

Naive Parameter Learning for Optimality Theory - The Hidden Structure Problem*

Gaja Jarosz

Yale University

1. Introduction

This paper introduces a new learning algorithm for Optimality Theory (OT; Prince and
Smolensky 1993/2004) that can cope with structural ambiguity, a kind of hidden
structure. The paper discusses results of simulations with this new algorithm as well as a
random baseline on a large test set with structural ambiguity that has been used to
evaluate several existing learning algorithms.

1.1 Background

There exist a number of provably correct learning algorithms for Optimality Theory and
closely related theories. These include Constraint Demotion (CD; Tesar 1995, et seq.), a
family of algorithms for classic OT. For Harmonic Grammar (Legendre, Miyata and
Smolensky 1990; Smolensky and Legendre 2006) and related theories (e.g. maximum
entropy), there is Stochastic Gradient Ascent (SGA; Soderstrom, Mathis and Smolensky
2006, Jäger 2007). There is also the Gradual Learning Algorithm for Stochastic OT
(GLA; Boersma 1997), which works well in most cases but is known not to be correct in
the general case (see e.g., Pater 2008). The success of these algorithms (and correctness
proofs in the case of CD and SGA) relies on the assumption that learners are provided
with full structural descriptions of the data, including prosodic structure as well as
underlying representations, which are not available to the human learner.

All of the above learning algorithms are error-driven: the learner’s grammar is
updated whenever an error is produced. The update involves comparing the constraint
violations of the learner’s output and the observed output to identify how the rankings or
weightings of constraints should be adjusted in order to increase the harmony or

* The development of this work has benefited by comments from Edward Flemming, Adam
Albright, Paul Smolensky, Colin Wilson, Bruce Hayes, and audiences at NELS 40 and LSA 2010, where
portions of this work were presented. The author would like to thank Bob Frank for particularly helpful
discussion, Joe Pater for sharing the grammar and distribution files for the TS2000 test set, and Paul
Boersma and Bruce Tesar for creating them. Any errors are the sole responsibility of the author.

Gaja Jarosz

likelihood of the observed output relative to the error. Hidden structure poses a challenge
for error-driven learning because it obscures the constraint violations of the observed
output. Structural ambiguity, such as footing and syllabification, obscures the violations
of any constraints that reference that structure whether they assign that structure or
simply depend on it. For example, if the overt form is a tri-syllabic word with medial
stress, there are (at least) two analyses: one with an initial iambic foot and another with a
final trochaic foot. Without the footing, the violations of constraints like TROCHAIC and
IAMBIC are unknown. If underlying representations are unknown, then the violations of
faithfulness constraints for the observed output are likewise unknown. Thus, without the
full structural descriptions, the vector of constraint violations for the observed output
required to calculate the update to the grammar is not apparent from the learning datum.

Within OT, learning without full structural descriptions has been a topic of

ongoing work since at least Tesar (1997a) and Tesar and Smolensky (1998). In order to
apply error-driven learning in the presence of structural ambiguity, Tesar and Smolensky
(1998) proposed Robust Interpretive Parsing (RIP), which provides an educated guess,
based on the current constraint ranking, about the structure of the observed output,
enabling the grammar updates to be calculated in the usual way. Tesar and Smolensky
(2000) presented simulation results for this procedure on a large metrical phonology test
set with structural ambiguity (henceforth referred to as TS2000), which is discussed in
Section 3. They found that this learning procedure learned 60.5% of the languages in the
system correctly when starting from an unranked initial grammar. In subsequent work,
Tesar (1997b, 2004) proposed a procedure, Multi-recursive Constraint Demotion
(MRCD), that keeps track of a (limited) set of viable grammatical hypotheses
simultaneously and is guaranteed to converge on a correct ranking in the presence of
structural ambiguity. Based on simulations with similar metrical phonology systems,
Tesar showed that the number of hypotheses that must be considered during learning is
relatively small and that learning is quite efficient. Nonetheless, MRCD does involve
additional complexity beyond that of standard CD, GLA, and SGA, which maintain just
one grammatical hypothesis at a time. Boersma (2003) and Boersma and Pater (2008)
applied Tesar and Smolensky’s (1998) Robust Interpretive Parsing approach to the GLA
and SGA algorithms. Boersma and Pater (2008) also replicated Tesar and Smolensky’s
simulations with RIP/CD and presented results of simulations with RIP/GLA and
RIP/SGA on the TS2000 test set. Averaged over multiple runs, the algorithms in
Boersma and Pater’s simulations successfully learned between 47% and 89% of the
languages in the system, with RIP/SGA for noisy Harmonic Grammar getting the best
performance. In sum, while a variant of CD that keeps track of multiple hypotheses
simultaneously is guaranteed to find a correct ranking, the performance of RIP/CD,
RIP/GLA, and RIP/SGA, which maintain one grammatical hypothesis at a time, is more
variable, with none of them achieving perfect performance in the presence of structural
ambiguity.

