Gradient Symbol Processing for Phonological Production

or

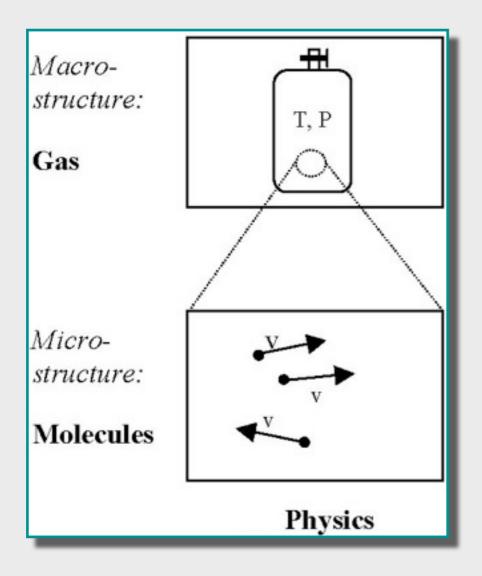
YACA: Yet Another Cognitive Architecture

Joint work with:

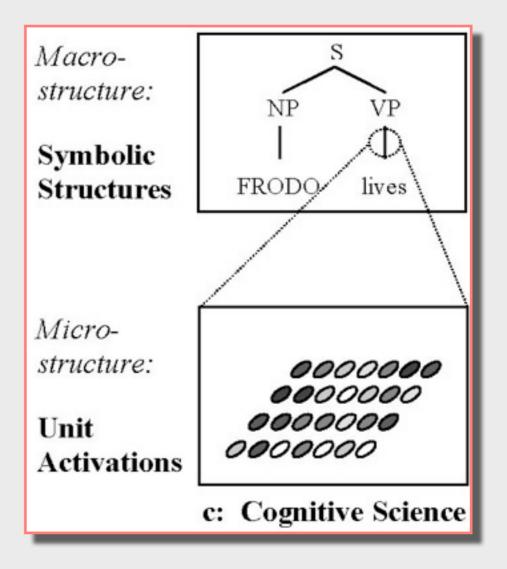
Matt Goldrick (Northwestern Linguistics)
Don Mathis (Johns Hopkins Cognitive Science)

Split-level architecture

The inspiration



The proposal



General cognitive macro-architecture

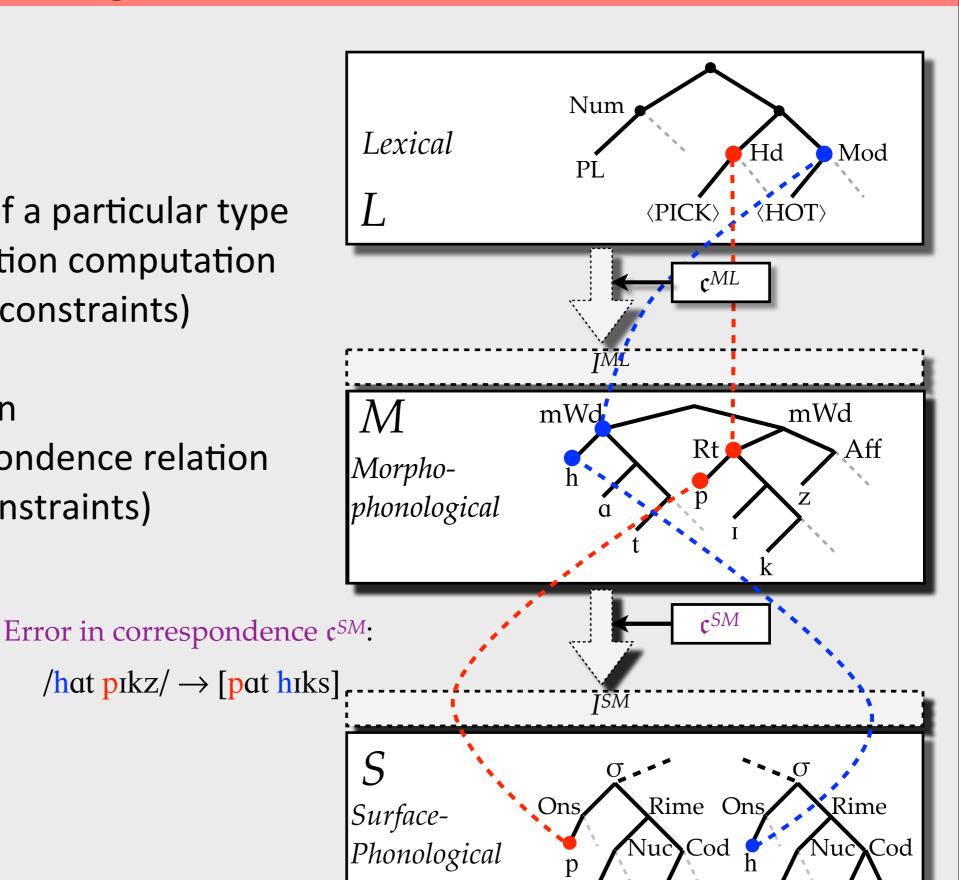
Graph:

