CONSTRAINING PHONOLOGY COMPUTATIONALLY: EXPERIMENTAL EVIDENCE

NECPHON 2011 Regine Lai 10/15/2011 rlai@udel.edu

About this study

Goal

To explore the universal restrictions for phonology

How?

- Test the learnability of a particular phonologically plausible sound pattern which is not found in any natural languages and not within the identified computational regions.
- Artificial language learning experiments.

Implications

- What constitutes a possible phonological pattern
- Provides insights into human's phonological learning mechanisms.

The Chomsky Hierarchy

Phonology is regular (Kaplan & Kay, 1994)

The Regular Region

- Some identified subregular classes:
 - Strictly-Piecewise (SP) and Strictly-Local (SL) (Heinz, 2009, 2010, to appear; Rogers et al., 2010, Rogers & Pullum, to appear)

Sibilant Harmony (SH)

- Attested in Chumash.
- If 2 or more sibilants appear in the same word, they have to be agree in anteriority.

- For example:
- [sokosos] √
- [soko]os] ×
- [[okosos] ×

First-Last Assimilation (FL)

 If there are sibilants in both the initial and final position of a word, they have to agree [anterior].

- For example:
- [sokosos] ✓
- [soko∫os] ✓
- [[okosos] ×

Sibilant Harmony vs. First-Last Assimilation

Note: **×FL√SH** is not present because anything that obeys SH, also obeys FL.

Sibilant Harmony(SH) vs. First-Last Assimilation(FL)

FL is not a random choice

- 1. LD sibilant harmony is attested;
- 2. word edges are relevant in phonology;
- 3. initial and final positions of a word are salient positions;
- 4. there is an example in natural language that looks very similar to FL: C'Lela

C'Le a (Detteriler, 2000; Pulleyblank, 2002; Archangeli & Pulleyblank, 2007)

- Niger-Congo, ~90,000 speakers.
- Vowel height of suffix agrees with base.
- Direct object 1st person pronoun: mi/me

High base	Nonhigh base	
buz ⁹ k ⁹ mi 'chased me'	epk ^a me 'bit me'	
sipk ⁹ mi 'grabbed me'	wegaka me 'indicated me'	
fumt ^a k ^a mi 'pulled me'	batk ^a me 'released me'	

C'Lela

- If more than 1 suffix, only word-final suffix alternates.
- Word –medial suffix is transparent.

High base				
i-zis-i	'CM-long-CM'	i-zis-i-ni	'CM-long-CM-ADJM'	
u-pus-u	'CM-white-CM'	u-pus-u-ni	'CM-white-CM-ADJM'	
Nonhigh base				
i-rek-e	'CM-small-CM'	i-rek-i-ne	'CM-small-CM-ADJM'	
u-g ^j ɔ z- o	'CM-red-CM'	u-g ^j ɔ z-u-n e	'CM-red'CM-ADJM'	

C'Lela

- A very similar to FL assimilation
- But: possibly within-base harmony
- Base-final suffix harmony.

High base	Nonhigh base	
buz ⁹ k ⁹ mi 'chased me'	epk ⁹ me 'bit me'	
sipk ⁹ mi 'grabbed me'	wegaka me 'indicated me'	
fumt ^a k ^a mi 'pulled me'	batk ^a me 'released me'	

C'Lela

- Prefixes are allowed, but are transparent.
- Target: final position → not exactly FL

High base				
i-zis-i	'CM-long-CM'	i-zis-i-ni	'CM-long-CM-ADJM'	
u-pus-u	'CM-white-CM'	u-pus-u-ni	'CM-white-CM-ADJM'	
Nonhigh base				
i-rek-e	'CM-small-CM'	i-rek-i-ne	'CM-small-CM-ADJM'	
u-g ^j 3z-0	'CM-red-CM'	u-g ^j ɔz-u-ne	'CM-red'CM-ADJM'	

THE PRESENT STUDY

Hypothesis

• Humans can only learn sound patterns that belong to the *Strictly Piecewise* or *Strictly Local* classes (SH). They cannot learn other types of regular sound patterns

General Experimental Methodology

- Artificial Language Learning Paradigm
- Training Phase
- Testing Phase

Methodology

- All Stimuli (both training and test):
- C₁V.C₂V.C₃VC₄ (tryisyllabic)
- Always contain 3 sibilants within a word
- C₁ & C₄: always sibilants
- C₂ & C₃: either sibilant or [k]

