the time (Goldwater et al., 2009). As already mentioned, these models all involve the learning 

of a lexicon of words together with the segmentation of the input corpus2. From a computational 

perspective, this lexicon-building approach has clear advantages over purely boundary-finding 

approaches relying on distributional cues. A lexicon-building learner is able to rely directly on the 

regularities created by the concatenations of a fixed number of strings (words) in order to extract those 

strings that recur most regularly and are most likely to be words. Also, as the learner’s lexicon grows, the 

learner can rely increasingly on lexical knowledge in segmenting novel utterances, resulting in improved 

segmentation over time. However, it is unclear how much of the lexicon-building models’ performance 

can be attributed to distributional cues. While these models certainly rely on distributional regularities to 

identify viable lexical entries (some more directly than others), the lexicon-building process is also guided 

by other biases, especially preferences for a lexicon with fewer or shorter words. The lexicon-building 

strategy and additional biases of the learner thus obscure the relative importance of distributional cues. 

Indeed, the significant difference in performance between the earliest lexicon-building approaches and the 

                                                        
2 The model proposed by Fleck (2008) relies on learning extended sequences of word endings and beginnings rather 

than full-fledged words. 
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best boundary-finding approaches suggests that it is lexical knowledge, along with the corresponding 

learning biases, that is responsible for the performance gain. In sum, despite the success of lexicon-

building models, the additional information employed by these learners makes it difficult to evaluate the 

relative contribution of distributional cues to their performance. 

Thus, prior computational modeling work raises questions about the availability and effectiveness 

of distributional cues to word boundaries in spontaneous child-directed speech. Comparing the 

performance of existing computational models of word segmentation reveals that models relying 

primarily on distributional cues perform poorly compared to state-of-the-art segmentation models, which 

do not rely primarily on distributional cues. Analyses of the information content of distributional cues 

employing supervised techniques yield higher performance than the boundary-finding models discussed 

above. For example, supervised performance for one kind of distributional cue (the diphone probability, 

probability of a word boundary falling between two phonemes) on child-directed speech in English is 

around 70% (Christiansen, Onnis & Hockema, 2009; Daland & Pierrehumbert, 2011; Hockema, 2006; see 

also Cairns et al., 1997). See Daland & Pierrehumbert (2011) for an unsupervised model based on 

diphone probabilities. Performance of supervised models with access to word boundaries during learning 

provides an upper bound on the model’s performance. So while these results suggest unsupervised 

distributional learners may yet be able to extract more information from distributional cues, this upper 

bound for distributional cues based on diphone probabilities is still substantially lower than performance 

of (unsupervised) state-of-the-art lexicon-building models. 

Despite this clear pattern of results, there are a number of reasons to suspect that existing models 

do not reflect the full potential of distributional sources of information. First, the experimental results 

reviewed above have shown that infants are sensitive to a rich set of distributional cues at various levels 

of linguistic structure, yet many models, including the supervised analyses of the input discussed above, 

have investigated the segmentation capacities of individual cues. Boundary-predicting models that do rely 

on multiple distributional cues perform better than similar models relying on single cues  (Aslin et al., 

1996; Christiansen et al., 1998; Swingley, 2005; Xanthos, 2004), suggesting that multiple cues can 
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combine productively to provide additional information. However, even these results do not necessarily 

represent the full potential of distributional information because, like all formal models of acquisition, 

these models must make specific assumptions about how cues are calculated and used by the learner. 

Also, these models consider at most a handful of distributional cues so it is possible that incorporating a 

richer set of cues or combining cues differently could provide more information. Furthermore, while 

state-of-the-art models perform very well on English, performance of the same models on child-directed 

speech in other languages is less impressive. For example, performance of several state-of-the-art models 

on child directed speech in Sesotho is between 40 and 55%  (Blanchard et al., 2010; Johnson, 2008a). 

Thus, information sources that work well in English are not as reliable in other languages. Nevertheless, 

children do learn to segment successfully in other languages, which suggests they may be relying on 

additional cues or combinations of cues.  

These considerations motivate the present study, which is a systematic examination of the 

availability of rich distributional cues to word boundaries in spontaneous child-directed speech across 

languages. In contrast to the unsupervised models discussed above, the goal here is not to model the 

process by which children segment speech. Rather, the goal is a complementary one, aiming to estimate 

how much information about word boundaries can in principle be extracted from the speech signal using 

distributional cues alone. In this respect, the approach pursued here provides a more direct measure of the 

reliability of distributional cues: it does not presuppose a particular segmentation strategy but instead 

relies on standard statistical techniques to identify the best way to extract information from each cue (or 

combination thereof). As a result, in addition to addressing the theoretical debate concerning the 

availability of distributional cues in the signal, our analyses also examine how a learner could combine 

distributional cues in order to capture maximal information, identifying avenues for further modeling 

work. Thus, our approach is comparable to the supervised analyses discussed above, except our primary 

focus is on the information content of multiple cues and how their strengths and interactions vary across 

languages. Our approach is to consider a large and varied array of possible distributional cues and let the 

fitting process select the best way of using the cues in each language in order to determine their potential.  
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 The remainder of the paper is organized as follows. The following section introduces our basic 

methodology and data, including the use of logistic regression for evaluating the informativeness of cues 

(and cue combinations) for word segmentation. We then present the set of distributional cues we 

investigate. Next, we present a series of four statistical analyses examining this set of distributional cues. 

Finally, we present general discussion and conclusions. 

General Method 

 This section presents an overview of the methodology and describes the data and its transcription. 

Evaluating Distributional Cues Using Logistic Regression 

 The analyses discussed below rely on logistic regression to evaluate the capacities of a variety of 

distributional cues, individually and in combination, in predicting word boundaries. Logistic regression is 

a standard statistical approach for binary classification (see e.g. Hastie, Tibshirani & Friedman, 2009). It 

is a generalized linear model that is used to predict the probability of some event Y in terms of the logistic 

of the weighted sum of independent variables Xi, as shown in (1). 

(1)   Logistic Regression Curve: 

! 

p(Y ) =
1

1+ e"(# 0 +#1X1 +# 2X 2 +...+# kX k )
 

The coefficients βi of the model are fitted so as to maximize data likelihood. All the regressions presented 

here are performed using the statistical computing package R (R Development Core Team, 2008). 

 Each position between consecutive phonemes in a transcribed corpus of speech either 

corresponds to a word boundary or not. It is possible to use this binary variable as the dependent variable 

in a logistic regression model in order to evaluate the capacity of various independent variables at 

predicting word boundaries. In the present study the independent variables are distributional cues 

calculated at the corresponding positions in the corpus. For instance, in one of the analyses we examine a 

logistic regression model that predicts the probability of a word boundary at each position in the corpus 

based on the bigram transitional probabilities between the two phonemes on either side of that position. 

Given the bigram transitional probabilities for all the positions in the corpus and the binary vector that 

indicates for each position whether it is a boundary or not, logistic regression maps the values of the 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 11 

bigram statistic to a probability of a boundary occurring in a way that best fits the data. In this case, low 

bigram transitional probabilities get mapped to high likelihoods of boundary occurrence since boundaries 

are more likely where the two phonemes on either side of the position are unlikely to occur together in 

connected speech. A major advantage of logistic regression, however, is that it straightforwardly extends 

to the case when there are multiple distributional cues. In this case, the fitting process determines each 

cue’s association with word boundaries (positive or negative) and the relative weight each of the 

distributional cues should receive to best fit the data. 

Evaluating Segmentation Performance 

 A fitted logistic regression model can be analyzed in various ways in order to determine how 

much information the independent variables capture. Our primary objective in the present work is to 

quantify the predictive content of different cues in such a way that their predictiveness can be compared 

across cues and languages. A secondary consideration is using a meaningful measure that can be related 

to previous work. We are able to meet both these goals by using the fitted regression models to predict 

word boundaries and evaluating the goodness of the resulting predictions. Specifically, in the analyses 

below we use fitted logistic regression models to predict word boundaries given some threshold of 

probability, and then we evaluate the resulting predictions using the standard f-score measure, which 

provides a measure of a model’s ability to differentiate between boundaries and non-boundaries. 

 F-score is a standard measure used for evaluating performance of computational models, and it 

results in a value between 0 and 1, often expressed as a percentage. It is the harmonic mean of precision, 

which penalizes false positives and recall, which penalizes false negatives. Precision and recall are also 

known as accuracy and completeness, respectively. The three measures are defined below in (2). 

(2)  Evaluation Metrics 

a. 

! 

precision =
# true positives

# true positives + # false positives
 

b. 

! 

recall =
# true positives

# true positives + # false negatives
 

c. 

! 

f " score =
2* precision * recall
precision + recall

 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 12 

 The f-scores of fitted regression models can be used to compare the predictiveness of 

distributional cues and their combinations within and across languages. They can also be compared to the 

performance of existing computational models of word segmentation. To facilitate comparison with the 

modeling work reviewed above, we report f-scores calculated over whole word tokens. This means a true 

positive corresponds to the correct segmentation of an entire word and is counted only when both word 

boundaries are correctly identified and no spurious boundaries are posited word-internally. 

 Before continuing, it is important to understand several properties of these logistic regression 

analyses. As shown above in (1), regression modeling assumes that cues combine additively via linear 

combination. Combination of cues by weighted sum is a simple and powerful way to model interactions, 

but it does mean that our analyses cannot extract information that requires more complex cue interactions. 

Thus, it is important to keep in mind that our analyses may still underestimate the information content of 

distributional cues. Since we are interested in the potential predictiveness of distributional cues infants 

could readily extract from connected speech, the cues themselves are calculated from transcriptions 

without word boundaries. However, in order to evaluate the predictiveness of a cue or cue combination, 

the logistic regression models in the first three analyses are fitted using word boundaries. This approach 

thus provides an estimate of the potential information content of distributional cues, estimating an upper-

bound for segmentation based on a linear combination of distributional cues. It measures how much 

information about word boundaries could in principle be extracted by such a distributional learner. In 

Analysis 4, we show how weighting of cues could be accomplished without access to word boundaries. 

