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1. Introduction 
 
This paper introduces a new learning algorithm for Optimality Theory (OT; Prince and 
Smolensky 1993/2004) that can cope with structural ambiguity, a kind of hidden 
structure. The paper discusses results of simulations with this new algorithm as well as a 
random baseline on a large test set with structural ambiguity that has been used to 
evaluate several existing learning algorithms.  
 
1.1 Background 
 
There exist a number of provably correct learning algorithms for Optimality Theory and 
closely related theories. These include Constraint Demotion (CD; Tesar 1995, et seq.), a 
family of algorithms for classic OT. For Harmonic Grammar (Legendre, Miyata and 
Smolensky 1990; Smolensky and Legendre 2006) and related theories (e.g. maximum 
entropy), there is Stochastic Gradient Ascent (SGA; Soderstrom, Mathis and Smolensky 
2006, Jäger 2007). There is also the Gradual Learning Algorithm for Stochastic OT 
(GLA; Boersma 1997), which works well in most cases but is known not to be correct in 
the general case (see e.g., Pater 2008). The success of these algorithms (and correctness 
proofs in the case of CD and SGA) relies on the assumption that learners are provided 
with full structural descriptions of the data, including prosodic structure as well as 
underlying representations, which are not available to the human learner.  
 

All of the above learning algorithms are error-driven: the learner’s grammar is 
updated whenever an error is produced. The update involves comparing the constraint 
violations of the learner’s output and the observed output to identify how the rankings or 
weightings of constraints should be adjusted in order to increase the harmony or 
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likelihood of the observed output relative to the error. Hidden structure poses a challenge 
for error-driven learning because it obscures the constraint violations of the observed 
output. Structural ambiguity, such as footing and syllabification, obscures the violations 
of any constraints that reference that structure whether they assign that structure or 
simply depend on it. For example, if the overt form is a tri-syllabic word with medial 
stress, there are (at least) two analyses: one with an initial iambic foot and another with a 
final trochaic foot. Without the footing, the violations of constraints like TROCHAIC and 
IAMBIC are unknown. If underlying representations are unknown, then the violations of 
faithfulness constraints for the observed output are likewise unknown. Thus, without the 
full structural descriptions, the vector of constraint violations for the observed output  
required to calculate the update to the grammar is not apparent from the learning datum. 

  
Within OT, learning without full structural descriptions has been a topic of 

ongoing work since at least Tesar (1997a) and Tesar and Smolensky (1998). In order to 
apply error-driven learning in the presence of structural ambiguity, Tesar and Smolensky 
(1998) proposed Robust Interpretive Parsing (RIP), which provides an educated guess, 
based on the current constraint ranking, about the structure of the observed output, 
enabling the grammar updates to be calculated in the usual way. Tesar and Smolensky 
(2000) presented simulation results for this procedure on a large metrical phonology test 
set with structural ambiguity (henceforth referred to as TS2000), which is discussed in 
Section 3. They found that this learning procedure learned 60.5% of the languages in the 
system correctly when starting from an unranked initial grammar. In subsequent work, 
Tesar (1997b, 2004) proposed a procedure, Multi-recursive Constraint Demotion 
(MRCD), that keeps track of a (limited) set of viable grammatical hypotheses 
simultaneously and is guaranteed to converge on a correct ranking in the presence of 
structural ambiguity. Based on simulations with similar metrical phonology systems, 
Tesar showed that the number of hypotheses that must be considered during learning is 
relatively small and that learning is quite efficient. Nonetheless, MRCD does involve 
additional complexity beyond that of standard CD, GLA, and SGA, which maintain just 
one grammatical hypothesis at a time. Boersma (2003) and Boersma and Pater (2008) 
applied Tesar and Smolensky’s (1998) Robust Interpretive Parsing approach to the GLA 
and SGA algorithms. Boersma and Pater (2008) also replicated Tesar and Smolensky’s 
simulations with RIP/CD and presented results of simulations with RIP/GLA and 
RIP/SGA on the TS2000 test set. Averaged over multiple runs, the algorithms in 
Boersma and Pater’s simulations successfully learned between 47% and 89% of the 
languages in the system, with RIP/SGA for noisy Harmonic Grammar getting the best 
performance. In sum, while a variant of CD that keeps track of multiple hypotheses 
simultaneously is guaranteed to find a correct ranking, the performance of RIP/CD, 
RIP/GLA, and RIP/SGA, which maintain one grammatical hypothesis at a time, is more 
variable, with none of them achieving perfect performance in the presence of structural 
ambiguity. 
 
