CONSTRAINING PHONOLOGY COMPUTATIONALLY: EXPERIMENTAL EVIDENCE

NECPHON 2011
Regine Lai
10/15/2011
rlai@udel.edu

About this study

Goal

- To explore the universal restrictions for phonology

How?

- Test the learnability of a particular phonologically plausible sound pattern which is not found in any natural languages and not within the identified computational regions.
- Artificial language learning experiments.

Implications

- What constitutes a possible phonological pattern
- Provides insights into human's phonological learning mechanisms.

The Chomsky Hierarchy

- Phonology is regular (Kaplan \& Kay, 1994)

The Regular Region

- Some identified subregular classes:
- Strictly-Piecewise (SP) and Strictly-Local (SL) (Heinz, 2009, 2010, to appear; Rogers et al., 2010, Rogers \& Pullum, to appear)

Sibilant Harmony (SH)

- Attested in Chumash.
- If 2 or more sibilants appear in the same word, they have to be agree in anteriority.
- For example:
- [sokosos] \checkmark
- [sokoJos] ×
- [Jokosos] \times

First-Last Assimilation (FL)

- If there are sibilants in both the initial and final position of a word, they have to agree [anterior].
- For example:
- [sokosos]
- [sokojos] \downarrow
- [Jokosos] ×

Sibilant Harmony vs. First-Last Assimilation

Note: $\times \mathrm{FL} \checkmark$ SH is not present because anything that obeys SH, also obeys FL.

Sibilant Harmony(SH) vs. First-Last Assimilation(FL)

FL is not a random choice

- 1. LD sibilant harmony is attested;
- 2. word edges are relevant in phonology;
-3. initial and final positions of a word are salient positions;
-4. there is an example in natural language that looks very similar to FL: C'Lela

C'Lela (Detteriler, 2000; Pulleyblank, 2002; Archangeli \& Pulleyblank, 2007)

- Niger-Congo, ~90,000 speakers.
- Vowel height of suffix agrees with base.
- Direct object $1^{\text {st }}$ person pronoun: mi/me

High base	Nonhigh base
buz${ }^{\text {² }}$ ² mi 'chased me'	Epk ${ }^{\text {² }}$ me 'bit me'
sipk ${ }^{\text {m }}$ mi \quad 'grabbed me'	wegaka me 'indicated me'
fumt ${ }^{\circ}{ }{ }^{\text {m mi }}$ ' pulled me'	batk ${ }^{\text { }}$ me 'released me'

C'Lela

- If more than 1 suffix, only word-final suffix alternates.
- Word -medial suffix is transparent.

High base			
i-zis-i	'CM-long-CM'	i-zis-i-ni	'CM-long-CM-ADJM'
u-pus-u	'CM-white-CM'	u-pus-u-ni	'CM-white-CM-ADJM'
Nonhigh base			
i-rek-e	'CM-small-CM'	i-rek-i-ne	'CM-small-CM-ADJM'
u-g. ${ }^{\text {j }}$ z-0	'CM-red-CM'	u-g'oz-u-ne	'CM-red'CM-ADJM'

C'Lela

- A very similar to FL assimilation
- But: possibly within-base harmony
- Base-final suffix harmony.

High base	Nonhigh base
$\mathrm{buz}^{2} \mathrm{k}^{2} \mathrm{mi} \quad$ 'chased me'	£pk ${ }^{\text {² }}$ me 'bit me'
sipk ${ }^{\text {m }}$ mi \quad 'grabbed me'	wegaka me 'indicated me'
fumt ${ }^{\text {k }}$ ² mi 'pulled me'	batk ${ }^{\text { }}$ me 'released me'

C'Lela

- Prefixes are allowed, but are transparent.
- Target: final position \rightarrow not exactly FL

High base			
i-zis-i	'CM-long-CM'	i-zis-i-ni	'CM-long-CM-ADJM'
u-pus-u	'CM-white-CM'	u-pus-u-ni	'CM-white-CM-ADJM'
Nonhigh base			
i-rek-e	'CM-small-CM'	i-rek-i-ne	'CM-small-CM-ADJM'
u-g.j. ${ }^{\text {oz-o }}$	'CM-red-CM'	u-g.oz-u-ne	'CM-red'CM-ADJM'

THE PRESENT STUDY

Hypothesis

- Humans can only learn sound patterns that belong to the Strictly Piecewise or Strictly Local classes (SH). They cannot learn other types of regular sound patterns (FL).