The Data and Participants 

 The analyses discussed below are conducted on transcribed, child-directed speech in three 

languages: English, Polish, and Turkish. These three languages were chosen because they differ along a 

number of dimensions of potential relevance to word segmentation. A major goal of this work is to 

examine differences in the availability and strength of distributional cues to word boundaries across 

languages, and the differences between these languages enable an evaluation of the effect that such 

differences make for the effectiveness of distributional cues to word boundaries in word segmentation.  
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 The three languages represent a range of morphological richness and syllable complexity. While 

English is rather impoverished morphologically, Turkish is an agglutinative language, with complex 

words formed via the combination of many, easily separable morphemes, each conveying particular 

meaning or information. Polish is a highly inflected language with a complex system of inflectional 

morphology that marks words’ grammatical functions with fused morphemes expressing multiple pieces 

of information. Since both morphological boundaries and word boundaries influence phonotactics, it is 

possible that richer morphology may influence the effectiveness of distributional cues to word 

boundaries. With respect to syllable complexity, Turkish syllables are the simplest, followed by English, 

then by Polish. Syllable complexity corresponds to more permissive consonant cluster combinatorics, 

which may also influence the effectiveness of distributional cues to word boundaries. The languages also 

vary with respect to the regularity of word-level stress, which is highly regular in Polish but less so in the 

other two languages. Since experimental work has shown that stress patterns guide infants’ segmentation 

strategies (Jusczyk et al., 1999; Mattys et al., 1999; Saffran et al., 1996), it is useful to examine the 

effectiveness of cues based on sequential stress regularities in languages with different degrees of stress 

regularity. Finally, the languages differ with respect to the presence of certain phonological dependencies. 

Specifically, Polish and Turkish exhibit voicing assimilation and vowel harmony, respectively, which are 

absent from English. Polish voicing assimilation affects sequences of obstruent consonants (consonants 

formed by obstructing airflow, such as [s z t d p b]), and causes these sequences to be pronounced with 

consistent voicing throughout, even when these sequences fall across word boundaries (Gussmann, 1992). 

The domain of Turkish vowel harmony, in contrast, is the word, and causes suffixes to alternate such that 

they match root vowels in frontness and rounding (Clements & Sezer, 1982). These dependencies may 

likewise influence the predictiveness of different distributional cues to word boundaries. 

 All the child-directed speech is extracted from corpora that are available from the CHILDES 

database in the form of orthographic transcripts (MacWhinney & Snow, 1985). The English data is 

extracted from the Bernstein-Ratner corpus (Bernstein-Ratner, 1987) and consists of spontaneous speech 

to nine children, ages ranging between 13 and 23 months. Transcriptions of the Bernstein-Ratner corpus 
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have been used for the evaluation of a number of segmentation models (Batchelder, 2002; Bernstein-

Ratner, 1987; Blanchard et al., 2010; Brent, 1999; Brent & Cartwright, 1996; Goldwater et al., 2009; 

Johnson, 2008b; Johnson & Goldwater, 2009; Venkataraman, 2001), and we use it for consistency with 

previous work. The Turkish data (Slobin, 1982) consists of spontaneous speech to 33 children from 24 

months to 56 months of age. Finally, the Polish data (Weist, Wysocka, Witkowska-Stadnik, Buczowska 

& Konieczna, 1984) consists of spontaneous speech to four children aged 19 months to 38 months. These 

corpora cover the youngest age ranges available for child-directed speech in Polish and Turkish, but the 

age ranges are nonetheless somewhat higher than for the English data. It is not clear what effects the 

difference in age ranges may have on the effectiveness of distributional cues to word boundaries, and this 

should be investigated in further work. Regardless of the age ranges, the data from each language reflects 

the phonological structure and general properties of spontaneous, child-directed speech in that language. 

Data Transcription and Coding 

 The orthographic transcripts of child-directed speech were phonemically transcribed in order to 

arrive at an approximation of the speech signal to which the children were exposed. All phonemic 

transcripts were created automatically by replacing each orthographic word with its standard 

pronunciation, as described below. We aimed to be as consistent as possible in the transcription choices 

across the languages – for all languages we represented all segments, including complex segments like 

diphthongs, long vowels, and affricates, using single characters. Our automatic transcription methods 

were determined by the availability of phonetic dictionaries and similar resources for each of the 

languages. For all languages we used the orthographic word boundaries to represent word boundaries in 

the phonemic transcripts and the utterances coded in the transcriptions to identify utterance boundaries. 

  Brent (1999) created phonemic transcriptions of the Bernstein-Ratner English corpus, which was 

used to evaluate several segmentation models (Batchelder, 2002; Bernstein-Ratner, 1987; Blanchard et 

al., 2010; Brent, 1999; Brent & Cartwright, 1996; Goldwater et al., 2009; Johnson, 2008b; Johnson & 

Goldwater, 2009; Venkataraman, 2001). Brent removed disfluencies, nonwords, and utterances not 

directed at the children. All remaining words were broadly transcribed using a phonemic dictionary. We 
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were unable to use Brent’s transcriptions directly because we are interested in examining word level 

stress as a distributional cue, and Brent’s transcriptions do not include stress. To facilitate comparison 

with previous work, we wanted to remain as close as possible to Brent’s transcriptions, however. We 

therefore used his orthographic transcripts but transcribed the words using the English phonetic 

transcriptions in CELEX, which encode stress (Baayen, Piepenbrock & Van Rijn, 1993). We discarded 

utterances that included words not found in CELEX, resulting in a loss of less than three percent of the 

utterances. Thus, other than the transcription differences, our English corpus is very close to the corpus 

used in previous work. The various characteristics of the resulting English corpus are summarized in the 

second column of Table 1. 

 For the Polish data, the utterances spoken by parents and grandparents were extracted and 

processed further (Weist orthographic transcriptions only include utterances directed at the children). We 

discarded utterances containing nonwords or disfluencies (marked with ‘@’ in the transcriptions) as well 

as incomplete or interrupted utterances (marked with ‘+’ in the transcriptions). The resulting utterances 

were automatically phonemicized, which can be reliably done based on the highly phonemic orthography. 

Each grapheme or digraph was translated into the phoneme corresponding to its standard pronunciation in 

the given context. Additionally, the phonemic transcripts were processed further to implement final 

devoicing and regressive voicing assimilation (Gussmann, 1992). Specifically, the voicing of all clusters 

of consecutive obstruent consonants within utterances was made to match the voicing of the final 

consonant of the cluster, and any word-final obstruents or clusters not followed by a consonant in the next 

word were made voiceless.  As discussed above, this feature of Polish phonology may influence the 

effectiveness of distributional cues to word boundaries since voicing assimilation applies both within and 

across word boundaries. Finally, we were also interested in investigating stress as a cue to word 

boundaries. Polish lexical stress is very regular so we assigned lexical stress automatically by placing 

primary stress on the penultimate syllable (ultimate syllable in the case of a monosyllabic word) and 

placing secondary stresses left-to-right starting with the first syllable  (Rubach & Booij, 1985). This 

automatic stress assignment misses some exceptional stress patterns; however, due to its regularity, it can 
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provide an upper-bound on the effectiveness of stress as a cue to word boundaries in languages, such as 

Polish, with predominantly regular stress. Characteristics of the resulting corpus are summarized in the 

third column of Table 1. 

 In the Turkish corpus there were very few utterances (about 400) spoken by the primary 

caretakers; most of the child-directed speech was spoken by the experimenters. Therefore for this data, we 

extracted the utterances spoken by both caretakers and experimenters for further processing. These 

orthographically transcribed utterances were automatically phonemicized using a full-scale finite-state 

implementation of Turkish phonology and morphology developed by Oflazer & Inkelas (2006). Their 

system provides a pronunciation of each word based on the SAMPA standard and relies on a full 

morphological analysis, which is essential for the correct placement of primary stress. We replaced the 

SAMPA multi-character transcriptions of long vowels and affricates with (unique) single characters in 

order to be consistent with the other two languages. The system does not encode secondary stress, the 

existence of which is controversial in Turkish (Oflazer & Inkelas, 2006). Any utterances containing a 

word that could not be phonemicized by the finite-state system were discarded, resulting in a loss of 27.5 

percent of the utterances. These utterances were eliminated largely because they contained nonwords, 

disfluencies, or misspellings. However, this still left a slightly larger set of utterances than either the 

English or Polish data, as is shown in Table 1.  

 As shown in Table 1, the corpora are comparable with respect to the number of utterances and 

word tokens they contain. A number of interesting differences of potential significance to word 

segmentation performance across the languages are notable. While the number of word tokens across 

languages is comparable, the number of word types varies dramatically. This likely reflects the 

morphological complexity of the language, with more types corresponding to richer morphology. Also, 

while the three languages have a similar average number of words per utterance, the word lengths 

themselves vary, which may also reflect morphological complexity to some extent. Finally, the number of 

distinct cluster types (word-internal sequences of consonants), is an indicator of syllable complexity, with 

more types reflecting a more permissive system of consonant cluster phonotactics. 
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Distributional Cues and Parameters 

 In the analyses below we examine a large set of distributional cues. In order to facilitate 

discussion and analysis, the cues are categorized according to their placement (setting) along a number of 

dimensions (parameters). Each individual cue reflects a combination of settings of these parameters. 

Although this set of cues is by no means an exhaustive list of possible distributional cues to word 

boundaries, we have included cues that vary across multiple dimensions in order to capture a range of 

distributional information. Specifically, we examine cues that vary between several levels of 

representation (level), several different kinds of statistics (statistic), and forward or backward calculation 

of the statistics (direction), where applicable. The final parameter determines whether the actual value of 

the statistic is used or whether the value is defined in relation to those that surround it in the transcript 

(relation). For each of these parameters, we consider a range of settings, guided by the kinds of 

distributional cues that have been tested in previous experimental and computational studies. A summary 

with examples for each of the cue parameter settings can be found in Table 2. 