1.2 Overview 
 
The present paper describes a new online learning algorithm, the Naive Pairwise Ranking 
Learner (NPRL), an adaptation of Yang’s (2002) Naive Parameter Learning to OT, 
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which achieves a 100% success rate on the TS2000 system. Like the earlier algorithms, 
NPRL is an online algorithm that processes a single data point at a time. Like RIP/CD, 
RIP/GLA, and RIP/SGA, NPRL maintains one grammatical hypothesis at a time. In 
contrast to all the earlier algorithms, NPRL sidesteps the issue of structural ambiguity 
altogether because its updates do not depend on it. Also, NPRL is not error-driven: it 
makes adjustments to the current grammar hypothesis not only when the current 
hypothesis results in an error but also when the learner’s hypothesis results in an output 
that matches the data. Despite this apparent success, further investigations into the 
algorithm’s performance, however, reveal unusual behavior reminiscent of random 
search. This motivates investigation into a truly naive learner, random search, which 
provides a baseline for performance on this test set. It turns out that the baseline beats the 
performance of NPRL (getting 100% accuracy in less time) as well as the performance of 
RIP/CD, RIP/GLA, and RIP/SGA on this test set.  

 
The remainder of the paper is structured as follows. Section 2 presents Yang’s 

(2002) Naive Parameter Learner and the Naive Pairwise Ranking Learner, its application 
to OT. Section 3 presents the simulations with NPRL and experiments with the random 
baseline as well as related discussion. Finally, Section 4 discusses the implications of 
these findings for the evaluation and development of learning algorithms in OT, and 
Section 5 presents conclusions. 
 
2. Naive Pairwise Ranking Learning 
 
The Naive Pairwise Ranking Learner is an adaptation of Yang’s (2002) Naive Parameter 
Learning (NPL) to Optimality Theory (see also Pearl 2009 for an application of NPL to 
metrical phonology). NPL is designed for a parametric grammatical framework in which 
each parameter is associated with a probability distribution over values it can take on. 
Given some data, NPL randomly selects a grammar by selecting values of each of the 
parameters according to their specified probabilities. If the resulting grammar 
successfully generates the data, all parameter values of the selected grammar are 
rewarded, and if the grammar does not successfully generate the data, all parameter 
values are penalized. Yang discusses a particular update rule called the linear reward-
penalty scheme (Bush and Mosteller 1951; Yang 2002), which rewards and penalizes 
values for binary parameters according to the formulas in (1), where i refers to the 
iteration. The magnitude of the update is modulated by a learning rate γ, and the updated 
probability for the opposing parameter value is simply 1-pi+1 for binary parameters. Thus, 
if a selected grammar is successful, all the participating parameter values are rewarded 
according to (1)a, and if it is unsuccessful, all participating parameter values are 
penalized according to (1)b. 
 
(1) Linear Reward-Penalty Scheme (Bush and Mosteller 1951; Yang 2002) 

a. Reward parameter value p: pi+1 = pi + γ(1 - pi) 
b. Penalize parameter value p: pi+1 = (1 - γ)pi 

  
Naive Pairwise Ranking Learning, the adaptation of NPL to OT, is made possible 

by representing a ranking in terms of a set of binary parameters specifying the relative 
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ranking between each pair of constraints. For example, the ranking A » C » B corresponds 
to the binary parameter settings of A » B set to 1, A » C set to 1, and B » C set to 0. As in 
NPL, each parameter setting is actually associated with a probability. Thus, for each pair 
of constraints (a, b), the grammar specifies a probability (whose complement is the 
probability associated with (b, a)). This probability specifies for each pair of constraints 
the relative preference for one relative ranking over the other and determines how 
frequently one relative ranking versus the other will be used when selecting a random 
ranking. Specifically, ranking selection proceeds iteratively by selecting a pair of 
unranked constraints, selecting their relative rank according to the probability specified 
by the grammar, setting any pairwise rankings implied by the newly set relative ranking, 
and repeating until all pairwise rankings are set to 1 or 0, corresponding to a total 
ranking. Thus, the probabilities associated with each pair of constraints together with this 
sampling procedure determine a probability distribution over the set of total rankings. 
This grammatical representation and sampling procedure are also discussed by Jarosz 
(2009) in the context of maximum likelihood learning of phonology.  