Node:

Representation information of a particular type result of function computation (Markedness constraints)

Edge:

Input to function Bears a correspondence relation (Faithfulness constraints)



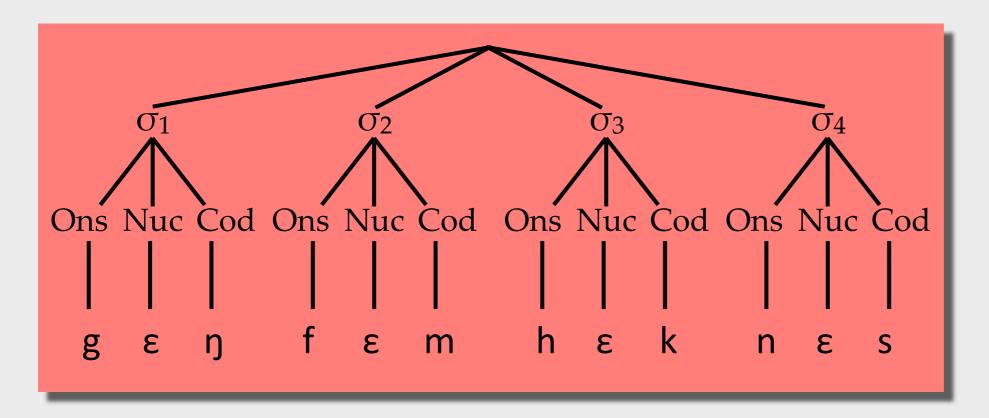
Processes at node:

Optimization

Quantization

Monday, October 17, 2011

Representation



Symbol structures $\mathcal S$

Filler/role decomposition (possibly recursive):

$$s = \{g/[Ons/\sigma_1], \eta/[Cod/\sigma_1], \varepsilon/[Nuc/\sigma_2], ...\} \subset \mathcal{F} \times \mathcal{R}$$

(activation-)vector space embedding $\mathbf{v}_s \in \mathbf{F} \otimes \mathbf{R} = \mathbb{R}^n$

Random* vectors

[gen fem ...]:
$$\mathbf{v}_s = \mathbf{g} \otimes \mathbf{r}_{Ons/\sigma_1} + \mathbf{\eta} \otimes \mathbf{r}_{Cod/\sigma_1} + \mathbf{\epsilon} \otimes \mathbf{r}_{Nuc/\sigma_1} + \mathbf{f} \otimes \mathbf{r}_{Ons/\sigma_2} + \cdots$$

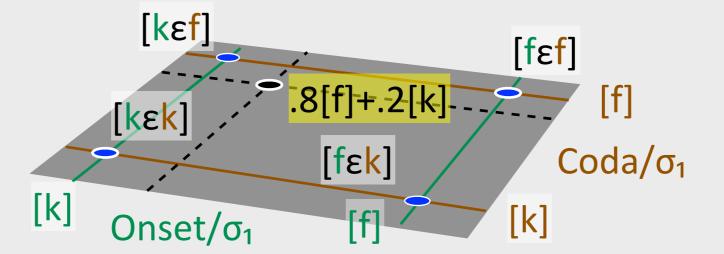
Image of embedding: 'the Grid' # of 'pure states'

 $\mathbf{r}_{\mathsf{Ons}/\sigma_2} = \mathbf{r}_{\mathsf{Ons}} \otimes \mathbf{r}_{\sigma_2}$

* Capturing the similarity structure of roles (including recursive hierarchical structure) is a major feature of distributed tensor product representations

Representation

'the Grid'



Gen: representations

Con: (OT grammar $\mathcal{G} \rightarrow$)

- ① HG grammar Hg
- ② $\mathcal{G} \rightarrow \mathbf{W}_{\mathcal{G}}$ weight matrix of a network \mathcal{N} s.t.

$$H_{\mathcal{N}_0}(\mathbf{s}) = H_{\mathcal{G}}(\mathbf{s})$$
 $\forall \mathbf{s} \in \# (= \text{the Grid}) - iso-Harmonic embedding}$

Theorem. For any deterministic neural network in a certain class, during processing, Harmony continuously increases, reaching a *local* optimum.

• This is **network Harmony**
$$H_{\mathcal{N}} = H_{\mathcal{N}_0} + H_{\mathcal{N}_1} \quad H_{\mathcal{N}_1}$$
 (a) = $\frac{1}{2}|\mathbf{a}|^2$

$$H_{\mathcal{N}_0}(\mathbf{a}) \equiv \sum_{\beta \gamma} \mathbf{a}_{\beta} \mathbf{W}_{\beta \gamma} \mathbf{a}_{\gamma}$$
 — quadratic, dependent on **W**

Theorem. For any stochastic neural network in a certain class, during processing, the probability of visiting a state **a** approaches

$$p(\mathbf{a}) \propto e^{H_{\mathcal{N}}(\mathbf{a})/T}$$
 (T = randomness parameter)

As $T \rightarrow 0$, the probability the network is in a *globally* optimal state $\rightarrow 1$.