1.2 Overview

The present paper describes a new online learning algorithm, the Naive Pairwise Ranking
Learner (NPRL), an adaptation of Yang’s (2002) Naive Parameter Learning to OT,

Naive Parameter Learning for Optimality Theory

which achieves a 100% success rate on the TS2000 system. Like the earlier algorithms,
NPRL is an online algorithm that processes a single data point at a time. Like RIP/CD,
RIP/GLA, and RIP/SGA, NPRL maintains one grammatical hypothesis at a time. In
contrast to all the earlier algorithms, NPRL sidesteps the issue of structural ambiguity
altogether because its updates do not depend on it. Also, NPRL is not error-driven: it
makes adjustments to the current grammar hypothesis not only when the current
hypothesis results in an error but also when the learner’s hypothesis results in an output
that matches the data. Despite this apparent success, further investigations into the
algorithm’s performance, however, reveal unusual behavior reminiscent of random
search. This motivates investigation into a truly naive learner, random search, which
provides a baseline for performance on this test set. It turns out that the baseline beats the
performance of NPRL (getting 100% accuracy in less time) as well as the performance of
RIP/CD, RIP/GLA, and RIP/SGA on this test set.

The remainder of the paper is structured as follows. Section 2 presents Yang’s

(2002) Naive Parameter Learner and the Naive Pairwise Ranking Learner, its application
to OT. Section 3 presents the simulations with NPRL and experiments with the random
baseline as well as related discussion. Finally, Section 4 discusses the implications of
these findings for the evaluation and development of learning algorithms in OT, and
Section 5 presents conclusions.

2. Naive Pairwise Ranking Learning

The Naive Pairwise Ranking Learner is an adaptation of Yang’s (2002) Naive Parameter
Learning (NPL) to Optimality Theory (see also Pearl 2009 for an application of NPL to
metrical phonology). NPL is designed for a parametric grammatical framework in which
each parameter is associated with a probability distribution over values it can take on.
Given some data, NPL randomly selects a grammar by selecting values of each of the
parameters according to their specified probabilities. If the resulting grammar
successfully generates the data, all parameter values of the selected grammar are
rewarded, and if the grammar does not successfully generate the data, all parameter
values are penalized. Yang discusses a particular update rule called the linear reward-
penalty scheme (Bush and Mosteller 1951; Yang 2002), which rewards and penalizes
values for binary parameters according to the formulas in (1), where i refers to the
iteration. The magnitude of the update is modulated by a learning rate γ, and the updated
probability for the opposing parameter value is simply 1-pi+1 for binary parameters. Thus,
if a selected grammar is successful, all the participating parameter values are rewarded
according to (1)a, and if it is unsuccessful, all participating parameter values are
penalized according to (1)b.

(1) Linear Reward-Penalty Scheme (Bush and Mosteller 1951; Yang 2002)

a. Reward parameter value p: pi+1 = pi + γ(1 - pi)
b. Penalize parameter value p: pi+1 = (1 - γ)pi

Naive Pairwise Ranking Learning, the adaptation of NPL to OT, is made possible

by representing a ranking in terms of a set of binary parameters specifying the relative

Gaja Jarosz

ranking between each pair of constraints. For example, the ranking A » C » B corresponds
to the binary parameter settings of A » B set to 1, A » C set to 1, and B » C set to 0. As in
NPL, each parameter setting is actually associated with a probability. Thus, for each pair
of constraints (a, b), the grammar specifies a probability (whose complement is the
probability associated with (b, a)). This probability specifies for each pair of constraints
the relative preference for one relative ranking over the other and determines how
frequently one relative ranking versus the other will be used when selecting a random
ranking. Specifically, ranking selection proceeds iteratively by selecting a pair of
unranked constraints, selecting their relative rank according to the probability specified
by the grammar, setting any pairwise rankings implied by the newly set relative ranking,
and repeating until all pairwise rankings are set to 1 or 0, corresponding to a total
ranking. Thus, the probabilities associated with each pair of constraints together with this
sampling procedure determine a probability distribution over the set of total rankings.
This grammatical representation and sampling procedure are also discussed by Jarosz
(2009) in the context of maximum likelihood learning of phonology.