 The first parameter according to which we organize the set of cues refers to the level of 

representation over which statistics are calculated. In prior experimental and computational work, 

statistical dependencies have been calculated at various levels, including the phoneme (see Mattys & 

Jusczyk (2001) and  Brent (1999) for examples). At the phoneme (P) level, cues are simply calculated 

over the entire sequence of phoneme and utterance boundary symbols, and the values of the statistics are 

then associated with each position. Distributional cues to word boundaries can also be found across non-

adjacent vowels and non-adjacent consonants  (Newport & Aslin, 2004). We therefore include both 

consonant (C) and vowel (V) levels in our set. Vowel level cues are calculated on a version of the corpus 

with all consonants removed. In order to associate cues that reference only vowels with all positions in the 

original corpus, we simply repeat the same value for all positions between two vowels. For example, in a 

sequence such as V1C1C2C3V2, the vowel-level bigram probability of V2 given V1 would be associated 

with each of the four positions between V1 and V2.  Thus, vowel level cues alone are incapable of 
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distinguishing among the positions between two consecutive vowels, but they may still distinguish among 

positions in different vocalic contexts. Such coarse-grained cues may provide valuable information when 

considered in conjunction with finer-grained cues. The calculation of consonant level cues is analogous 

and involves repeating the value of the statistic across any intervening vowels. We focus our investigation 

on cues that could be extracted from the input data without prior language-specific knowledge. Therefore, 

we do not consider a syllable level since the relationship between syllable boundaries and word 

boundaries must be learned on a language-particular basis. Nonetheless, the consonant and vowel level 

cues capture some of the same sorts of long-distance dependencies that syllable level cues would. In 

particular, vowel-to-vowel dependencies are syllable-to-syllable dependencies that reference just the 

nuclei of syllables. We also examine stress (S) level cues, which are calculated just like vowel level cues 

except that calculations are made over degrees of stress (0, 1, or 2 in English and Polish, and 0 or 1 in 

Turkish) rather than distinct vowels. This allows statistical regularities in relative stress to be used in a 

language-independent fashion, just like statistical regularities referencing other units of sound structure. 

 Another parameter according to which we organize the set of cues refers to the kind of statistic 

being calculated. Although the most prominent statistics in the experimental literature are bigram 

transitional probabilities, both trigram transitional probabilities  (Aslin et al., 1996; Blanchard et al., 2010; 

Cairns et al., 1997) and mutual information (Brent 1999) have been explored in the computational 

literature. All three measures are defined in (3): 

(3)  Statistics 

a. Bigram: 

! 

Pr(y | x) = Pr(xy) Pr(x)  

b. Trigram: 

! 

Pr(z | xy) = Pr(xyz) Pr(xy) 

c. Mutual Information: 

! 

MI(x,y) = log Pr(x,y) Pr(x)Pr(y)( ) 

Since we define cues at various levels, we use the term ‘unit’ to refer to the individual elements, such as 

phonemes or stress levels, over which cues are calculated. Trigram transitional probabilities measure the 

probability of a unit given the two preceding elements and therefore capture somewhat longer distance 

statistical relationships, while mutual information provides a symmetric measure of the co-dependence 
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between two adjacent elements. We calculate all statistics using their relative frequency estimates. 

Transitional probabilities can be used in one of two ways for segmentation. One approach is to posit 

boundaries at positions of low probability where adjacent units are not statistically cohesive (Brent, 1999; 

Cairns et al., 1997; Elman, 1990). We call this approach ‘unit-predicting’ since the calculation of the cue 

references the unit following the position in question. Another approach, which we call ‘boundary-

predicting’, posits boundaries at positions where the following symbol is likely to be an utterance 

boundary ‘#’  (Allen & Christiansen, 1996; Aslin et al., 1996; Brent, 1999; Christiansen et al., 1998). We 

explore both of these approaches for bigrams and trigrams. In sum, we examine mutual information (M), 

unit-predicting bigrams (B), boundary-predicting bigrams (#B), unit-predicting trigrams (T), and 

boundary-predicting trigrams (#T). 

 In addition to these four basic levels and five types of statistics, we also define a parameter setting 

that is best understood as a combination of level and statistic type. The combination of consonant level 

and trigram statistics captures some nonadjacent dependencies between consonants, but these statistics 

only capture dependencies up to a fixed distance. In order to capture longer-distance dependencies within 

consonant clusters, we define a setting we refer to as cluster (CL). This setting allows some of the same 

consonant cluster dependencies as captured by syllables to be reflected in our set of cues. The intuition 

behind the cluster setting is that the probability of a boundary occurring at different positions within a 

consonant cluster may depend on the sequence of consonants preceding it and may reflect the 

appropriateness of treating that sequence as a syllable coda. Accordingly, we define one cluster statistic 

(#CL) as the bigram probability of an utterance boundary, given the entire sequence of consonants (up to 

a vowel or another utterance boundary) preceding it3. Like bigrams and trigrams, the cluster statistic 

measures the probability of one unit (here, an utterance boundary), given others. But unlike bigrams and 

trigrams, the length of the unit that predicts the utterance boundary is not fixed. It varies depending upon 

                                                        
3 In our implementation, the cluster statistic distinguishes sequences of consonants following vowels from sequences 

following ‘#’, and thus has access to whether or not a given cluster occurs at the beginning of an utterance. 
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the number of adjacent consonants at a given position. We define a second cluster statistic (#|CL|) as the 

bigram probability of ‘#’ given the length of the preceding cluster, a (small) non-negative integer.  

 Table 2 shows cue examples for two different contexts. Since the cluster settings incorporate a 

level of representation and a type of statistic, they are listed under both parameters and are discussed with 

respect to both parameters throughout the analyses. However, with respect to cue parameter 

combinatorics, clusters do not vary along the level and statistic parameters – they are a fixed combination 

of level and statistic. Thus, there are 22 combinations of settings along the level and statistic parameters: 

two cluster settings plus twenty combinations of the four basic levels and five types of statistics. 

 The next parameter according to which we organize the set of cues refers to the direction in 

which the cues are calculated. Since most of the statistics described above are directional (with the 

exception of mutual information, which is symmetric4), they can be calculated such that the predicted 

element follows the conditioning element(s) in the speech stream (forward: F) or such that the predicted 

element precedes the conditioning element(s) in the speech stream (backward: B). Although the vast 

majority of previous experimental and computational work on segmentation examines forward 

transitional probabilities, many of the statistical dependencies used in the artificial languages are 

consistent with backward transitional probabilities (Pelucchi et al., 2009a; Pelucchi, Hay & Saffran, 

2009b; Perruchet & Desaulty, 2008). We are aware of one prior corpus analysis that examined the 

usefulness of backward transitional probabilities for segmentation (Swingley, 1999). Recently there has 

been a surge of interest in backward transitional probabilities with studies showing that both adults 

(Perruchet & Desaulty, 2008) and infants  (Pelucchi et al., 2009a) are able to segment artificial speech 

using only backward bigrams. Work on adult speech production has also found effects of backward 

                                                        
4 While mutual information is symmetric, we calculate it in both directions because in our implementation Direction 

also controls what is calculated across utterance boundaries. In the forward direction, positions corresponding to 

utterance boundaries are associated with statistics that refer to the final units in the utterance followed by #, while in 

the backward direction utterance boundaries are associated with # followed by the initial units of the utterance.  
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transitional probabilities (see e.g. Bell et al., 2003). We therefore include Direction as a parameter in 

order to examine the relative information content of cues calculated in both directions across languages. 

 Finally, the last parameter we consider refers to the relationship between a cue’s value and the 

values associated with neighboring positions (relation). In addition to examining the predictiveness of the 

value of each statistic at a given position (Curr), as explored in a number of computational studies 

(Cairns et al., 1997; Christiansen et al., 1998; Elman, 1990), we consider several relationships. We 

examine the possibility that the value at the subsequent position is indicative of the current position’s 

likelihood of being a boundary (Next). The intuition behind this manipulation is that neighboring 

positions’ low probability of being a boundary may be predictive of the current position’s high probability 

of being a boundary and vice-versa since words tend to be longer than one phoneme. Following previous 

work, we also examine the predictiveness of ‘peaks’ and ‘dips’ in the statistics relative to the values of the 

surrounding units’ statistics (Adriaans & Kager, 2010; Brent, 1999; Gambell & Yang, 2006; Saffran et 

al., 1996; Yang, 2004). We include one relative cue setting that calculates the difference between the 

current value and the previous value (Diff), and another that calculates a ranking of the current value 

relative to its two neighbors (Rank). The Rank setting permits precisely the kind of segmentation strategy 

suggested by Saffran et al. (1996) to be considered in the analyses below, while the Diff variant provides 

an alternative relational statistic, one that allows a more gradient relational measure.  

 Altogether, we examine 22 combinations of Level and Statistic, 4 settings along the Relation 

dimension, and 2 Directions. This results in 176 distributional cues, as summarized in Table 2.  

Analyses 

 The following sections present four analyses examining the informativeness of the 176 

distributional cues defined above individually and in combination, within and across languages. Analysis 

1 examines the predictiveness of each of the 176 cues individually and compares the cues’ performance 

across languages. Analysis 2 explores the degree to which information from multiple cues can be 

productively integrated by examining segmentation performance relying on successively larger sets of 

cues. In Analysis 3 we investigate whether the set of cue parameter settings defined above can be reduced 
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without affecting segmentation performance. As discussed earlier, these logistic regression analyses use 

word boundaries to find the best way to extract information from these cues. In Analysis 4, we present an 

initial exploration of how such a weighting could be accomplished without access to word boundaries.  

Analysis 1 

 In the first analysis we examine the amount of information contained within individual cues in 

each of the languages, comparing cues across languages and to one another.  

