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General cognitive macro-architecture
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Symbol structures &

Filler/role decomposition (possibly recursive):
s ={g/[Ons/a1], n/[Cod/a1], €/[Nuc/os], ..} c F xR
(activation-)vector space embedding vs € F®R = R" Random™* vectors

[gen fem ...]: Vs=8®rons/or + N®Fcod/o1 + ERrNuc/or + FRFons/os +

Image of embedding: ‘the Grid” # of ‘pure states’

* Capturing the similarity structure of roles (including recursive hierarchical
structure) is a major feature of distributed tensor product representations
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‘the Grid’

Onset/o; [f] [k]
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OPTIMIZATION

Gen: representations

Con: (OT grammar G ->)
® HG grammar Hg

@ G-> Wg weight matrix of a network A s.t.
Hn,(s) = Hg(s) Vs € # (= the Grid) — iso-Harmonic embedding
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e e .. COMBINATION
QUANTIZATION Harmony optimization in networks APPLICATION

Theorem. For any deterministic neural network in a certain class,
during processing, Harmony continuously increases, reaching a
local optimum.

e Thisis network Harmony Hy = Hap,+ Hyy,  Hay (a) = Y%(al?

Hny(a) = BvaBWBvav — quadratic, dependent on W

Theorem. For any stochastic neural network in a certain class, during
processing, the probability of visiting a state a approaches

p(a) « efv@/T (T =randomness parameter)

As T — 0, the probability the network is in a globally optimal
state — 1.

e These networks use a Diffusion Dynamics

da, = Wﬁyaydt+\FdB th+\/7dB
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e e .. : : COMBINATION
QUANTIZATION Harmony optimization by diffusion APPLICATION

Processing: Diffusion Dynamics
e State moves in time so as to increase Harmony H(s), on average

+ randomness in state changes with variance o< T
+ during processing, T — 0
+ hence p(s) — 0 except for the state(s) with maximal Harmony

+ N.B.: randomness needed to find global Harmony maxima

+ not infallible: errors occur
+ from mechanism responsible for correct performance

1> Optimization process
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. COMBINATION
QUANTIZATION HG In networks APPLICATION

Theorem. Any rewrite-rule grammar can be expressed as a second-order
Harmonic Grammar.

Theorem. For any second-order Harmonic Grammar Hg, we can construct a
recurrent network N with a harmony function Harthat provides an iso-

Harmonic embedding
i.e., yields the same values as Hg on every pure (grid) state s:

Hn(s) = Hg(s)

Corollary. For any Harmonic Grammar Hg, we can construct a recurrent
network A such that as T — 0, the probability the network is in a
gradient state that is globally optimal w.r.t. Hg — 1.
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. . . COMBINATION
QUANTIZATION Constraints in connections APPLICATION

Spreading activation = finding optimal solution to weighted constraints

E.g., phonotactic constraint: *Au (American muse vs. news)

Harmony maximization as constraint satisfaction

Consider this connection in a purely localist network:
—-0.6

Same constraint with distributed representations:
the weight matrix W such that

when activation patterns are re-described in a new coordinate system
in which the representations become local,

W becomes equal to the connection above.
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QUANTIZATION

Problems:
want a maximum of H at every grammatical structure
but H is quadratic: it can have only one global maximum

11
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QUANTIZATION
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OPTIMIZATION COMBINATION

The troubles APPLICATION

Problems:
want a maximum of H at every grammatical structure
but H is quadratic: it can have only one global maximum

argmaxacrr Hyv(a) € Grid: it is a blend state
H restricted to the grid can have multiple maxima

13

Monday, October 17, 2011 13



QUANTIZATION
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COMBINATION

OPTIMIZATION . . .
Maximum is an impure state: a blend APPLICATION

Corollary. For any Harmonic Grammar Hg, we can construct a recurrent
network N such that as T — 0, the probability the network is in a

(gradient) state that is globally optimal w.r.t. Hg — 1.