Given this way of representing stochastic rankings and of selecting total rankings,

it is straightforward to apply Yang’s algorithm. NPRL processes one overt form at a time
like the OT learning algorithms discussed above. For each overt form, NPRL generates a
random ranking from its current stochastic grammar and uses it to generate an output for
the current data point. If the overt portion of the learner’s output matches the observed
output, all pairwise ranking probabilities corresponding to the selected ranking are
rewarded. If the overt portion of the learner’s output does not match the learning datum,
all pairwise ranking probabilities corresponding to the selected ranking are penalized.
This procedure is summarized in (2).

(2) Naive Pairwise Ranking Learner

a. Sample a data point d
b. Generate a random ranking r using the current parameter settings
c. Produce learner’s output o for d using r
d. If o = d, reward all parameter values in r according to (1)
e. If o ≠ d, penalize all parameter values in r according to (1)

Unlike the earlier OT learning algorithms, NPRL does not attempt to reward or

penalize particular constraints, which is what makes it “naive”. If the ranking results in a
mismatch with the observed data, all the pairwise ranking probabilities corresponding to
that ranking are penalized. For example, if a ranking of A » B » C results in a mismatch,
the parameter values for A » B, B » C, and A » C are decreased. No effort is made to
determine which constraint rankings are to blame for the error. Likewise, if the ranking
yields a match, all pairwise ranking probabilities corresponding to the selected ranking
are rewarded. Thus, NPRL is not error-driven since learning occurs after matches as well
as after errors. As discussed above, structural ambiguity poses a challenge for error-
driven learners since the constraint violations of the observed output are obscured. In
contrast, structural ambiguity poses no special challenge for NPRL because NPRL is
(blissfully) unaware of it. Structure is irrelevant to the calculation of matches and
mismatches, which considers only the overt portions of the outputs. In the realm of stress,

Naive Parameter Learning for Optimality Theory

for example, matches occur whenever the stress contours are identical, irrespective of
what footing was responsible for those stress contours. In other words, NPRL sidesteps
the issue of structural ambiguity entirely because the calculation of the update does not
depend on structure.

3. Simulations
3.1 The Language Data and Experimental Set-up

This section presents the results of a number of simulations, all of which are carried out
on the TS2000 test set developed by Tesar and Smolensky (2000). This test set consists
of 124 constructed languages that can be modeled by the set of 12 metrical structure
constraints shown in (3). Each language is a set of 62 words, which are sequences of light
or heavy syllables (e.g. [L H L]) ranging in length between two and seven syllables. Each
language associates a particular foot structure and stress pattern with each word (e.g. [(L0
H2) L0]), which includes markings for primary stress (1), secondary stress (2), and
unstressed (0). The learner, however, is exposed only to the overt stress patterns (e.g. [L0
H2 L0]) and must infer the ranking of constraints and the footing that underlie these
patterns.

(3) Constraints (Tesar and Smolensky 2000)

FOOTBIN Each foot must be either bimoraic or bisyllabic
PARSE Each syllable must be footed
MAIN-RIGHT Align head foot with right edge of the word
MAIN-LEFT Align head foot with left edge of the word
IAMBIC The final syllable of a foot must be the head
NONFINAL The final syllable of a word must not be footed
WSP Each heavy syllable must be stressed
WORD-FOOT-RIGHT Align right edge of the word with a foot
WORD-FOOT-LEFT Align left edge of the word with a foot
FOOT-NONFINAL A head syllable must not be final in its foot
ALL-FEET-RIGHT Align each foot with right edge of the word
ALL-FEET-LEFT Align each foot with left edge of the word

 Following Boersma and Pater (2008), the learning algorithm was allowed a
maximum of 1,000,000 iterations, where each iteration corresponds to the processing of
one overt form, to learn each language. Learning of a language was deemed successful
when the algorithm converged on a ranking that correctly generated the stress contours
for all words in the language. A finer-grained measure of performance was also
calculated, representing the average accuracy across all the words in a language. In order
to gauge the accuracy over time and of the final-state grammars, the grammars of the
learners were queried every 100 iterations and an accuracy for each word was determined
by randomly sampling from the current grammar 100 times. All NPRL simulations begin
from the same initial state, with all parameters set to 0.5, corresponding to a maximally
unbiased grammar under which all rankings are equally likely.