Method 

 For each cue in each language, we fit a regression model, use that regression model to predict 

boundaries in the corpus, and evaluate the f-score of that predicted segmentation. The fitted regression 

model generates a probability of a word boundary at each position in the corpus.  We use this probability 

to categorically decide between boundary or non-boundary. Since our goal is to determine the amount of 

information captured by the cues, we choose the threshold of probability that maximizes the f-score for 

each cue. This method of thresholding captures the amount of information that could in principle be 

extracted from each cue. An alternative method, placing a boundary whenever the regression model 

predicts a boundary with at least 0.5 probability, would underestimate the information content of weak 

cues. This is because the probability of word boundaries is well below 0.5 in all three languages, and the 

curves of many weak cues that nevertheless capture information are very flat, never rising above 0.5. 

 In order to avoid over-fitting of the regression models, we perform two-fold cross-validation. We 

divide the corpus into two halves, use one half to fit the regression model and choose the threshold, and 

then use that regression model and threshold to predict boundaries on the other half. We do this separately 

for each half and then calculate the f-score over the combined segmentations. Furthermore, in order to 

check the robustness of the f-scores, we perform simple bootstrapping on a portion of the cues as 

described below (Efron & Tibshirani, 1993). This involves taking a random sample (the same size as the 

original data) with replacement from the original data, fitting models to data from the sample, and then 

evaluating the resulting models and thresholds on the original data.  

 Also, in order to determine whether the cues contain any information whatsoever, we determine a 
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baseline to which the performance of the cues for each language can be compared. Following  Brent 

(1999), we implemented a baseline that randomly places n word boundaries in each corpus, where n is the 

actual number of word boundaries in that corpus. The baseline thus relies on language-specific 

knowledge, namely the actual proportion of word boundaries, but assigns the locations of these 

boundaries randomly. Due to the randomness, we repeated the random assignment of boundaries 1000 

times for each language to determine the average f-scores of the baseline. The f-scores of this baseline 

calculated over word tokens are 12.2%, 8.5%, and 6.5% for English, Polish, and Turkish, respectively. 

Results 

 Fig. 1 shows the cross-validated f-scores of all the cues in each language (in descending order of 

f-score) as well as the baselines for each language. This makes it easy to see the range of f-scores attained 

within each language and the proportion of cues performing above the threshold. Overall performance in 

English is highest, with the best cues reaching 68.9%. In Polish the f-scores reach 39.3%, and in Turkish 

they reach 39.5%. Thus, the languages show marked differences with respect to the performance of their 

best individual cues, with substantially higher performance in English. The figure also shows, however, 

that there are a substantial number of cues within each language whose cross-validated f-scores fall above 

baseline. Using simple bootstrapping to confirm the robustness of above-baseline performance5, we found 

the number of cues performing above baseline to be 73 in English, 80 in Polish, and 74 in Turkish. Also, 

99 of the cues were above baseline in one or more languages. Thus, a substantial number of cues capture 

important information about word boundaries within and across languages.  

 We also examined cue performance to determine whether cue performance is generally consistent 

across languages, that is, whether the same cues tend to perform well across languages. In general, cue 

performance is consistent across languages. The correlation in f-scores between English and Polish is 

89.3, 78.1 between English and Turkish, and 83.2 between Turkish and Polish. Despite this overall 

                                                        
5 To determine consistency we ran 100 bootstrap samples for all cues within 10% of their baselines (counting only 

those that fell above their baseline on all runs). Cues 10% or more above baseline were also counted as consistent. 
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consistency, there are significant differences in cue performance across languages. For example, the top-

performing cue in English (the rank of the boundary-predicting backwards phoneme-level trigram 

probability) achieves f-scores of only 28.6% in Polish and 20.1% in Turkish.  

 Table 3 provides a more systematic comparison of how the languages vary with respect to which 

cues capture the most information. Table 3 shows f-scores of the highest performing cues for each of the 

parameter settings for each language, making it possible to compare performance of the best individual 

cues across settings and across languages6. This also makes it possible to determine whether there are 

informative cues at each of the parameter settings. Table 3 also shows the results of simple bootstrapping 

for each of these cues, which reveals that the f-scores are robust, with most f-scores varying little across 

the 100 bootstrap samples (standard deviations less than 0.1%). With a few exceptions, the bootstrapping 

thus indicates that f-score differences between the best cues for various parameter settings are 

meaningful. With the exception of vowel-level cues in English, the top cues for each parameter setting 

score above their respective baselines in each language, showing that some information about word 

boundaries is available for each parameter setting across languages. In other words, all the parameter 

settings we consider contain reliable information about word boundaries in at least one language.  

 In addition, Table 3 shows there are notable differences in relative performance across the 

languages. The top cues at the Level parameter show the greatest range of f-scores, indicating that the 

level of representation is crucial for choosing the most informative cues. Furthermore, the languages 

differ with respect to the relative informativeness of cues at the various levels in a way that reflects their 

phonological structures. For example, while vowel level cues are least informative and close to or at 

baseline in English and Polish, they provide reliable information in Turkish. In fact, the 45th best 

individual cue in Turkish is a vowel-level cue in spite of the fact that these cues are at an inherent 

disadvantage due to their inability to distinguish among positions between consecutive vowels. The 

                                                        
6 Our focus is on best-performing cues, but see Table 5 (Appendix) for average f-scores within parameter settings. 

See first author’s website (http://pantheon.yale.edu/~gjs42) for complete results of Analysis 1 & 2. 
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informativeness of vowel level cues in Turkish likely reflects the regularities created by the system of 

vowel harmony in Turkish. Stress level cues, which share the same disadvantage, fare better relative to 

cues in Polish than in the other languages, likely reflecting the regularity of lexical stress in the Polish 

corpus. Also, it is noteworthy that in the language with the largest consonant cluster inventory, Polish, 

cluster level cues are the most informative kinds of cues.  

Discussion 

 These analyses have established several key facts. First, the best performing cues have cross-

validated f-scores of 68.9%, 39.3%, and 39.5% in English, Polish, and Turkish, respectively. These 

figures estimate how much information could in principle be extracted by distributional learners relying 

on individual cues. The results for English confirm the supervised performance discussed above based on 

diphone probabilities and also demonstrate that this level of performance can be achieved with minimal 

reliance on words boundaries. In particular, whereas the supervised diphone approaches fit one parameter 

for each phoneme pair (depending on the number of phonemes, this can be up to 6241 parameters) based 

on statistics calculated from a segmented corpus, in our approach word boundaries are used only to set 

one parameter, the weight of the cue in the regression model - the cues themselves are estimated from an 

unsegmented corpus. The analysis also establishes significantly lower maximal f-scores of around 40% 

for child-directed speech in Polish and Turkish, which to our knowledge have not been examined 

previously. Although our set of 176 cues is by no means exhaustive, these results strongly suggest that 

successful segmentation must involve more than singleton distributional cues. 

 One of the most interesting empirical findings of this analysis is that the top cues in all three 

languages are calculated in the backwards direction. This is notable considering that most previous work, 

both experimental and computational, relies on forward calculation of sequential statistics. As discussed 

earlier, our investigation of backwards statistics parallels recent experimental results showing that humans 

can use backwards bigrams to segment speech (Pelucchi et al., 2009a; Perruchet & Desaulty, 2008). 

There is also related work showing an important role of backwards predictability effects in adult 

production (Bell et al., 2003; Jaeger & Kidd, 2008). Together with these results, our finding that 
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backwards statistics are in fact a highly informative cue to word boundaries across languages motivates 

further examination of infants’ abilities to segment speech based on backwards cues defined at various 

levels of representation. 

A major novel contribution of this analysis, however, is in establishing that there is reliable 

distributional information present across a vast and diverse set of distributional cues across languages. A 

substantial number of cues (99) perform above the baselines in one or more languages, and these high-

performing cues are varied, with reliable distributional cues present at all the parameter settings. These 

results complement experimental findings showing infants’ sensitivities to a wide array of distributional 

regularities. However, our results also highlight the variation in reliability of cues. While the sources of 

information are rich and varied in all languages, the relative informativeness of cues depends on the 

language. These results also indicate that the precise way in which distributional cues are formulated is 

crucial and has major consequences for the amount of information that can be extracted from 

distributional sources in any particular language. They imply that if learners are to make the most of 

distributional sources of information, they will need to be sensitive to the relative reliabilities of different 

cues in order to identify the most reliable cues in the ambient language. 

Analysis 2 

 Analysis 1 showed that information about word boundaries is available in a rich set of 

distributional cues cross-linguistically. However, it is not clear to what extent the information captured by 

distinct cues overlaps. In particular, do different cues contain mutually redundant information or is the 

information content of different cues largely complementary? Analysis 2 investigates this question by 

examining the cumulative information content of multiple cues. 

Method 

 In this analysis, we perform a step-wise multiple logistic regression for each language. This is a 

cumulative procedure that adds cues one-by-one to a multiple regression model until all cues are included 

in the full model. During each iteration the procedure considers each of the unused cues by fitting 

multiple logistic regression models that include each of them plus the accumulated cues that were selected 
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on earlier iterations. It selects and adds the cue that improves likelihood the most to the current model. 

This procedure is not optimal (in the sense that each iteration is not guaranteed to contain the set of cues 

that captures maximal information); however, it provides a good approximation of how the incorporation 

of additional cues affects the cumulative information content. 

 After the addition of each cue, the f-score of the resulting regression model is evaluated using 

two-fold cross validation, as in Analysis 1. That is, a regression model with the current set of cues is fitted 

for each half of the data and used to predict boundaries on the other half of the data. For these boundary 

predictions we simply use a fixed threshold of .5 for all cues7. The f-score is calculated on the basis of the 

predicted segmentations for both halves. Also as in Analysis 1, we confirm the reliability of the f-scores 

by performing simple bootstrapping on the full models incorporating all cues. 