General Experimental Methodology

- Artificial Language Learning Paradigm
- Training Phase
- Testing Phase

Methodology

- All Stimuli (both training and test):
- C_{1} V. $\mathrm{C}_{2} \mathrm{~V} . \mathrm{C}_{3} \mathrm{VC}_{4}$ (tryisyllabic)
- Always contain 3 sibilants within a word
- $\mathrm{C}_{1} \& \mathrm{C}_{4}$: always sibilants
- $\mathrm{C}_{2} \& \mathrm{C}_{3}$: either sibilant or $[\mathrm{k}]$

	C1	C2	C3	C4
50%	sibilant	sibilant	$[\mathrm{k}]$	sibilant
50%	sibilant	$[\mathrm{k}]$	sibilant	sibilant

- Vowels: [a, i, u, ε, э]
- Sibilants: [s, J]
- Stop: [k]

Training

- 40 words $\times 5$ repetitions $=200$ words
- Procedure: Listen and repeat each word
- ~ 20 min

3 Training Conditions

- 1. SH: [s...s...s], [[.......]
- 2. FL: [s...s....s], [[.......], [s.......s], [f...s....]
-3. Control: No training

Testing

- Two alternative forced choice
- Words are presented in pairs (minimally different)
- E.g. [sakisis] vs. [Jakisis]
- The different sibilant occurs in either C1, C2, C3 or C4

Testing

- Subjects had to choose a word based on whether they thought the $1^{\text {st }}$ word or the $2^{\text {nd }}$ word within the pair belonged to the language they heard during training.
- 48 pairs in total

Test stimuli

- Note: the logically possible $4^{\text {th }}$ type (${ }^{*} \mathrm{FL} / \mathrm{SH}$) does not exist because anything that obeys SH also obeys FL.

Test stimuli

- These 3 types of stimuli were pitted against each other and generated 3 types of pairings.
- a) $\mathrm{FL} / * \mathrm{SH}$ vs. ${ }^{*} \mathrm{FL} / * \mathrm{SH}$
-b) FL/SH vs. *FL/*SH
- c) FL/*SH vs. FL/SH
- The order of presentation was counter-balanced across types

Data Analysis

- Dependent variable for each category is different, so they were analyzed separately:
- a) FL/*SH vs. *FL/*SH
- Rate of choosing FL/*SH
-b) FL/SH vs. *FL/*SH
- Rate of choosing FL/SH
- c) FL/*SH vs. FL/SH
- Rate of choosing FL/SH
- If subjects learned the grammar that they were exposed to during the training, they should perform as follows:

Training Condition	FL/*SH vs. *FL/*SH	FL/SH vs. *FL/*SH	FL/*SH vs. FL/SH
SH	Chance	Above	Above
FL	Above	Above	Chance
Control	Chance	Chance	Chance

Results

No Training Condition ($\mathrm{N}=22$)

Results

SH and FL Conditions $\mathrm{N}=44$ ($\mathrm{N}=22$ each condition)

SH results

Types	If SH is learned	Actual SH subjects' performance
a) FL/*SH vs. *FL/*SH	Chance	Chance
b) *FL/*SH vs. FL/SH	Above	Above
c) FL/*SH vs. FL/SH	Above	Above

FL results

Types	If FL is learned	Actual FL subjects' performance
a) FL/*SH vs. *FL/*SH	Above	Chance
b) *FL/*SH vs. FL/SH	Above	Above
c) FL/*SH vs. FL/SH	Chance	Above

Discussion

- SH subjects were able to internalize the SH grammar.
- FL subjects were NOT able to internalize FL grammar.
- SH and FL subjects' performance were not significantly different.
- It's puzzling why FL subjects performed so similarly to SH subjects even when they were exposed to stimuli (during training) that did not obey SH (e.g. [s...f...s])

Follow-up condition

- Intensive FL training
- Replaced training stimuli which are consistent with both FL and SH (FL/SH) with ones which are only consistent with $\mathrm{FL}(\mathrm{FL} / * \mathrm{SH})$.
- The results from Intensive FL were significantly different from FL.

Follow-up results

Intensive FL (N=22)

Discussion

Types	If FL is learned	Actual FL subjects' performance	Actual Intensive FL subjects' performance
a) $\mathrm{FL} / *$ SH vs. *FL/*SH	Above	Chance	Above
b) *FL/*SH vs. FL/SH	Above	Above	Below
c) FL/*SH vs. FL/SH	Chance	Above	Below

- Based on these results, we cannot conclude FL is learned in either FL or Intensive FL conditions.

Summary

- The experiments are designed to test the learnability of a regular but not SL or SP pattern (FL).
- If FL is learnable, then it implies the subregular boundaries are not psychologically real.

Summary

- Results indicate that FL cannot be learned in experimental setting with our design.
- Subjects trained with FL performed like SH subjects.
- Subjects were biased towards internalizing SH than FL grammar, even when they were exposed to stimuli that were inconsistent with SH .

Conclusions

- A pattern that belongs to SP group (SH) is learnable in experimental setting, while FL, which is a regular pattern that does not belong to either SP or SL is not learnable.
- The absence of FL pattern in natural phonologies could be due to its unlearnability.
- The current psychological experiment results align with the predictions made by computational theory.
- Support the claim that possible phonological patterns are restricted by certain computational boundaries.

Thank you!

Acknowledgement:
Members of P-lab at UD
Bill Idsardi and Bridget Samuels (UMD)
Sara Finley (U of Rochester)
This project is funded by NSF DDRIG \#1123610