 
Given this way of representing stochastic rankings and of selecting total rankings, 

it is straightforward to apply Yang’s algorithm. NPRL processes one overt form at a time 
like the OT learning algorithms discussed above. For each overt form, NPRL generates a 
random ranking from its current stochastic grammar and uses it to generate an output for 
the current data point. If the overt portion of the learner’s output matches the observed 
output, all pairwise ranking probabilities corresponding to the selected ranking are 
rewarded. If the overt portion of the learner’s output does not match the learning datum, 
all pairwise ranking probabilities corresponding to the selected ranking are penalized. 
This procedure is summarized in (2).  

 
(2) Naive Pairwise Ranking Learner 

a. Sample a data point d 
b. Generate a random ranking r using the current parameter settings 
c. Produce learner’s output o for d using r 
d. If o = d, reward all parameter values in r according to (1) 
e. If o ≠ d, penalize all parameter values in r according to (1)  
 
Unlike the earlier OT learning algorithms, NPRL does not attempt to reward or 

penalize particular constraints, which is what makes it “naive”. If the ranking results in a 
mismatch with the observed data, all the pairwise ranking probabilities corresponding to 
that ranking are penalized. For example, if a ranking of A » B » C results in a mismatch, 
the parameter values for A » B, B » C, and A » C are decreased. No effort is made to 
determine which constraint rankings are to blame for the error. Likewise, if the ranking 
yields a match, all pairwise ranking probabilities corresponding to the selected ranking 
are rewarded. Thus, NPRL is not error-driven since learning occurs after matches as well 
as after errors. As discussed above, structural ambiguity poses a challenge for error-
driven learners since the constraint violations of the observed output are obscured. In 
contrast, structural ambiguity poses no special challenge for NPRL because NPRL is 
(blissfully) unaware of it. Structure is irrelevant to the calculation of matches and 
mismatches, which considers only the overt portions of the outputs. In the realm of stress, 
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for example, matches occur whenever the stress contours are identical, irrespective of 
what footing was responsible for those stress contours. In other words, NPRL sidesteps 
the issue of structural ambiguity entirely because the calculation of the update does not 
depend on structure. 
 
3. Simulations 
3.1 The Language Data and Experimental Set-up 
 
This section presents the results of a number of simulations, all of which are carried out 
on the TS2000 test set developed by Tesar and Smolensky (2000). This test set consists 
of 124 constructed languages that can be modeled by the set of 12 metrical structure 
constraints shown in (3). Each language is a set of 62 words, which are sequences of light 
or heavy syllables (e.g. [L H L]) ranging in length between two and seven syllables. Each 
language associates a particular foot structure and stress pattern with each word (e.g. [(L0 
H2) L0]), which includes markings for primary stress (1), secondary stress (2), and 
unstressed (0). The learner, however, is exposed only to the overt stress patterns (e.g. [L0 
H2 L0]) and must infer the ranking of constraints and the footing that underlie these 
patterns. 
 
(3) Constraints (Tesar and Smolensky 2000) 

FOOTBIN  Each foot must be either bimoraic or bisyllabic 
PARSE Each syllable must be footed 
MAIN-RIGHT  Align head foot with right edge of the word 
MAIN-LEFT Align head foot with left edge of the word 
IAMBIC  The final syllable of a foot must be the head 
NONFINAL The final syllable of a word must not be footed 
WSP  Each heavy syllable must be stressed 
WORD-FOOT-RIGHT  Align right edge of the word with a foot 
WORD-FOOT-LEFT  Align left edge of the word with a foot 
FOOT-NONFINAL  A head syllable must not be final in its foot 
ALL-FEET-RIGHT  Align each foot with right edge of the word 
ALL-FEET-LEFT  Align each foot with left edge of the word 

 
 Following Boersma and Pater (2008), the learning algorithm was allowed a 
maximum of 1,000,000 iterations, where each iteration corresponds to the processing of 
one overt form, to learn each language. Learning of a language was deemed successful 
when the algorithm converged on a ranking that correctly generated the stress contours 
for all words in the language. A finer-grained measure of performance was also 
calculated, representing the average accuracy across all the words in a language. In order 
to gauge the accuracy over time and of the final-state grammars, the grammars of the 
learners were queried every 100 iterations and an accuracy for each word was determined 
by randomly sampling from the current grammar 100 times. All NPRL simulations begin 
from the same initial state, with all parameters set to 0.5, corresponding to a maximally 
unbiased grammar under which all rankings are equally likely. 
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3.2 NPRL Simulation Results 
 