Results 

 The results are summarized in Fig. 2. As cues are added, the f-scores increase dramatically at 

first, then more slowly, and finally plateau. Overall, multiple regressions in each of the languages 

dramatically improve upon the performance of the best individual cues. In English the f-scores increase 

from 68.9% to 90.8%, in Polish from 39.3% to 81.2%, and in Turkish from 39.5% to 78.7%. Validated 

performance based on 100 bootstrap samples indicates that the f-scores of the complete models are robust, 

with average f-scores of 91.6%, 81.7%, 80.9% and standard deviations of 0.12%, 0.11%, and 0.23% for 

English, Polish, and Turkish, respectively8. Furthermore, a large number of cues are needed before the f-

scores of the full models are reached. In English, the plateau is reached after roughly 65 cues, in Polish 

after roughly 115 cues, and in Turkish after roughly 85 cues.   

 Additionally, although the complete results of these multiple regressions are too cumbersome to 
                                                        
7 The multiple regression models quickly yield strong enough predictions to obviate oracle selection of thresholds. 

8 The bootstrap f-scores for multiple regression models (see also results of Analysis 3) are often slightly above the 

cross-validated f-scores. The cross-validation, by splitting the data in half for train and test, provides a stricter 

evaluation because the two sets of data represent speech of different speakers. Slight differences can be expected 

since previous results show variation in performance for different speakers (Monaghan & Christiansen, 2010). 
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present in full, we would like to make several observations. In Analysis 1 we saw that the best vowel 

level cue in Turkish was ranked 45th. In the step-wise multiple regression analysis, however, a vowel level 

cue is the third cue to be added to the model. Thus, after just two cues had been included in the model, a 

vowel level cue was found to contain the most non-redundant additional information. Similarly, in Polish, 

the top stress level cue was ranked 44th individually, but a stress level cue was the second cue to be added 

to the multiple regression model. These results underscore the relative importance of vowel level and 

stress level cues in the Turkish and Polish data, respectively. Perhaps more importantly they illustrate that 

the information content of cues depends crucially on what other information is also available: cues that 

appear weak individually may nonetheless capture substantial non-redundant information. 

 In sum, a large portion of the distributional cues examined here capture distinct, non-redundant 

information. This is evidenced by the dramatic increase in f-score of the full models as compared to top 

performing individual cues and the large number of cues needed to reach the f-score of the full models. 

Further, these analyses show that information content of cues is conditional on availability of information 

from other cues: consideration of the utility of a cue in isolation is a misleading measure of its relative 

contribution in a richer context because strong cues can be largely redundant with other strong cues. 

Discussion 

The main result of this analysis is that the cumulative information content of the set of 

distributional cues is substantial and well beyond the performance of individual cues. Distributional cues 

are not entirely redundant: they can be combined to yield significant gains in information about word 

boundaries. The word token f-score of around 90% for English is above previously reported f-scores 

based on supervised analyses of distributional cues, and shows that in principle there is enough rich 

distributional information for segmentation performance comparable to that of state-of-the-art lexicon-

building approaches. The extent to which this rich source of information can be harnessed without relying 

on an oracle to set the cue weights is an open question, but this result provides reason to be optimistic 

about this possibility. The word token f-scores of around 80% for Polish and Turkish provide even 

stronger evidence for the cumulative information content of distributional cues since these represent an 
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increase from around 40% for individual cues. This dramatic increase is significant because it illustrates 

weaker cues can productively combine to help narrow the gap in performance between languages. This 

suggests that part of the key to explaining how successful segmentation occurs across languages may lie 

in learning strategies that incorporate information from a wide array of distributional cues. It should be 

reiterated that the regression models assume information from multiple cues is combined via weighted 

sum and therefore estimate an upper-bound for learners under this assumption. It is possible that even 

more distributional information could be extracted using more powerful models. 

Analysis 3 

 The results of Analysis 2 also suggest that a large number of cues are needed in order to extract 

all the available distributional information. Analysis 3 addresses this question from another perspective 

by asking whether it is possible to reduce the number of parameter settings without sacrificing 

performance. Analysis 3 also explores how the conditional information content of distributional cues 

varies across languages and how it differs from the unconditional performance examined in Analysis 1. 

Method 

 The analysis presented in this section is a systematic examination of the contribution of various 

parameter settings to overall segmentation performance. In this analysis we use step-wise multiple 

regression performed over the sets of cues associated with each parameter setting. For each parameter, we 

iteratively add in the set of cues (corresponding to a parameter setting) that improves model fit most until 

all parameter settings have been included. For example, for the Level parameter, we consider a series of 

five increasingly richer models to which at each iteration all the cues calculated at a particular level of 

representation are added, until cues from all levels have been included. Every iteration we evaluate the 

performance of the models using two-fold cross validation and perform simple bootstrapping to determine 

the robustness of the resulting f-scores.  

In addition to examining the necessity of parameter settings, this analysis provides a systematic 

evaluation of how information content of cues is conditional on the presence of other cues in the model. It 

investigates how the relative information content of cues in a cumulative model can differ from the 
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relative information content of cues in isolation. It also examines how the conditional information content 

of cues at various parameter settings varies across the three languages. In this analysis we collapse the 

two cluster statistics and refer to then as CL in the tables below. These parameter settings contain fewer 

cues than other settings at the Level and Statistic parameters so this move reduces the inherent 

disadvantage these parameter settings face in these multiple regression analyses. 

Results 

 Table 4 presents the results of the step-wise multiple regressions over sets of cues within 

parameter settings9. F-scores of the full models are repeated from Analysis 2 for convenience, and the 

table also shows the results of 100 bootstrap samples for each of the models10. As with the previous 

analyses, the bootstrapping results indicate that f-scores are robust and vary little across the 100 bootstrap 

samples (all standard deviations are below 0.32%)11. As a result, most of the f-score differences in the 

table can be interpreted as meaningful, with a few exceptions. The models whose f-score ranges overlap 

with the f-score ranges of the simpler models of the previous step are shaded in grey. Specifically, the 

vowel-level cues in English and Polish make little improvement to f-scores, with bootstrap f-scores 

overlapping the f-scores of simpler models without the vowel-level cues. This indicates that vowel-level 

cues do not provide significant improvement in English and Polish. The other case of insubstantial 

improvement is for the Statistic parameter in Polish, for which the f-score ranges for the last two steps 

overlap with the previous steps. The unit-predicting bigrams and mutual information statistics do 

contribute some information in Polish, but the model without these statistics performs nearly as well as 

the full model. In all other cases, however, these results indicate that all remaining parameter settings 

contribute non-redundant information in at least one of the languages. To confirm that the step-wise 

                                                        
9 In doing this analysis, we also evaluated the cumulative information content for the set of cues at each of the 

parameter settings individually. These results are summarized in Table 6 in the Appendix. 

10 Table 7 in the Appendix shows the BIC (Bayes Information Criterion) for each of these models. 

11 For why bootstrap f-scores are sometimes slightly higher than the cross-validated f-scores see fn. 8. 
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regression did not select a sub-optimal set of parameters in the penultimate step, we also considered for 

each parameter setting the model without that parameter setting. These results (not reported) corroborate 

the results in Table 4; none of these models outperformed the penultimate models in the table. Thus, 

while several parameter settings contribute little information in some languages, our results indicate all 

the parameter settings we consider are needed for models in all languages to reach their full potential. 

 Several observations regarding performance of particular settings can be made. Although stress 

level cues were not very informative individually, they are the second group to be added (after phoneme 

level cues) in all languages. This indicates that stress level cues capture the most additional information 

about word boundaries given the information captured at the phoneme level. This result complements 

experimental findings showing that stress cues are important in early word segmentation (Jusczyk et al., 

1999; Mattys et al., 1999; Thiessen & Saffran, 2004) and corroborates prior modeling results showing 

improved segmentation performance after incorporation of stress information (Christiansen et al., 1998; 

Hockema, 2006). Conversely, cluster level cues were among the most informative cues individually, yet 

they are added last or second-to-last in the step-wise regressions. Their addition substantially improves 

performance in Polish, but their late addition nonetheless suggests that the information they capture is 

largely redundant with the information captured by phoneme level cues. Additionally, the first two 

statistics settings in all languages include boundary-predicting transitional probabilities and unit-

predicting transitional probabilities, suggesting that these two kinds of statistics capture a good deal of 

complementary information. Likewise, the first two settings along the Relation dimension added in all 

languages include one absolute (Curr or Next) and one relative cue (Rank), again suggesting that these 

kinds of cues capture different types of information. As in Analysis 2, this step-wise regression shows 

that information content of cues is relative – performance within individual parameter settings is not a 

good predictor of the cumulative information each setting contributes to the full model once other settings 

are factored in. 

Discussion 

This analysis examined the richness of distributional information by investigating whether the set 
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of parameters could be reduced without sacrificing performance. Although Analysis 2 showed that there 

is some redundant information contained within the set of cues as a whole, the results of this section show 

that there is no systematic way to reduce the set of cue parameters without affecting performance in one 

or more languages. This does not mean that some smaller set of cues could not be found to perform as 

well or nearly as well as this set of 176. What it does illustrate, however, is that the interaction of 

information captured by multiple cues is complex and varied across languages. Cues that perform poorly 

in isolation may provide vital information once other sources of information are incorporated. 

Conversely, cues that perform well in isolation may be largely redundant with other highly performing 

cues. Furthermore, the relative importance of particular distributional cues is language-dependent, with 

some cues that capture crucial information in one language providing nearly no improvement in another. 

This suggests that in order to make full use of distributional information, learners must be able to consider 

a diverse set of distributional cues to identify the most reliable combination in the ambient language. 

Analysis 4 

The findings of Analyses 1-3 show that distributional cues are a rich source of information about 

word boundaries across languages when multiple cues are used simultaneously and weighted 

appropriately. However, as Analyses 1-3 illustrate, the interactions among distributional cues are complex 

and varied across languages. If learners are to make full use of this rich information, they must be capable 

of adapting their segmentation strategies in response to the language input in order to determine the 

relative reliability of different cues. In order to evaluate the potential information content of cues, the 

preceding analyses relied on an oracle to set the relative weights of the cues in such a way as to extract 

maximal information. Given these findings, it is not clear, however, to what extent this rich source of 

information can be harnessed by unsupervised learners without access to such an oracle. Although a 

complete answer to this question is beyond the scope of this paper, the analysis described in this section is 

an initial investigation into the utility of rich distributional cues in a fully unsupervised setting.  