This is a blend of well-formed constituents, not a globally coherent pure state.
(A general problem, not limited to grammars.)

A nanogrammar ¢ Its nanolanguage L

S S2

N0 =I[ALlIs]s "\ =[IsAl]s

Al Is “Al is.” Is Al  “IsAl?”

The global H optimum is proportional to
S+S2

N

Al+Is Al+Is

This is why we need quantization.

15
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OPTIMIZATION COMBINATION

Need for quantization APPLICATION

Problems:
want a maximum of H at every grammatical structure
but H is quadratic: it can have only one global maximum

argmaxacrr Hyv(a) € Grid: it is a blend state

H restricted to the grid can have multiple maxima
H is meaningful only on the grid

Proposal:
Add a quantization dynamics with an attractor at every s € Grid

16
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QUANTIZATION

Discretization Dynamics
e A spreading activation algorithm that creates an attractor at all and
only the points of the grid
e |sotropic/symmetric/all attractors equivalent:
+ optimization dynamics pushes towards correct basin

el [fef]

Attractor
basins

[fek]

e Distributed winner-take-all network (non-linear mutual inhibition)
+ Lotka-Volterra equations (Baird & Eeckmann 1993)

M = F®R, F = matrix of symbol (filler) patterns, R = of position (role)

17
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OPTIMIZATION : :
QUANTIZATION Combined dynamics APPLICATION

Harmony Optimization Dynamics
e Diffusion; as processing proceeds, T — 0
e Pushes towards best gradient (blend) state

+ ignores discreteness
Quantization Dynamics

e Pushes towards the grid of discrete (pure) states
+ ignores well-formedness
Combination

e The weighted sum of these two dynamics

e As processing proceeds, the relative weight of optimization
+A—0

+ discretization pressure grows, dominates final computation

:.Z> — }\iZ}opt'l' [1_}\] iz}quantl

18
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COMBINATION
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COMBINATION
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COMBINATION

Note: The only discrete
symbol structure ever
represented is the final
output! (Not: generate
and evaluate many
alternative discrete
symbol structures.)

The ant should end up at the highest peak
— or at an erroneous peak with prob ~ H -
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COMBINATION

A nanogrammar G Its nanolanguage £

Start symbols: {S, S2} S S2

S — Al Is N =[AlIs]s . =[IsAl]s

o . ’) o V4
S2 > Is Al Al Is Al is. Is Al Is Al?
“HISASZ + e scome— v -6AIIS)S | eeaman o . - am—
“BAIISISH vrwww e ¢ ¢ S  c—— -6ISAI|SZ I ¢ e ascam s - o—
[s AL Is] [s2 Is Al]
5 $
T BAIAIISZ - emesecs @i o amas g -8ISIS|]S| emeasens e eccom o
9 —8lS|S]SZ L e e Ae i S e aE S . - -BISIS]SZ L % B e R MRS @ e =a e
g —BIS]S]SZ ! - -BAlN]S I GRS e @ ceoummm 8
—GAIN]S SR ETET T EUT BT B 8 -GNN]SZ L eE WD WD SO - o=
g -B8ISIS]S | emeame aw om  amm £
T T
~10ISAIIS I seuw cun e
-10 Al Is |S2 e B MBmEsIe e s ew ~10AIIS|SZ | ® weom s s wme - ==
-101s Al JS SEmaem SEsse ™ +  ae e -10)S2])S)S + 4 , 1 L 1 J
8.8 9 9?2 91.4 9?6 91.3 10 8.8 9 9.2 9.4 9.6 9.8 10
Log Time Step Log Time Step
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OPTIMIZATION :
QUANTIZATION Explanation and Harmony APPLICATION

Explaining error patterns with Harmony
e The Harmony function is designed: we can understand it
+ H encodes the constraints of the problem domain, such that
+ the correct answer best-satisfies these constraints
e i Probability of s: p(s) oc ettt (T = randomness parameter)
or equivalently: log p(s) o< H(s) — k
e /sag nak/ — [ ? ]