Since NPRL is a non-deterministic algorithm, results reported are based on 10 separate 
runs for each language. Results are summarized in Figure (4), which compares the 
performance of the algorithm for different learning rates ranging between 0.1 and 0.9. 
With high learning rates between 0.7 and 0.9, the success rate is 100% − all the languages 
were successfully learned on all the runs. Furthermore, learning is (apparently) fast: while 
there are 12! (i.e. 479,001,600) different total rankings in this system, the algorithm 
converged on a correct ranking after an average of 16,004 iterations (with a learning rate 
of 0.8). Notably, the 100% success rate beats the performance of existing learning 
algorithms: RIP/CD, RIP/GLA, and RIP/SGA. 
 

As shown in (4), however, the performance of the algorithm varies dramatically 
depending on the learning rate.  For a learning rate of 0.1, average accuracy falls to just 
12.8%, with none of the languages learned correctly in full. Since none of the languages 
are ever learned correctly on these runs, all runs continue for the maximum of 1,000,000 
iterations. As the low accuracy suggests, the final grammars for these runs are not very 
close to correct. In fact, for the runs with low learning rates, no learning seems to occur at 
all. The grammars after 1,000,000 iterations closely resemble the initial state grammar, 
with nearly all parameters set to values between 0.4 and 0.6. Overall, there is no 
consistent net effect of the rewards and punishments for runs with low learning rates. 
 
(4) Performance of NPRL at Different Learning Rates 

 
 
 What, then, explains the successful learning with higher learning rates? Learning 
with such high learning rates is very jumpy. Consider the following scenario. The learner 
begins with all parameters set to 0.5. Suppose the learner then samples a data point and a 
ranking that results in a match. With a learning rate of 0.7, the successful parameter 
values will be updated to 0.85. At this point the previous ranking is very likely to be 
selected, and if it is, and if it is successful for the next data point, the parameter values 
will be updated to 0.96, which is close to a categorical grammar. If this selected ranking 
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is indeed a correct ranking that works for all the data, the learner will likely converge on 
the total ranking very quickly. However, if the ranking does not work for all the data, it 
will eventually result in a mismatch. After a mismatch, a setting of 0.96 will jump all the 
way to 0.29, essentially flipping to the opposite grammar in one iteration. With higher 
learning rates, these updates are even more extreme. This jumpiness can be observed by 
querying the grammar after each iteration to examine how the average accuracy changes 
over time. A plot showing average accuracy over time for a representative run with a 
learning rate of 0.7 is shown in (5). If the learning algorithm were gradually moving 
toward a correct grammar, this would be reflected in the changes in the average accuracy 
over time. On the contrary, the plot reveals that this algorithm is jumping around the 
space in an apparently random fashion, getting close to a correct grammar on many 
occasions and then jumping back to a grammar no better than where it started.  
 
(5) Average Accuracy over Time for a Sample Run with γ = 0.7 

 
 
 This jumpy behavior together with the inconsistency of learning at lower learning 
rates suggests the possibility that the success of NPRL with high learning rates is simply 
an artifact of the extent to which NPRL mimics random search. To explore this 
possibility, Section 3.4 discusses simulations with just such a learner, a random baseline. 
Before turning to the random baseline, however, the next section examines the relative 
contributions of the rewards and punishments to NPRL’s performance.  
 
3.3 NPRL Without Punishment 
 
As the discussion above suggests, NPRL’s naive punishments prevent any gradual 
progress: when the learner gets to a grammar that is close to correct but cannot generate 
all the data, there will eventually be an error. Even though the grammar is close to 
correct, the learner does not capitalize on the progress it has made since the error results 
in a punishment that pushes the grammar away into unrelated territory. Indeed, with 
respect to gradual learning, a variant of NPRL with reward updates only (no updates after 
errors) behaves more sensibly. Figure (6) shows average accuracy calculated after each 
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iteration for a sample run of NPRL with reward updates only. It is clear from this 
behavior that reward updates result in a gradual accumulation of grammatical 
preferences, resulting in gradual learning. 
 