Method 

 The method we employ in this analysis is an extension of the methods employed in Analyses 1 – 
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3. Logistic regression is not inherently suited to unsupervised learning, and we emphasize that this 

analysis is a preliminary investigation of the usefulness of these cues in an unsupervised setting and likely 

underestimates their potential. The basic insight is to use distributional cues evaluated at and around 

utterance boundaries to predict word boundaries, an idea that has been explored in a number previous 

studies (Allen & Christiansen, 1996; Aslin et al., 1996; Brent, 1999; Christiansen et al., 1998; Daland & 

Pierrehumbert, 2011; Fleck, 2008). We use all positions corresponding to utterance boundaries as positive 

examples of boundaries for fitting purposes. In order to provide the fitting process with non-boundaries as 

well, we make the simplifying assumption that the positions adjacent to utterance boundaries are non-

boundaries. This assumption is mostly harmless as the proportions of false negatives it assumes are just 

0.021, 0.082, and 0.015, in English, Polish, and Turkish, respectively. Thus, we create new training sets 

for each language that consist of just utterance boundaries and the positions adjacent to them on the left 

and right, labeling these adjacent positions as non-boundaries. 

 These new training sets are much smaller and simpler than the original data, and few cues are 

needed to model these data perfectly. Recall that the cues themselves have access to utterance boundaries 

so the task of predicting them is much simpler than that of predicting the word boundaries. Since we are 

not interested in fitting this data perfectly, but rather want to be able to generalize from these training sets 

to the rest of the data, we select a subset of cues to use for each language using these training sets. 

Specifically, for each language we perform step-wise logistic regression on these new training sets until 

the f-scores reach 100%12. This procedure is not guaranteed to identify the best cues for segmentation, but 

it identifies viable cues capable of distinguishing utterance boundaries from the positions adjacent to 

them, assuming those are non-boundaries. We then examine each of the models considered by the step-

wise regression procedures for their generalization capacities, evaluating them on the original data. 

                                                        
12 Once f-scores reach 100%, there is no basis on which to prefer some cues over others. Furthermore, if additional 

cues were added, there would be no controlling for how the fitting process weighted the various cues, as many 

solutions would be possible, so the contribution of any particular cue could not be guaranteed or controlled. 
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 Once fitted on the new training set, each of the models can be used to generate the probability of 

a boundary for each position in the original data. Since we did not want to assume any language-specific 

information for this analysis, we evaluate and present the predictions of the models for the same range of 

thresholds in all languages. Specifically, for each model we perform separate f-score evaluations at rates 

of boundary prediction ranging between .15 and .40. For example, for a rate of .35 a threshold is selected 

so that the proportion of boundaries predicted equals 35%. We chose this method of thresholding because 

the actual probability thresholds corresponding to these rates are highly arbitrary. 

Results 

 The generalization results for all models considered during the step-wise regressions are shown in 

Fig. 3. For readability, we present the f-scores at thresholds .25, .3, and .35 only – performance at higher 

and lower thresholds was poorer, while performance at intermediate values was similar. Perfect f-scores 

on the new training data were reached within 11 cues for English, 14 cues for Polish, and 3 cues for 

Turkish. The ability of the models to generalize from utterance boundaries is highly dependent on the 

cues used and their weights, and our procedure for automatically choosing cues is not capable of gauging 

generalization ability in any way (it only measures how well the cues distinguish utterance boundaries 

from non-boundaries). Therefore, as cues are added to the models, and the weights for the regressions are 

calculated from scratch, performance on the original data sometimes goes down and then up. 

 The best performance for English (Fig. 3a) is at a threshold of .35 and reaches an f-score of 

77.3% after two cues. The best performance for Polish is 41.2%, which is reached after six cues at a 

threshold of .25 (Fig. 3b). Finally, the best performance for Turkish is 34.4% and is reached after two 

cues at threshold .25 (Fig. 3c). In sum, performance reaches f-scores of 77.3%, 41.2%, and 34.4% in 

English, Polish, and Turkish, respectively. Notably, in each of the languages the highest f-score is reached 

after multiple cues are used, again showing a cumulative effect of multiple distributional cues, this time in 

an unsupervised setting. Performance on English is once again much higher than for the other two 

languages. Since the method employed here relies on generalizing from utterance boundaries to all word 

boundaries, the differences in performance may reflect differences in how representative of word 
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boundaries utterance boundaries are in these languages. We emphasize that this analysis is a preliminary 

exploration; further work employing methods better suited to unsupervised learning is needed to uncover 

the true potential of unsupervised learners to exploit the richness of distributional information. 

Discussion 

 Despite the preliminary nature of this approach, the performance of the resulting models provides 

reason to be optimistic about the prospects of unsupervised learning with rich distributional information. 

As discussed earlier, prior unsupervised segmentation models relying on distributional information alone 

achieved word token f-scores in the range of 45-55% for English child-directed speech. Our unsupervised 

results for English, reaching word token f-scores of 77.3%, are substantially higher than previous models 

relying on distributional cues alone. Indeed, the performance on English rivals that of recent lexicon-

building approaches, which, until Johnson and Goldwater’s 2009 result, achieved word token f-scores in 

the range of 70-80% on English child-directed speech  (Batchelder, 2002; Blanchard et al., 2010; Brent, 

1999; Fleck, 2008; Goldwater et al., 2009; Johnson, 2008b; Venkataraman, 2001). In Polish and Turkish, 

the unsupervised results are less impressive, with less of the potential distributional information in these 

languages (around 80% f-score) captured by these models. As discussed above, the explorations in this 

section are preliminary, and we believe better-suited techniques will be able to extract much more of this 

information. Nonetheless, these results demonstrate that rich distributional cues hold great potential for 

the task of unsupervised word segmentation, a task we hope future work will explore more fully. 

General Discussion 

 This study investigated the reliability and richness of distributional cues to word boundaries in 

spontaneous child-directed speech in English, Polish, and Turkish. Analysis 1 showed that information 

about word boundaries is available in a large and diverse set of distributional cues across languages. It 

also showed for two previously unexplored languages that the reliability of individual cues is not constant 

across languages, with the best singleton cues providing much less information in Turkish and Polish than 

in English. Analyses 2 and 3 focused on the combined information content of multiple cues, showing that 

the cumulative information content from distributional sources is substantial and helps to narrow the 
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performance differences between languages.  These analyses also illustrate that cues that appear weak 

individually may provide substantial complementary information in combination with other cues. All 

three analyses highlight the richness of distributional information and the language differences in the 

relative reliability of cues, showing that the most informative sets of cues vary depending on the 

language. Finally, Analysis 4 provided initial investigations using this rich information in an unsupervised 

setting, providing reason to be optimistic that this rich source of information can be exploited without 

supervision. Together these findings suggest that successful segmentation across languages may depend 

on learners’ abilities to consider a wide range of distributional regularities and to integrate information 

from many distributional cues in a way that reflects their relative reliabilities in the ambient language. 

 Our findings highlighting the role of interacting cues across various levels of representation 

parallel recent developments in theoretical and computational phonology. Optimality Theory, the 

dominant theoretical framework in phonology, formalizes phonological well-formedness in terms of the 

interaction of constraints stated over cross-cutting levels of representation  (Prince & Smolensky, 

1993/2004). Probabilistic extensions of Optimality Theory have been used successfully to model gradient 

phonotactic knowledge relying on an integration of soft constraints referencing various aspects of 

phonological representation (Boersma, 1997; Coetzee & Pater, 2008; Hayes & Londe, 2006; Hayes & 

Wilson, 2008). Some of these formal proposals rely on a model of constraint interaction that is closely 

related to the kind of cue interactions assumed in our logistic regression analyses (Hayes & Wilson, 2008; 

Pater, 2009). Thus, there are close connections between the kind of cue integration explored here and a 

large body of literature on the modeling of gradient phonotactics. Most of the work on gradient 

phonotactics has focused on modeling well-formedness of isolated words; however, there is also exciting 

new work approaching segmentation from this perspective (Adriaans & Kager, 2010). We hope future 

experimental and computational work will further pursue these connections by developing and testing 

models of infant segmentation that build on the joint findings in the segmentation literature and the 

literature on modeling gradient phonotactics via the interaction of multiple cues. 

An open question and one of much recent debate in the phonological literature is how much of 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 37 

the formal machinery should be ascribed to innate endowments and how much can be acquired from the 

available language data. The traditional assumption in generative linguistics is that the constraints and 

representations over which they are calculated are innately available to the learner. In an influential paper, 

Hayes & Wilson (2008) explore the feasibility of learning the constraints and their weights from the 

language input. They are able to achieve successful modeling of gradient well-formedness across input 

data from several languages only when the models are provided with access to phonological features, 

metrical structure, and representations allowing direct computation over phoneme sequences within 

natural classes (tiers), similar to our vowel and consonant levels. The ways in which we’ve calculated 

cues across different levels of representation relies on access to certain aspects of phonological 

representation. For example, in order to calculate the vowel and consonant level cues, the model must 

have the ability to differentiate vowels from consonants and to construct representations that reference 

their sequences separately. Thus, the regression models are certainly not entirely linguistically ignorant. 

At the same time, as Hayes and Wilson discuss, there is a distinction to be made between a genetic 

endowment that can access certain representations and perform certain calculations over these 

representations and an endowment that includes a set of prespecified constraints or principles. To give a 

concrete example, our simulations assume learners can identify vowels and make calculations over them 

in order to discover regularities; however, this is qualitatively different from providing learners with 

specific vowel constraints, such as the constraint that each word must contain a vowel (Brent & 

Cartwright, 1996). Our results certainly do not provide a definitive answer to the question of genetic 

endowment, but they do parallel the findings of Hayes and Wilson in showing that access to appropriate 

representations can go a long way. There is still much work to be done in developing cognitively 

motivated models relying on rich distributional information, but our findings indicate there is a substantial 

amount of information available in the signal. Therefore, our results do not support the conclusion (contra 

Yang, 2004) that distributional cues provide insufficient information for successful segmentation. 