0
-1 *
-2 >
;
3
S -4+
z A
g -5 o0 ¥
000 6
g -6 [ ’,‘_' / O
-
_9 4 i ’l A 4 i )
-1 0.5 0 05 1 1.5 2
Harmony of Output
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APPLICATION

Tongue-twister task
Incomplete neutralization
ITBerber syllabification

25
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APPLICATION

Phonological production (gen hem fek nes - hen hem nek nes)*
e Final state of surface form component:

e An erroneous consonant is more likely
+ to be in a similar position (with respect to syllable structure)
+ to replace a similar consonant
+ to be in a position where it is more frequent (phonotactic probability)
iz never in a position forbidden by the English grammar (“<ch):

‘errors are well-formed’

* Dell, Reed, Adams & Meyer 2000 .
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APPLICATION

Phonological production (fen keg hem nes = fen heg nem nes)
e An erroneous consonant is more likely
+ to be in a similar position (with respect to syllable structure)
+ to replace a similar consonant

W Same position U Different position

20% 7
15% -

10% -

Error Rate

5% -

O% a T \
Highly similar Less similar

Relation of Interacting Consonants

27
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APPLICATION

Capturing the similarity structure of roles (including recursive hierarchical
structure) is a major feature of distributed tensor product representations

Preserve Similarity Simulations
‘ I Position ro, s, 0.4
Fons/o, = Fons ® I'g, 7o
Syllable rons® 'cod 0.1
sim(rons, rcod) < sim(rs,, r's,) <7? similarity of consonant behavior

across different positions < across different syllables]

W Same position U Different position

20% 7
15% -

10% -

Error Rate

5% -

O% a T \
Highly similar Less similar

Relation of Interacting Consonants

28
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OPTIMIZATION

QUANTIZATION

COMBINATION

Explanation and Harmony

EG1. Errors tend to preserve position

0.08

Probability

0.07 -

0.06 -

0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

/12.34/ —> -

Simulation
(errors)

0.00 -

14{[\4 32.34 12/\2 12.14 12% 11.34 2%34 12.44 1§34 3434 12.12

Position preserved Syllable preserved @ preserved

T Theon|=S

Double errors: Position preserved
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APPLICATION

EG;. In alternations, surface forms 1.00 -

can show subphonemic traces

of the underlying form.* 095 -

Alternations: NArRK = FAITH 0.

E.g., *d.voifCoda > FAITH(vOI)

Mean{ Activation of '2' Filler

Model: ‘4, vs. ‘2" ~ dvs.t

0.80

= /4/-12] W [21-[2]
Response Type

*4,/Coda (1.5) > FAITH (1.0)

Surface forms can show subphonemic ‘traces’ of the underlying form.
Review: Warner, Jongman, Sereno & Kemps, 2004 (Journal of Phonetics)
* Factors other than underlying form can also induce similar effects.

30

Monday, October 17, 2011 30



APPLICATION

Model: derived directly from the HG
version of the OT analysis of P&S93

) 0g(p(x)
ol /tbsia/ — vs. H(x)
06}
04} O 0O
- /1/]
>er t.bs.ia
& ol wove,  V.CV.CV
= T.bS.yA
02}
0.4}
06}
08}
b62 262.5 263 2635 264 264.5

31
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APPLICATION

) 08(p(x)
ol /rmuai/ — vs. H(x)
06}
0.4 0] 0]
N /N
) rm.uai
% ok woceve  VC.CVC
- Rm.wAy
02}
0.4
06}
-08 -
517 3175 318 3185 319 3105
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APPLICATION

) 08(p(x)
ol /mruai/ — vs. H(x)
06}
0.4 O O
/T /N
a Mr.ual
% ok cveve  CV.CVC
- mR.wAy
02}
0.4
06}
-08 -
517 3175 318 3185 319 3105
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