(6) Accuracy over Time for a Successful Run of Reward Only NPRL (γ  = 0.1) 

 
 
 Unfortunately, Reward Only NPRL exhibits such sensible learning curves only a 
fraction of the time because most of the time it does not converge on a correct grammar. 
Its performance is summarized in (7). The best performance is at a learning rate of 0.001, 
with only 28.6% of the languages learned correctly1. Notably, performance of Reward 
Only NPRL improves somewhat with decreasing learning rates, which is opposite of the 
pattern for NPRL. Its performance for high learning rates between .7 and .9 is very poor, 
with less than 10% of the languages being learned successfully. Thus, it does not seem 
that the successful performance of NPRL can be attributed to the reward updates. On the 
other hand, Punishment Only NPRL does not make any sense because it cannot converge 
on any grammar (unless it begins the search at the correct grammar). The only update 
mechanism it has is to jump (partially) away from the current grammar, which never 
results in a correct grammar for these languages generated from total rankings. 
Simulations with learning rates between 0.1 and 0.9 confirm that Punishment Only NPRL 
learns none of the languages. Thus, it is the particular combination of rewards and 
punishments that allows NPRL to succeed at high learning rates. This further supports the 
possibility that NPRL succeeds by mimicking random search. 
 
 Before turning to the random baseline, one observation regarding Reward Only 
NPRL warrants further discussion. While the proportion of languages learned 
successfully is very small, average accuracy reaches almost 97%, indicating that even 
when the learner does not converge on a correct grammar, its final grammar is very close 
to correct. Thus, NPRL reward updates appear to be doing something right. There is a 

                                                
1 At this low learning rate the time to converge on a correct grammar is already almost 250,000 

iterations on average so performance on lower learning rates is not reported. 
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good reason for this. Reward updates are related to the updates of a well-known learning 
algorithm, Expectation Maximization (EM; Dempster, Laird, and Rubin 1977), for which 
there are mathematical proofs of convergence. EM updates are conditioned on successful 
generation of each datum, whereas NPRL rewards occur only when the data is 
successfully generated by the current grammar. The problem with the reward only 
version of NPRL is that nothing forces the learner to be responsible for all the data. In 
related work, Jarosz (2009) proposes a family of learning algorithms for the grammatical 
representation used here, including two online variants, using updates based on EM. 
Although in-depth discussion of these algorithms is beyond the scope of this paper, there 
is reason to be optimistic about their prospects. Thus, although the performance of 
reward-only NPRL is quite poor, the basic learning strategy of rewarding successful 
generation of the data should not be dismissed.  
 
(7) Performance of Reward Only NPRL Across Learning Rates 

 
 
3.4 A Random Baseline 
 
Baselines are standard practice in computational linguistics in general, but explicit 
evaluation with baselines has played little role in computational modeling work within 
OT. Baselines give a sense of the difficulty of a learning problem and provide a reference 
point for interpretation of quantitative results. For example, an accuracy of 85% on part-
of-speech tagging may sound pretty good until one learns that simply guessing the most 
likely tag for each word yields an accuracy of around 90% (Charniak et al 1993).  

To investigate the successful performance of NPRL with high learning rates and 
to provide a baseline for learning algorithms on this test set, this section presents the 
results of simulations with a baseline relying on random search. The learning strategy is 
very simple: select a total ranking at random (assuming all rankings are equally likely). 
For each data point, determine if the ranking generates it. If so, do nothing; if not, choose 
a new total ranking randomly. Basically, learning entails picking rankings at random until 
errors are no longer produced. Such a procedure is generally considered implausibly slow 
for hypothesis spaces of any complexity so it may come as a surprise that the random 
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baseline learns 100% of the languages in the TS2000 system. More specifically, given a 
maximum of 1,000,000 iterations (where an iteration corresponds to the processing of 
one data point, as before), the random baseline learns all the languages on all runs (with 
10 runs for each language). Furthermore, even though there are nearly 500 million total 
rankings of constraints in this system, the random baseline converges on a correct ranking 
in an average of 10,025 iterations. Please note that the counting of iterations is very 
generous: it not only includes iterations on which a new random ranking was selected but 
also iterations resulting in a match, with no change in ranking. In sum, the random 
baseline gets perfect performance, beating the performance of RIP/GLA, RIP/SGA, and 
RIP/CD, and finding a correct ranking in less time than NPRL with high learning rates! 