Gaja Jarosz

3.2 NPRL Simulation Results

Since NPRL is a non-deterministic algorithm, results reported are based on 10 separate
runs for each language. Results are summarized in Figure (4), which compares the
performance of the algorithm for different learning rates ranging between 0.1 and 0.9.
With high learning rates between 0.7 and 0.9, the success rate is 100% − all the languages
were successfully learned on all the runs. Furthermore, learning is (apparently) fast: while
there are 12! (i.e. 479,001,600) different total rankings in this system, the algorithm
converged on a correct ranking after an average of 16,004 iterations (with a learning rate
of 0.8). Notably, the 100% success rate beats the performance of existing learning
algorithms: RIP/CD, RIP/GLA, and RIP/SGA.

As shown in (4), however, the performance of the algorithm varies dramatically
depending on the learning rate. For a learning rate of 0.1, average accuracy falls to just
12.8%, with none of the languages learned correctly in full. Since none of the languages
are ever learned correctly on these runs, all runs continue for the maximum of 1,000,000
iterations. As the low accuracy suggests, the final grammars for these runs are not very
close to correct. In fact, for the runs with low learning rates, no learning seems to occur at
all. The grammars after 1,000,000 iterations closely resemble the initial state grammar,
with nearly all parameters set to values between 0.4 and 0.6. Overall, there is no
consistent net effect of the rewards and punishments for runs with low learning rates.

(4) Performance of NPRL at Different Learning Rates

 What, then, explains the successful learning with higher learning rates? Learning
with such high learning rates is very jumpy. Consider the following scenario. The learner
begins with all parameters set to 0.5. Suppose the learner then samples a data point and a
ranking that results in a match. With a learning rate of 0.7, the successful parameter
values will be updated to 0.85. At this point the previous ranking is very likely to be
selected, and if it is, and if it is successful for the next data point, the parameter values
will be updated to 0.96, which is close to a categorical grammar. If this selected ranking

Naive Parameter Learning for Optimality Theory

is indeed a correct ranking that works for all the data, the learner will likely converge on
the total ranking very quickly. However, if the ranking does not work for all the data, it
will eventually result in a mismatch. After a mismatch, a setting of 0.96 will jump all the
way to 0.29, essentially flipping to the opposite grammar in one iteration. With higher
learning rates, these updates are even more extreme. This jumpiness can be observed by
querying the grammar after each iteration to examine how the average accuracy changes
over time. A plot showing average accuracy over time for a representative run with a
learning rate of 0.7 is shown in (5). If the learning algorithm were gradually moving
toward a correct grammar, this would be reflected in the changes in the average accuracy
over time. On the contrary, the plot reveals that this algorithm is jumping around the
space in an apparently random fashion, getting close to a correct grammar on many
occasions and then jumping back to a grammar no better than where it started.

(5) Average Accuracy over Time for a Sample Run with γ = 0.7

 This jumpy behavior together with the inconsistency of learning at lower learning
rates suggests the possibility that the success of NPRL with high learning rates is simply
an artifact of the extent to which NPRL mimics random search. To explore this
possibility, Section 3.4 discusses simulations with just such a learner, a random baseline.
Before turning to the random baseline, however, the next section examines the relative
contributions of the rewards and punishments to NPRL’s performance.

3.3 NPRL Without Punishment

As the discussion above suggests, NPRL’s naive punishments prevent any gradual
progress: when the learner gets to a grammar that is close to correct but cannot generate
all the data, there will eventually be an error. Even though the grammar is close to
correct, the learner does not capitalize on the progress it has made since the error results
in a punishment that pushes the grammar away into unrelated territory. Indeed, with
respect to gradual learning, a variant of NPRL with reward updates only (no updates after
errors) behaves more sensibly. Figure (6) shows average accuracy calculated after each

Gaja Jarosz

iteration for a sample run of NPRL with reward updates only. It is clear from this
behavior that reward updates result in a gradual accumulation of grammatical
preferences, resulting in gradual learning.