	C1	C2	C3	C4
50%	sibilant	sibilant	[k]	sibilant
50%	sibilant	[k]	sibilant	sibilant

- Vowels: [a, i, u, ε, ɔ]
- Sibilants: [s, ∫]
- Stop: [k]

Training

- 40 words x 5 repetitions = 200 words
- Procedure: Listen and repeat each word
- ~ 20 min

3 Training Conditions

- 1. SH: [s...s...s], [[...]]2. FL: [s...s...s], [[...], [s...], [s...]
- 3. Control: No training

Testing

- Two alternative forced choice
- Words are presented in pairs (minimally different)
- E.g. [sakisis] vs. [sakisis]
- The different sibilant occurs in either C1, C2, C3 or C4

Testing

 Subjects had to choose a word based on whether they thought the 1st word or the 2nd word within the pair belonged to the language they heard during training.

48 pairs in total

Test stimuli

 Note: the logically possible 4th type (*FL/SH) does not exist because anything that obeys SH also obeys FL.

Test stimuli

 These 3 types of stimuli were pitted against each other and generated 3 types of pairings.

- a) FL/*SH vs. *FL/*SH
- b) FL/SH vs. *FL/*SH
- c) FL/*SH vs. FL/SH

The order of presentation was counter-balanced across types

Data Analysis

- Dependent variable for each category is different, so they were analyzed separately:
- a) FL/*SH vs. *FL/*SH
 - Rate of choosing FL/*SH
- b) FL/SH vs. *FL/*SH
 - Rate of choosing FL/SH
- c) FL/*SH vs. FL/SH
 - Rate of choosing FL/SH

 If subjects learned the grammar that they were exposed to during the training, they should perform as follows:

Training Condition	FL/*SH vs. *FL/*SH	FL/SH vs. *FL/*SH	FL/*SH vs. FL/SH
SH	Chance	Above	Above
FL	Above	Above	Chance
Control	Chance	Chance	Chance

Results

No Training Condition (N=22)

Results

SH and FL Conditions N=44 (N=22 each condition)

SH results

Types	If SH is learned	Actual SH subjects' performance
a) FL/*SH vs. *FL/*SH	Chance	Chance
b) *FL/*SH vs. FL/SH	Above	Above
c) FL/*SH vs. FL/SH	Above	Above

FL results

Types	If FL is learned	Actual FL subjects' performance
a) FL/*SH vs. *FL/*SH	Above	Chance
b) *FL/*SH vs. FL/SH	Above	Above
c) FL/*SH vs. FL/SH	Chance	Above

Discussion

- SH subjects were able to internalize the SH grammar.
- FL subjects were NOT able to internalize FL grammar.
- SH and FL subjects' performance were not significantly different.
- It's puzzling why FL subjects performed so similarly to SH subjects even when they were exposed to stimuli (during training) that did not obey SH (e.g. [s...∫...s])

Follow-up condition

- Intensive FL training
- Replaced training stimuli which are consistent with both FL and SH (FL/SH) with ones which are only consistent with FL (FL/*SH).
- The results from Intensive FL were significantly different from FL.

Follow-up results

Intensive FL (N=22)

Discussion

Types	If FL is learned	Actual FL subjects' performance	Actual Intensive FL subjects' performance
a) FL/*SH vs. *FL/*SH	Above	Chance	Above
b) *FL/*SH vs. FL/SH	Above	Above	Below
c) FL/*SH vs. FL/SH	Chance	Above	Below

 Based on these results, we cannot conclude FL is learned in either FL or Intensive FL conditions.

Summary

 The experiments are designed to test the learnability of a regular but not SL or SP pattern (FL).

 If FL is learnable, then it implies the subregular boundaries are not psychologically real.

Summary

- Results indicate that FL cannot be learned in experimental setting with our design.
- Subjects trained with FL performed like SH subjects.

 Subjects were biased towards internalizing SH than FL grammar, even when they were exposed to stimuli that were inconsistent with SH.

Conclusions

- A pattern that belongs to SP group (SH) is learnable in experimental setting, while FL, which is a regular pattern that does not belong to either SP or SL is not learnable.
- The absence of FL pattern in natural phonologies could be due to its unlearnability.
- The current psychological experiment results align with the predictions made by computational theory.
- Support the claim that possible phonological patterns are restricted by certain computational boundaries.

Thank you!

Acknowledgement:
Members of P-lab at UD
Bill Idsardi and Bridget Samuels (UMD)
Sara Finley (U of Rochester)
This project is funded by NSF DDRIG #1123610