 
How can this be? Although there are nearly 500 million total rankings, the 

performance of the random baseline indicates that the number of distinct languages is 
much, much smaller2. In other words, each distinct stress pattern for the 62 overt forms 
that comprise a language is consistent with thousands of total rankings on average. 
Learning is successful when the learner selects any one of these compatible rankings. In 
sum, the baseline indicates that it is not hard to achieve 100% accuracy on this test set 
given one million iterations. 
  
3.5 Discussion of Simulations 
 
With regard to NPRL, the success of the random baseline suggests that the performance 
of NPRL with high learning rates can be attributed to its jumpy, random behavior. 
Because of the very large magnitude of the updates, the learner is able to jump around the 
search space very quickly. The jumps made by NPRL are not totally random, however, 
since they depend stochastically on the state of the grammar on the previous iteration. 
Apparently, totally random jumps are more productive than the informed jumps of NPRL 
since the random baseline finds a correct ranking in fewer iterations on average. In sum, 
NPRL’s effectiveness depends on the degree to which it mimics random search, but it is 
never quite as effective as true random search presumably because it does not jump 
around as quickly or as randomly. 
 

Whatever the cause of NPRL’s successful learning, both NPRL and the random 
baseline beat the performance of leading learning algorithms like RIP/GLA and RIP/SGA 
on this test set. The next section discusses the broader implications of this result. 
 
4. General Discussion 
 
To summarize, this paper introduces a new learning algorithm, NPRL, that outperforms 
RIP/GLA, RIP/SGA, and RIP/CD given the same learning conditions. Analysis of NPRL 
                                                

2 Tesar (2004) found that a system like this one minus the two Word-Foot constraints generated 
2,140 distinct structural descriptions for the set of 62 overt forms, much less than the 10! number of total 
rankings. Some of these 2,140 languages were weakly equivalent (assigned the same stress patterns), 
however, and the number of distinct stress patterns was smaller still, 1,527. The system examined here is a 
bit larger so the number of distinct languages must likewise be somewhat larger (though no more than a 
few thousand). 
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suggests that its successful performance can be attributed to an approximated random 
search. True random search outperforms all of the above algorithms, achieving perfect 
performance in fewer iterations on average than NPRL. This raises a number of questions 
regarding the evaluation and development of computational models of phonological 
learning. The following discussion addresses some of these questions.  
 
4.1 Regarding Performance on TS2000 
 
Some authors have suggested that an algorithm’s failure to learn can be a good thing. 
Boersma (2003) suggests that a language’s unlearnability can provide a formal 
explanation for typological gaps. The present discussion assumes, in contrast, that via 
factorial typology, a constraint set defines the set of possible (and learnable) human 
languages. If a constraint set predicts bizarre languages, this is a problem with the 
constraint set. 
 

For learning problems within classic OT, where the learning problem is taken to 
involve finding a total ranking of constraints, rejecting the random baseline comes down 
to a matter of speed. For a given constraint set CON, the search space of possible 
rankings is large (|CON|!), but it is finite. Therefore, it is possible to construct baseline 
learners, such as the random baseline or complete enumeration, that are guaranteed 
(eventually) to find a correct ranking, assuming one exists. Thus, within classic OT the 
baseline is 100%, and the only way to beat it is to get 100% more quickly3. The test set 
developed by Tesar and Smolensky (2000) and explored here defines a learning problem 
within classic OT. Each of the target languages in the system can be generated by a total 
ranking of the constraints. The simulations with the random baseline presented here 
establish what “more quickly” means for this test set. Specifically, to beat the random 
baseline on this test set, an algorithm must achieve 100% performance in fewer than 
10,025 iterations on average, where an iteration consists of evaluating a single datum 
against a single grammatical hypothesis. 
 