 Our findings motivate further exploration of the roles of interacting distributional cues in infant 

segmentation as well as computational modeling. One consistent finding of the analyses above is the 
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complexity of the interactions of distributional cues. This study investigates how cues should combine in 

order to provide maximal information about word boundaries, but it does not address how infants actually 

integrate different distributional cues during language learning. The analyses discussed above show that 

the information content of distributional cues is highly variable both within and across languages. This 

raises the question of how the information content of distributional cues affects infants’ sensitivity to 

them: does infants’ weighting of distributional cues reflect their relative information content in the 

ambient language? Behavioral results from speech perception, visual perception, and sentence processing 

indicate that language users do weight cues according to their reliability (Bejjanki, Clayards, Knill & 

Aslin, 2011; Clayards, Tanenhaus, Aslin & Jacobs, 2008; Ernst & Banks, 2002; Fine & Jaeger, 2011; 

Kleinschmidt & Jaeger, 2011). For example, Ernst & Banks (2002) found that adults combine information 

from visual and haptic cues according to the variability associated with these information sources: cues 

that provide more reliable estimates are weighted more heavily by the subjects. In the segmentation 

domain, there is already important work examining the relative weighting among broad classes of cues  

(Johnson & Jusczyk, 2001; Mattys, 2004; Mattys et al., 1999; Mattys et al., 2005; Morgan & Saffran, 

1995; Thiessen & Saffran, 2003; Weiss et al., 2010). An important avenue for future experimental work is 

determining the relationship between estimates of segmentation cue reliability and cue weighting by 

infants to determine whether infants weight cues according to their information content in the ambient 

language. On the computational side, our results motivate development of segmentation models that 

integrate multiple distributional cues. There is much work in the visual domain on modeling the 

integration of multiple cues with varying degrees of reliability (Jacobs, 2002; Kersten, Mamassian & 

Yuille, 2004). There are also models of phonetic category learning (Bejjanki et al., 2011; Feldman, 

Griffiths & Morgan, 2009; Kleinschmidt & Jaeger, 2011), sentence processing (Fine & Jaeger, 2011), and 

word segmentation  (Adriaans & Kager, 2010; Cairns et al., 1997; Christiansen et al., 1998; Goldwater et 

al., 2009; Johnson, 2008b; Norris & McQueen, 2008) that incorporate multiple statistical information 

sources. Particularly relevant is a recent model by Toscano & McMurray (2010) that learns to combine 

and weight multiple cues to phonetic categories from the distributional information in the input. The 
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approaches to cue integration and weighting formalized in these models are promising avenues for the 

development of an unsupervised model of infant segmentation based on multiple distributional cues.  

Although the focus of this work has been on the information content of rich distributional 

information, we do not mean to suggest that segmentation models or human learners must rely only on 

distributional cues. Indeed, recent work suggests that human learners do not rely exclusively on sequential 

statistics, with experimental evidence suggesting that additional biases associated with lexicon-building 

strategies are at work (Frank, Tily, Arnon & Goldwater, 2010; Giroux & Rey, 2009). However, see 

Daland & Pierrehumbert (2011) for arguments that early segmentation and word-learning are separate 

processes. As discussed earlier, lexicon-building models that make limited use of distributional cues do 

not perform consistently well on all languages. The above experimental results on learner biases together 

with our finding that differences in performance across languages can be narrowed by combining multiple 

weak distributional cues suggest there is much potential for combining the advantages of lexicon-building 

approaches with reliance on rich distributional information. Also, it is important to keep in mind that 

experimental work has shown that infants are capable of using finer-grained acoustic cues not explored in 

the present study, such as coarticulation and allophony (Johnson & Jusczyk, 2001; Jusczyk et al., 1999; 

Thiessen & Saffran, 2004; Weiss et al., 2010). An important question for future work is how the 

information content of these lower level cues varies across languages and whether they can be used to 

further reduce the performance differences between languages. 

Finally, there are several issues and simplifying assumptions that warrant further investigation. 

Together with most previous modeling work on segmentation, we have assumed that the language input is 

represented as a sequence of discrete phonetic symbols. This is a simplification since speech is actually a 

continuous stream with phonetic variation. Indeed, infants seem to solve the phonetic categorization and 

segmentation problems during roughly the same period, suggesting that by the time infants begin 

segmenting they have not yet fully learned to parse the speech stream into discrete phonemes  (Feldman 

et al., 2009). In recent work, Rytting, Brew & Fosler-Lussier (2010) showed that segmentation 

performance is markedly lower on phonetically variable speech as compared to speech transcribed using 
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dictionary methods. Future work must investigate the impact of phonetic variability not only on the 

informativeness of distributional cues investigated in the present work but also on the performance of 

various computational models of word segmentation. In addition, although we have shown that 

combining many weak distributional cues can narrow performance differences between languages, 

performance in English is still substantially higher in our analyses and tends to be higher in English in 

previously reported modeling studies. In addition to exploring lower-level phonetic cues as discussed 

above, it is important first to rule out the possibility that some of the language differences are a result of 

properties of the particular corpora or the transcription conventions. The Brent corpus has become the 

standard corpus for evaluation of segmentation models in English, but a number of the transcription 

choices it assumes are controversial and appear to raise segmentation performance to some degree 

(Blanchard & Heinz, 2008). The effect of using orthographic word boundaries to represent phonological 

word boundaries should also be investigated further as this choice may affect performance differently in 

different languages (Blanchard & Heinz, 2008). Finally, it is not clear what effect the age of the children 

addressed in the corpora has; the non-English corpora have tended to involve older children than the 

English corpora, which may be affecting the segmentation performance.  

 The investigations in this study were motivated by a desire to connect experimental findings on 

infant speech segmentation with computational models of segmentation via statistical analysis of the 

learner’s input. We hope the findings of this work contribute to the development of a more complete 

picture of the process by which infants extract words from fluent speech. 
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Table 1 - Characteristics of Phonemically Transcribed Child-Directed Speech 

 English Polish Turkish 

Tokens    

Utterances 9,498 9,361 10,160 

Words 32,106 34,125 33,492 

Clusters 46,585 66,969 82,899 

Phonemes 94,730 140,138 168,839 

Types    

Words 1,198 5,040 2,516 

Clusters 916 1618 425 

Phonemes 47 38 38 

Average Lengths    

Words per utterance 3.38 3.65 3.30 

Phonemes per utterance 9.97 14.97 16.62 

Phonemes per word 2.95 4.11 5.04 

Phonemes per cluster 1.24 1.23 1.16 
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Table 2 – Cue Parameters & Settings with Examples for two contexts 

Level  Example Combination 

(Lev × Stat ×  Dir ×  Rel) 

[jusi_mi] “you see me” 

 stress: [2 2 1] 

 [hiæsks_mi] “he asks me” 

 stress: [1 2 1] 

P (phoneme) P × T × F ×  Curr Pr( [m] | [si] ) Pr( [m] | [ks] ) 

V (vowel) V × T ×  F × Curr  Pr( [i] | [ui] ) Pr( [i] | [iæ] ) 

C (consonant) C × T × F ×  Curr Pr( [m] | [] ) Pr( [m] | [ks] ) 

S (stress) S × T × F ×  Curr Pr( 1 | 22) Pr( 1 | 12) 

CL (cluster) (CL ×) #CL × F ×  Curr Pr(# | []) Pr(# | [sks]) 

Statistic    

B (bigram) P × B ×  F × Curr Pr( [m] | [i] ) Pr( [m] | [s] ) 

T (trigram) P × T × F ×  Curr Pr( [m] | [si] ) Pr( [m] | [ks] ) 

M (mutual 

information) 

P × M × F × Curr MI( [m], [i] ) MI( [m], [s] ) 

#B (# bigram) P × #B ×  F × Curr Pr(# | [i] ) Pr(# | [s] ) 

#T (# trigram) P × #T × F ×  Curr Pr(# | [si] ) Pr(# | [ks] ) 

#CL (cluster) (CL ×) #CL × F ×  Curr Pr(# | [] ) Pr(# | [sks] ) 

#|CL| (cluster 

length) 

(CL ×) #|CL| ×  F × Curr Pr(# | 0)  Pr(# | 3)  

Direction    

F (forward) P × T × F ×  Curr Pr( [m] | [si] ) Pr( [m] | [ks] ) 

B (backward) P × T × B ×  Curr Pr( [i] | [mi] ) Pr( [s] | [mi] ) 

Relation    

Curr P × B ×  F × Curr Pr( [m] | [i] ) Pr( [m] | [s] ) 

Next P × B ×  F × Next Pr( [i] | [m] ) Pr( [i] | [m] ) 

Diff P × B ×  F × Diff Pr( [i] | [s] ) - Pr( [m] | [i] ) Pr( [s] | [k] ) - Pr( [m] | [s] ) 

Rank P × B ×  F × Rank rank of Pr( [m] | [i] ) vs.  

Pr( [i] | [m] ) & Pr( [i] | [s] ) 

rank of Pr( [m] | [s] ) vs.  