(6) Accuracy over Time for a Successful Run of Reward Only NPRL (γ = 0.1)

 Unfortunately, Reward Only NPRL exhibits such sensible learning curves only a
fraction of the time because most of the time it does not converge on a correct grammar.
Its performance is summarized in (7). The best performance is at a learning rate of 0.001,
with only 28.6% of the languages learned correctly1. Notably, performance of Reward
Only NPRL improves somewhat with decreasing learning rates, which is opposite of the
pattern for NPRL. Its performance for high learning rates between .7 and .9 is very poor,
with less than 10% of the languages being learned successfully. Thus, it does not seem
that the successful performance of NPRL can be attributed to the reward updates. On the
other hand, Punishment Only NPRL does not make any sense because it cannot converge
on any grammar (unless it begins the search at the correct grammar). The only update
mechanism it has is to jump (partially) away from the current grammar, which never
results in a correct grammar for these languages generated from total rankings.
Simulations with learning rates between 0.1 and 0.9 confirm that Punishment Only NPRL
learns none of the languages. Thus, it is the particular combination of rewards and
punishments that allows NPRL to succeed at high learning rates. This further supports the
possibility that NPRL succeeds by mimicking random search.

 Before turning to the random baseline, one observation regarding Reward Only
NPRL warrants further discussion. While the proportion of languages learned
successfully is very small, average accuracy reaches almost 97%, indicating that even
when the learner does not converge on a correct grammar, its final grammar is very close
to correct. Thus, NPRL reward updates appear to be doing something right. There is a

1 At this low learning rate the time to converge on a correct grammar is already almost 250,000

iterations on average so performance on lower learning rates is not reported.

Naive Parameter Learning for Optimality Theory

good reason for this. Reward updates are related to the updates of a well-known learning
algorithm, Expectation Maximization (EM; Dempster, Laird, and Rubin 1977), for which
there are mathematical proofs of convergence. EM updates are conditioned on successful
generation of each datum, whereas NPRL rewards occur only when the data is
successfully generated by the current grammar. The problem with the reward only
version of NPRL is that nothing forces the learner to be responsible for all the data. In
related work, Jarosz (2009) proposes a family of learning algorithms for the grammatical
representation used here, including two online variants, using updates based on EM.
Although in-depth discussion of these algorithms is beyond the scope of this paper, there
is reason to be optimistic about their prospects. Thus, although the performance of
reward-only NPRL is quite poor, the basic learning strategy of rewarding successful
generation of the data should not be dismissed.

(7) Performance of Reward Only NPRL Across Learning Rates

3.4 A Random Baseline

Baselines are standard practice in computational linguistics in general, but explicit
evaluation with baselines has played little role in computational modeling work within
OT. Baselines give a sense of the difficulty of a learning problem and provide a reference
point for interpretation of quantitative results. For example, an accuracy of 85% on part-
of-speech tagging may sound pretty good until one learns that simply guessing the most
likely tag for each word yields an accuracy of around 90% (Charniak et al 1993).

To investigate the successful performance of NPRL with high learning rates and
to provide a baseline for learning algorithms on this test set, this section presents the
results of simulations with a baseline relying on random search. The learning strategy is
very simple: select a total ranking at random (assuming all rankings are equally likely).
For each data point, determine if the ranking generates it. If so, do nothing; if not, choose
a new total ranking randomly. Basically, learning entails picking rankings at random until
errors are no longer produced. Such a procedure is generally considered implausibly slow
for hypothesis spaces of any complexity so it may come as a surprise that the random

Gaja Jarosz

baseline learns 100% of the languages in the TS2000 system. More specifically, given a
maximum of 1,000,000 iterations (where an iteration corresponds to the processing of
one data point, as before), the random baseline learns all the languages on all runs (with
10 runs for each language). Furthermore, even though there are nearly 500 million total
rankings of constraints in this system, the random baseline converges on a correct ranking
in an average of 10,025 iterations. Please note that the counting of iterations is very
generous: it not only includes iterations on which a new random ranking was selected but
also iterations resulting in a match, with no change in ranking. In sum, the random
baseline gets perfect performance, beating the performance of RIP/GLA, RIP/SGA, and
RIP/CD, and finding a correct ranking in less time than NPRL with high learning rates!