 Multi-recursive Constraint Demotion (Tesar 1997b, 2004), which is guaranteed to 
converge on a correct ranking, and NPRL, which achieves 100% on the test set, are the 
only contenders for beating the random baseline in this sense. As shown above, however, 
NPRL takes more time on average than the random baseline to arrive at a correct ranking. 
Therefore NPRL does not beat the random baseline. MRCD on the other hand, is able to 
take advantage of the internal structure of OT by ruling out hypotheses that are 
inconsistent with previous ranking information, dramatically limiting the combinations of 
structural analyses that must be considered. In particular, Tesar (1997b) shows that for 
each of the languages in the TS2000 system MRCD finds a correct ranking within 160 
applications (median of 50) of Constraint Demotion. Although, the number of 
applications of CD is not comparable to the iterations counted for the random baseline 

                                                
3 Eisner (2000) shows that in the general case, no learning algorithm for OT can be guaranteed to 

find a correct ranking faster than enumeration without exposure to full structural descriptions. However, 
constraints within OT do not have arbitrary definitions, and thus actual performance will depend crucially 
on the constraint set. 
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since it does not count the processing of data resulting in matches, the results reported by 
Tesar (2004) suggest that counting the number of matches is not going to dramatically 
increase the numbers for MRCD (at least not by a factor of 200). Thus, although a 
comparable count for MRCD should be confirmed, it seems likely that MRCD beats the 
random baseline for this test system. 
 
 What about the performance of the earlier algorithms that maintain one 
grammatical hypothesis at a time, RIP/GLA and RIP/SGA? Given one million iterations, 
their performance ranges between 55% and 89%, depending on the choice of evaluation 
and learning algorithm (Boersma and Pater 2008). Thus, with regard to accuracy, these 
algorithms do not beat the baseline. Boersma and Pater (2008) do not report how long on 
average it takes for the learners to settle on a correct grammar. Thus, it is not clear how 
the speed of learning compares to the random baseline. Further work comparing the 
performance of these algorithms with the performance of baselines such as the one 
considered here is needed. 
 
4.2 Beyond TS2000 
 
This paper focuses on the problem of learning total rankings in the presence of structural 
ambiguity. However, a principle advantage of algorithms such as the GLA and SGA, 
when paired with probabilistic extensions of OT such as Stochastic OT and noisy 
Harmonic Grammar, is their ability to learn languages with free variation and deal with 
noisy data (see e.g., Boersma and Hayes 2001). If the learning problem is extended to 
such cases, things get more complicated. Random search and enumeration are not viable 
baselines for learning in this setting because the space of target languages is uncountably 
infinite. Some cleverer baseline is needed. The constraint demotion family of algorithms, 
including MRCD, cannot learn in a noisy setting. Likewise, given noisy data, the random 
baseline would never settle on a total ranking since it would keep choosing rankings 
randomly forever. Finally, NPRL cannot learn in the presence of noisy data for similar 
reasons. As shown above, it can only learn total rankings successfully with very high 
learning rates. Given noisy data, such high learning rates would result in jumps to 
unrelated grammars each time an error was produced, making convergence impossible. 
 
 In sum, there is an algorithm, MRCD, that (probably) beats the speed of the 
random baseline on the TS2000 test set. In terms of performance alone, the random 
baseline outperforms RIP/GLA and RIP/SGA on the same test set. However, of all these 
algorithms, only RIP/GLA and RIP/SGA are capable of dealing with noisy data and 
learning variable languages. Thus, none of these algorithms is able to match the 
performance of the random baseline on this test set and also learn languages with free 
variation. 
 
5. Conclusion 
 
Baselines are needed in order to interpret quantitative results. The random baseline shows 
that simulations for the Tesar and Smolensky (2000) test set that allow learners 1,000,000 
iterations to settle on a grammar are not very meaningful. The average time for the 
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random baseline to converge depends on the number of distinct languages that are 
generable by the system. If the random baseline is to be rejected on the basis of 
simulations that allow learners one million iterations, harder test sets will be needed.  
 

Performance with regard to the classic OT learning problem is not the only 
consideration. It is an open question whether an algorithm that matches or at least 
approaches the accuracy of the random baseline and can also learn languages with free 
variation for systems of constraints representative of natural language exists. There are 
many additional criteria for evaluating computational models of phonological learning 
not considered here, such as the psychological plausibility of the learning procedure itself 
as well as the capacity to model the gradual process of phonological acquisition. 
Ultimately, evaluation of computational models of phonological acquisition must 
consider a conjunction of these and other criteria. 
 

NPRL does not seem to be a promising alternative to existing algorithms. It does 
not beat the random baseline on the classic OT learning problem, and it does not extend 
to the learning of variable grammars. However, it does exploit a different type of learning 
strategy from the other algorithms, relying on matches and mismatches with the overt 
data, that allows it to deal with structural ambiguity. The basic strategy of rewarding 
components of the grammar that succeed in generating the overt data is not fully utilized 
by NPRL and should be explored in future work. 
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