Pr( [s] | [k] ) & Pr( [i] | [m] ) 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 50 

Table 3 – Max Word Token F-scores (Bootstrap µ , σ) of Individual Cues by Parameter Setting 

English Polish Turkish 

Level 

P 68.9 (68.9, 0) CL 39.3 (39.5, 0.02) P 39.5 (39.1, 0.09) 

CL 61.7 (61.5, .35)  P 35.7 (35.7, 0.03) CL 25.1 (25.1, 0) 

C 30.8 (30.8, 0) S 16.5 (16.5, 0) C 14.4 (14.4, 0.13) 

S 17.3 (17.3, 0) C 14.2 (14.2, 0) V 11.6 (11.9, 0.03) 

V 14.5 (9.5, .70)  V 9.7 (9.4, 0.23) S 9.4 (9.4, 0) 

Direction 

B 68.9 (68.9, 0) B 39.3 (39.5, 0.02) B 39.5 (39.1, 0.09) 

F 62.8 (62.8, 0) F 27.9 (27.6, 0.48) F 33.6 (34.1, 0.93) 

Relation 

Rank 68.9 (68.9, 0) Diff 39.3 (39.5, 0.02) Diff 39.5 (39.1, 0.09) 

Diff 67.4 (67.3, 0.13)  Curr 37.8 (37.8, 0.009) Curr 35.6 (35.6, 0.005) 

Curr 61.6 (61.6, 0.11)  Rank 28.6 (28.6, 0) Rank 21.9 (21.9, 0) 

Next 49.3 (49.3, .08)  Next 23.9 (24.1, 0.56) Next 21.6 (21.9, 0.89) 

Statistic 

#T 68.9 (68.9, 0) #CL 39.3 (39.5, 0.02) #T 39.5 (39.1, 0.09) 

#CL 61.7 (61.5, .35)  #T 35.7 (35.7, 0.03) B 33.6 (34.1, 0.93) 

M 56.8 (56.8, 0) T 27.9 (27.6, 0.48) T 33.4 (33.6, 0.42) 

#|CL| 54.0 (54.0, 0) #|CL| 26.9 (26.0, 0.97) M 29.8 (30.1, 0.34) 

#B 48.3 (48.3, 0) #B 25.8 (25.8, 0) #CL 25.1 (25.1, 0) 

T 47.6 (47.6, 0) M 25.5 (25.5, 0) #|CL| 21.0 (21.0, 0) 

B 43.5 (43.5, 0) B 24.2 (24.2, 0) #B 17.8 (17.6, 0.49) 

 

Grey shading indicates parameter settings whose bootstrap f-score range overlaps with the f-score range 

of neighboring cues (shaded light grey). 
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Table 4 – Word Token F-scores of Step-wise Multiple Regressions by Parameter Setting 

English Polish Turkish 

Level 

P 84.6 (84.8, 0.11) P 54.1 (55.2, 0.12) P 59.2 (60.1, 0.32) 

…+S 87.6 (87.8, 0.09) …+S 74.5 (74.9, 0.13) …+S 70.3 (71.1, 0.32) 

…+C 89.9 (90.3, 0.10) …+C 77.9 (78.7, 0.09) …+V 73.8 (75.9, 0.28) 

…+CL 90.7 (91.5, 0.10) …+CL 80.7 (81.5, 0.10) …+C 77.9 (79.4, 0.25) 

…+V  

(FULL) 90.8 (91.6, 0.12) 

…+V  

(FULL) 81.2 (81.7, 0.11) 

…+CL 

(FULL) 78.7 (80.9, 0.23) 

Direction 

B 83.8 (84.4, 0.12) B 75.0 (75.4, 0.18) F 65.2 (66.1, 0.26) 

…+F  

(FULL) 90.8 (91.6, 0.12) 

…+F  

(FULL) 81.2 (81.7, 0.11) 

…+B 

(FULL) 78.7 (80.9, 0.23) 

Relation 

Rank 84.5 (84.9, 0.09) Curr 70.4 (71.4, 0.13) Rank 60.6 (61.0, 0.25) 

…+Next 88.6 (88.9, 0.10) …+Rank 77.0 (77.3, 0.11) …+Curr 72.5 (73.2, 0.23) 

…+Curr 89.9 (90.5 0.10) …+Diff 79.8 (80.1, 0.09) …+Next 75.2 (77.1, 0.24) 

…+Diff 

(FULL) 90.8 (91.6, 0.12)  

…+Next 

(FULL) 81.2 (81.7, 0.11) 

…+Diff 

(FULL) 78.7 (80.9, 0.23) 

Statistic 

#T 78.9 (79.0, 0.09) #T 60.8 (61.4, 0.15) #T 58.9 (58.8, 0.22) 

…+T 85.5 (85.8, 0.09) …+T 71.2 (72.5, 0.13) …+B 69.6 (70.1, 0.23) 

…+#B 87.7 (88.1, 0.11) …+CL 78.6 (79.1, 0.10) …+#B 72.9 (74.0, 0.26) 

…+CL 89.0 (89.4, 0.09) …+#B 80.0 (80.4, 0.12) …+T 75.7 (77.3, 0.23) 

…+B 89.9 (90.5, 0.12) …+B 80.3 (81.1, 0.10) …+M 77.9 (79.4, 0.28) 

…+M  

(FULL) 90.8 (91.6, 0.12) 

…+M  

(FULL) 81.2 (81.7, 0.11) 

…+CL 

(FULL) 78.7 (80.9, 0.23) 

 

Grey shading indicates parameter settings whose bootstrap f-score range overlaps with the f-score range 

of the preceding parameter setting. All settings at the Level parameter correspond to 40 cues, except CL, 

which corresponds to 16. Backward and Forward each correspond to 88 cues. Each of the Relation 

settings corresponds to 44 cues, and each of the Statistic settings corresponds to 32 cues, except CL, 

which corresponds to 16. 
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Fig. 1 – Sorted Word Token F-scores of Individual Cues vs. Baselines 
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Fig. 2 – Word Token F-score Change During Step-Wise Multiple Regression 
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(a) English 

 
(b) Polish 

 
(c) Turkish 
 
Fig. 3 - Unsupervised Word Token F-scores 
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APPENDIX 

Table 5 – Mean Word Token F-scores of Individual Cues Within Parameter Settings 

English Polish Turkish 

Level 

P 38.2 CL 22.5 P 16.9 

CL 41.8 P 20.3 CL 14.2 

C 17.0 S 9.3 C 8.0 

S 10.7 C 10.1 V 6.1 

V 10.4 V 8.4 S 5.1 

Direction 

B 20.4 B 13.0 B 8.5 

F 22.0 F 13.0 F 10.4 

Relation 

Rank 24.8 Diff 13.7 Diff 10.5 

Diff 23.0 Curr 14.0 Curr 11.4 

Curr 21.2 Rank 13.2 Rank 8.5 

Next 15.7 Next 11.0 Next 7.6 

Statistic 

#T 21.9 #CL 24.1 #T 10.0 

#CL 44.5 #T 13.7 B 8.6 

M 19.9 T 11.3 T 9.3 

#|CL| 39.1 #|CL| 21.0 M 9.8 

#B 19.5 #B 11.7 #CL 16.2 

T 17.3 M 12.7 #|CL| 12.2 

B 17.0 B 10.6 #B 7.4 

 



RICHNESS OF DISTRIBUTIONAL CUES TO WORD BOUNDARIES 56 

Table 6 – Word Token F-scores of Multiple Regressions within each Parameter Setting (# cues) 

English Polish Turkish 

FULL MODEL 90.8 FULL MODEL 81.2 FULL MODEL 78.7 

Level 

P (40) 84.6 P (40) 54.1 P (40) 59.2 

CL (16) 63.1 CL (16) 38.7 CL (16) 29.0 

C (40) 44.4 C (40) 34.3 C (40) 26.8 

S (40) 22.7 S (40) 30.3 S (40) 10.8 

V (40) 13.4 V (40) 7.1 V (40) 9.2 

Direction 

B (88) 83.8 B (88) 75.0 F (88) 65.2 

F (88) 83.0 F (88) 68.8 B (88) 61.0 

Relation 

Rank (44) 84.5 Curr (44) 70.4 Rank (44) 60.6 

Curr (44)  82.5 Diff (44) 61.2 Curr (44) 58.4 

Diff (44) 77.3 Rank (44) 60.8 Diff (44) 57.2 

Next (44) 53.7 Next (44) 47.6 Next (44) 39.0 

Statistic 

#T (32) 78.9 #T (32) 60.8 #T (32) 58.9 

#B (32) 65.8 M (32) 46.9 T (32) 50.2 

T (32) 64.5 T (32) 45.4 M (32) 45.7 

CL (16) 63.1 #B (32) 43.1 B (32) 43.5 

M (32) 62.9 B (32) 40.1 #B (32) 31.6 

B (32) 54.3 CL (16) 38.7 CL (16) 29.0 
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Table 7 – BIC of Step-wise Multiple Regressions by Parameter Setting 

English Polish Turkish 

Level 

P 22115.38 P 66412.76 P 59634.58 

…+S 18185.71 …+S 38975.8 …+S 41799.94 

…+C 15167.96 …+C 33177.18 …+V 36330.03 

…+CL 13411.23 …+CL 28624.88 …+C 32648.56 

…+V  

(FULL) 13533.28 

…+V  

(FULL) 28556.92 

…+CL 

(FULL) 30345.13 

Direction 

B 22491.38 B 42290.25 F 49201.49 

…+F  

(FULL) 13533.28 

…+F  

(FULL) 28556.92 

…+B 

(FULL) 30345.13 

Relation 

Rank 23294.7 Curr 45560.94 Rank 56038.09 

…+Next 16893.51 …+Rank 35851.81 …+Curr 39273.54 

…+Curr 14524.8 …+Diff 30997.91 …+Next 34977.52 

…+Diff 

(FULL) 13533.28 

…+Next 

(FULL) 28556.92 

…+Diff 

(FULL) 30345.13 

Statistic 

#T 30032.44 #T 57958.33 #T 63674.5 

…+T 20543.38 …+T 41084.6 …+B 45759.34 

…+#B 17840.77 …+CL 32791.56 …+#B 40300.46 

…+CL 15960.65 …+#B 30726.16 …+T 34990.15 

…+B 15053.84 …+B 29315.51 …+M 32648.56 

…+M  

(FULL) 13533.28 

…+M  

(FULL) 28556.92 

…+CL 

(FULL) 30345.13 

 
The BIC (Bayes Information Criterion) for each of the models in the step-wise multiple regressions in 
Analysis 3. BIC provides a measure of fit with a penalty for complexity. The differences between 
languages are not meaningful, but lower BIC within the same language corresponds to better models for 
that language. These figures confirm the results in Table 4, indicating that, with the exception of the final 
step at the Level parameter in English, the addition of all parameter settings improves performance 