How can this be? Although there are nearly 500 million total rankings, the

performance of the random baseline indicates that the number of distinct languages is
much, much smaller2. In other words, each distinct stress pattern for the 62 overt forms
that comprise a language is consistent with thousands of total rankings on average.
Learning is successful when the learner selects any one of these compatible rankings. In
sum, the baseline indicates that it is not hard to achieve 100% accuracy on this test set
given one million iterations.

3.5 Discussion of Simulations

With regard to NPRL, the success of the random baseline suggests that the performance
of NPRL with high learning rates can be attributed to its jumpy, random behavior.
Because of the very large magnitude of the updates, the learner is able to jump around the
search space very quickly. The jumps made by NPRL are not totally random, however,
since they depend stochastically on the state of the grammar on the previous iteration.
Apparently, totally random jumps are more productive than the informed jumps of NPRL
since the random baseline finds a correct ranking in fewer iterations on average. In sum,
NPRL’s effectiveness depends on the degree to which it mimics random search, but it is
never quite as effective as true random search presumably because it does not jump
around as quickly or as randomly.

Whatever the cause of NPRL’s successful learning, both NPRL and the random
baseline beat the performance of leading learning algorithms like RIP/GLA and RIP/SGA
on this test set. The next section discusses the broader implications of this result.

4. General Discussion

To summarize, this paper introduces a new learning algorithm, NPRL, that outperforms
RIP/GLA, RIP/SGA, and RIP/CD given the same learning conditions. Analysis of NPRL

2 Tesar (2004) found that a system like this one minus the two Word-Foot constraints generated
2,140 distinct structural descriptions for the set of 62 overt forms, much less than the 10! number of total
rankings. Some of these 2,140 languages were weakly equivalent (assigned the same stress patterns),
however, and the number of distinct stress patterns was smaller still, 1,527. The system examined here is a
bit larger so the number of distinct languages must likewise be somewhat larger (though no more than a
few thousand).

Naive Parameter Learning for Optimality Theory

suggests that its successful performance can be attributed to an approximated random
search. True random search outperforms all of the above algorithms, achieving perfect
performance in fewer iterations on average than NPRL. This raises a number of questions
regarding the evaluation and development of computational models of phonological
learning. The following discussion addresses some of these questions.

4.1 Regarding Performance on TS2000

Some authors have suggested that an algorithm’s failure to learn can be a good thing.
Boersma (2003) suggests that a language’s unlearnability can provide a formal
explanation for typological gaps. The present discussion assumes, in contrast, that via
factorial typology, a constraint set defines the set of possible (and learnable) human
languages. If a constraint set predicts bizarre languages, this is a problem with the
constraint set.

For learning problems within classic OT, where the learning problem is taken to
involve finding a total ranking of constraints, rejecting the random baseline comes down
to a matter of speed. For a given constraint set CON, the search space of possible
rankings is large (|CON|!), but it is finite. Therefore, it is possible to construct baseline
learners, such as the random baseline or complete enumeration, that are guaranteed
(eventually) to find a correct ranking, assuming one exists. Thus, within classic OT the
baseline is 100%, and the only way to beat it is to get 100% more quickly3. The test set
developed by Tesar and Smolensky (2000) and explored here defines a learning problem
within classic OT. Each of the target languages in the system can be generated by a total
ranking of the constraints. The simulations with the random baseline presented here
establish what “more quickly” means for this test set. Specifically, to beat the random
baseline on this test set, an algorithm must achieve 100% performance in fewer than
10,025 iterations on average, where an iteration consists of evaluating a single datum
against a single grammatical hypothesis.

 Multi-recursive Constraint Demotion (Tesar 1997b, 2004), which is guaranteed to
converge on a correct ranking, and NPRL, which achieves 100% on the test set, are the
only contenders for beating the random baseline in this sense. As shown above, however,
NPRL takes more time on average than the random baseline to arrive at a correct ranking.
Therefore NPRL does not beat the random baseline. MRCD on the other hand, is able to
take advantage of the internal structure of OT by ruling out hypotheses that are
inconsistent with previous ranking information, dramatically limiting the combinations of
structural analyses that must be considered. In particular, Tesar (1997b) shows that for
each of the languages in the TS2000 system MRCD finds a correct ranking within 160
applications (median of 50) of Constraint Demotion. Although, the number of
applications of CD is not comparable to the iterations counted for the random baseline

3 Eisner (2000) shows that in the general case, no learning algorithm for OT can be guaranteed to

find a correct ranking faster than enumeration without exposure to full structural descriptions. However,
constraints within OT do not have arbitrary definitions, and thus actual performance will depend crucially
on the constraint set.

Gaja Jarosz

since it does not count the processing of data resulting in matches, the results reported by
Tesar (2004) suggest that counting the number of matches is not going to dramatically
increase the numbers for MRCD (at least not by a factor of 200). Thus, although a
comparable count for MRCD should be confirmed, it seems likely that MRCD beats the
random baseline for this test system.

 What about the performance of the earlier algorithms that maintain one
grammatical hypothesis at a time, RIP/GLA and RIP/SGA? Given one million iterations,
their performance ranges between 55% and 89%, depending on the choice of evaluation
and learning algorithm (Boersma and Pater 2008). Thus, with regard to accuracy, these
algorithms do not beat the baseline. Boersma and Pater (2008) do not report how long on
average it takes for the learners to settle on a correct grammar. Thus, it is not clear how
the speed of learning compares to the random baseline. Further work comparing the
performance of these algorithms with the performance of baselines such as the one
considered here is needed.

4.2 Beyond TS2000

This paper focuses on the problem of learning total rankings in the presence of structural
ambiguity. However, a principle advantage of algorithms such as the GLA and SGA,
when paired with probabilistic extensions of OT such as Stochastic OT and noisy
Harmonic Grammar, is their ability to learn languages with free variation and deal with
noisy data (see e.g., Boersma and Hayes 2001). If the learning problem is extended to
such cases, things get more complicated. Random search and enumeration are not viable
baselines for learning in this setting because the space of target languages is uncountably
infinite. Some cleverer baseline is needed. The constraint demotion family of algorithms,
including MRCD, cannot learn in a noisy setting. Likewise, given noisy data, the random
baseline would never settle on a total ranking since it would keep choosing rankings
randomly forever. Finally, NPRL cannot learn in the presence of noisy data for similar
reasons. As shown above, it can only learn total rankings successfully with very high
learning rates. Given noisy data, such high learning rates would result in jumps to
unrelated grammars each time an error was produced, making convergence impossible.

 In sum, there is an algorithm, MRCD, that (probably) beats the speed of the
random baseline on the TS2000 test set. In terms of performance alone, the random
baseline outperforms RIP/GLA and RIP/SGA on the same test set. However, of all these
algorithms, only RIP/GLA and RIP/SGA are capable of dealing with noisy data and
learning variable languages. Thus, none of these algorithms is able to match the
performance of the random baseline on this test set and also learn languages with free
variation.

5. Conclusion

Baselines are needed in order to interpret quantitative results. The random baseline shows
that simulations for the Tesar and Smolensky (2000) test set that allow learners 1,000,000
iterations to settle on a grammar are not very meaningful. The average time for the

Naive Parameter Learning for Optimality Theory

random baseline to converge depends on the number of distinct languages that are
generable by the system. If the random baseline is to be rejected on the basis of
simulations that allow learners one million iterations, harder test sets will be needed.

Performance with regard to the classic OT learning problem is not the only
consideration. It is an open question whether an algorithm that matches or at least
approaches the accuracy of the random baseline and can also learn languages with free
variation for systems of constraints representative of natural language exists. There are
many additional criteria for evaluating computational models of phonological learning
not considered here, such as the psychological plausibility of the learning procedure itself
as well as the capacity to model the gradual process of phonological acquisition.
Ultimately, evaluation of computational models of phonological acquisition must
consider a conjunction of these and other criteria.

NPRL does not seem to be a promising alternative to existing algorithms. It does
not beat the random baseline on the classic OT learning problem, and it does not extend
to the learning of variable grammars. However, it does exploit a different type of learning
strategy from the other algorithms, relying on matches and mismatches with the overt
data, that allows it to deal with structural ambiguity. The basic strategy of rewarding
components of the grammar that succeed in generating the overt data is not fully utilized
by NPRL and should be explored in future work.

References

Boersma, Paul. 1997. How we learn variation, optionality, and probability. Proceedings

of the Institute of Phonetic Sciences 21:43–58. University of Amsterdam.
Boersma, Paul. 2003. Review of Tesar and Smolensky (2000): Learnability in Optimality

Theory. Phonology 20:436–446.
Boersma, Paul and Bruce Hayes. 2001. Empirical tests of the Gradual Learning

Algorithm. Linguistic Inquiry 32:45-86.
Boersma, Paul and Joe Pater. 2008. Convergence Properties of a Gradual Learning

Algorithm for Harmonic Grammar. Ms., University of Amsterdam and University
of Massachusetts, Amherst.

Bush, R. and Mosteller, F. 1951. A mathematical model for simple learning.
Psychological Review 58:313-323.

Charniak, E., C. Hendrickson, and M. Perkowitz. 1993. Equations for part-of-speech
tagging. In Proceedings of the Eleventh National Conference on Artificial
Intelligence. AAAI Press/MIT Press, Menlo Park. 784-789.

Dempster, A., Laird, M. and Rubin, D. 1977. Maximum Likelihood estimation from
incomplete data via the EM Algorithm. Journal of Royal Statistics Society B
39:1–38.

Eisner, Jason. 2000. Easy and hard constraint ranking in Optimality Theory: algorithms
and complexity. In Finite-state phonology: Proceedings of the 5th Workshop of
the ACL Special Interest Group in Computational Phonology (SIGPHON), ed. by
Jason Eisner, Lauri Karttunen, and Alain Theriault, 22-33. Luxembourg.

Gaja Jarosz

Jäger, Gerhard. 2007. Maximum Entropy Models and Stochastic Optimality Theory. In
Architectures, Rules, and Preferences. Variations on Themes by Joan W. Bresnan,
ed. Annie Zaenen, Jane Simpson, Tracy Holloway King, Jane Grimshaw, Joan
Maling, and Chris Manning, 467-479. CSLI Publications, Stanford, California.

Jarosz, Gaja. 2009. Learning Phonology with Stochastic Partial Orders. Paper presented
at the 3rd Annual Northeast Computational Phonology Meeting (NECPhon),
MIT, Cambridge, MA, October 2009.

Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky. 1990. Can connectionism
contribute to syntax? Harmonic Grammar, with an application. In Proceedings of
the 26th Regional Meeting of the Chicago Linguistic Society, ed. M. Ziolkowski,
M. Noske, and K. Deaton, 237-252. Chicago: Chicago Linguistic Society.

Pater, Joe. 2008. Gradual learning and convergence. Linguistic Inquiry 39:334-345.
Pearl, Lisa. 2009. Learning English Metrical Phonology: When Probability Distributions

Are Not Enough. In Proceedings of the 3rd Conference on Generative
Approaches to Language Acquisition North America (GALANA 2008), ed. Jean
Crawford, Koichi Otaki, and Masahiko Takahashi, 200-211. Somerville, MA:
Cascadilla.

Soderstrom, Melanie, Donald Mathis, and Paul Smolensky. 2006. Abstract genomic
encoding of Universal Grammar in Optimality Theory. In Smolensky and
Legendre (2006), 403–471.

Tesar, Bruce. 1995. Computational Optimality Theory. Doctoral dissertation, University
of Colorado, Boulder.

Tesar, Bruce. 1997a. An iterative strategy for learning metrical stress in Optimality
Theory. In Proceedings of the 21st Annual Boston University Conference on
Language Development, ed. Elizabeth Hughes, Mary Hughes, and Annabel
Greenhill, 615–626. Somerville, MA: Cascadilla.

Tesar, Bruce. 1997b. Multi-Recursive Constraint Demotion. Ms., Rutgers University.
Tesar, Bruce. 2004. Using inconsistency detection to overcome structural ambiguity in

language learning. Linguistic Inquiry 35:219-253.
Tesar, Bruce, and Paul Smolensky. 1998. Learnability in Optimality Theory. Linguistic

Inquiry 29:229-268.
Tesar, Bruce, and Paul Smolensky. 2000. Learnability in Optimality Theory. Cambridge,

MA: MIT Press.
Yang, Charles. 2002. Knowledge and Learning in Natural Language. Oxford: Oxford

University Press.

Department of Linguistics
Yale University
370 Temple St., room 204
New Haven, CT 06520

gaja.jarosz@yale.edu