These networks use a Diffusion Dynamics

$$da_{\beta} = \sum_{\gamma} W_{\beta\gamma} a_{\gamma} dt + \sqrt{2T} dB_{\beta} = \frac{\partial H_{\mathcal{N}}}{\partial a_{\beta}} dt + \sqrt{2T} dB_{\beta}$$

Processing: **Diffusion Dynamics**

- State moves in time so as to increase Harmony *H*(*s*), on average
 - ullet randomness in state changes with variance $\propto T$
 - ♦ during processing, $T \rightarrow 0$
 - ♦ hence $p(s) \rightarrow 0$ except for the state(s) with maximal Harmony
 - ◆ N.B.: randomness needed to find global Harmony maxima
 - not infallible: errors occur
 - from mechanism responsible for correct performance

Optimization process

Theorem. Any rewrite-rule grammar can be expressed as a second-order Harmonic Grammar.

Theorem. For any second-order Harmonic Grammar $H_{\mathcal{G}}$, we can construct a recurrent network \mathcal{N} with a harmony function $H_{\mathcal{N}}$ that provides an iso-Harmonic embedding

i.e., yields the same values as $H_{\mathcal{G}}$ on every pure (grid) state s:

$$H_{\mathcal{N}}(\mathbf{s}) = H_{\mathcal{G}}(\mathbf{s})$$

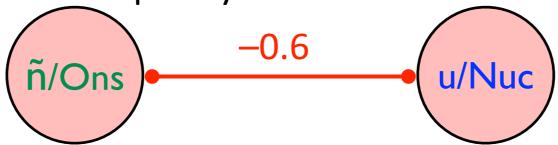
Corollary. For any Harmonic Grammar $H_{\mathcal{G}}$, we can construct a recurrent network \mathcal{N} such that as $T \to 0$, the probability the network is in a gradient state that is *globally* optimal w.r.t. $H_{\mathcal{G}} \to 1$.

Spreading activation = finding optimal solution to weighted constraints

E.g., phonotactic constraint: *ñu (American *muse* vs. *news*)

Harmony maximization as constraint satisfaction

Consider this connection in a purely localist network:



Same constraint with distributed representations:

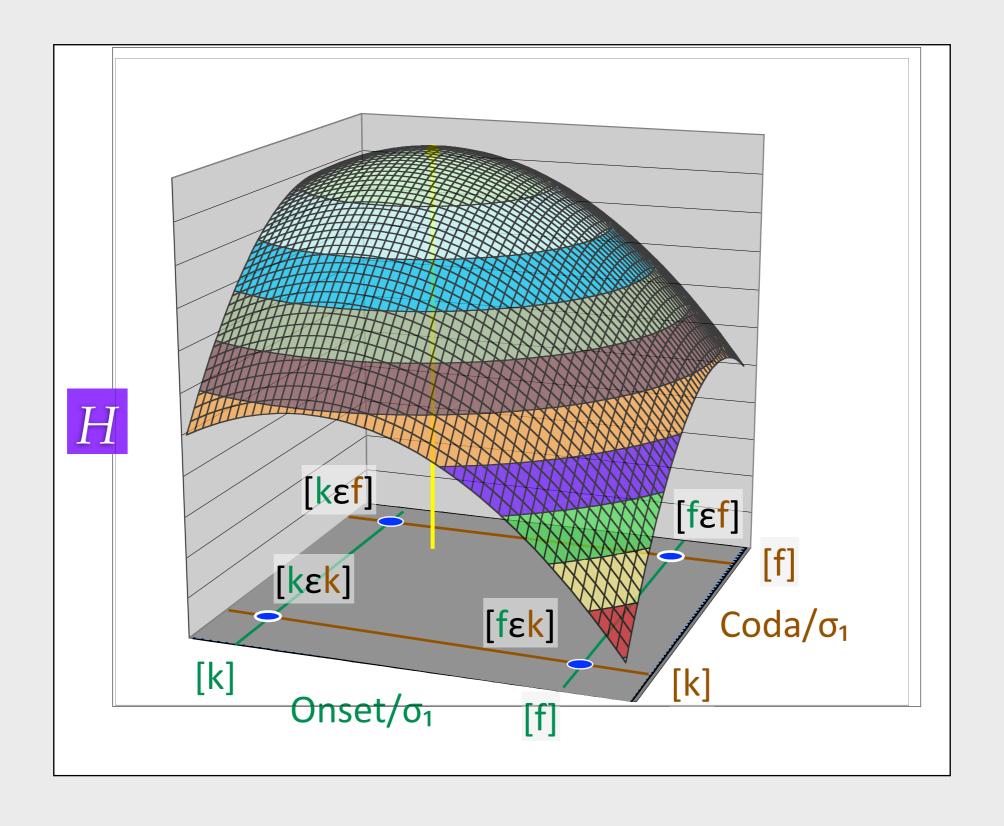
the weight matrix W such that

when activation patterns are re-described in a new coordinate system in which the representations become local,

W becomes equal to the connection above.

Problems:

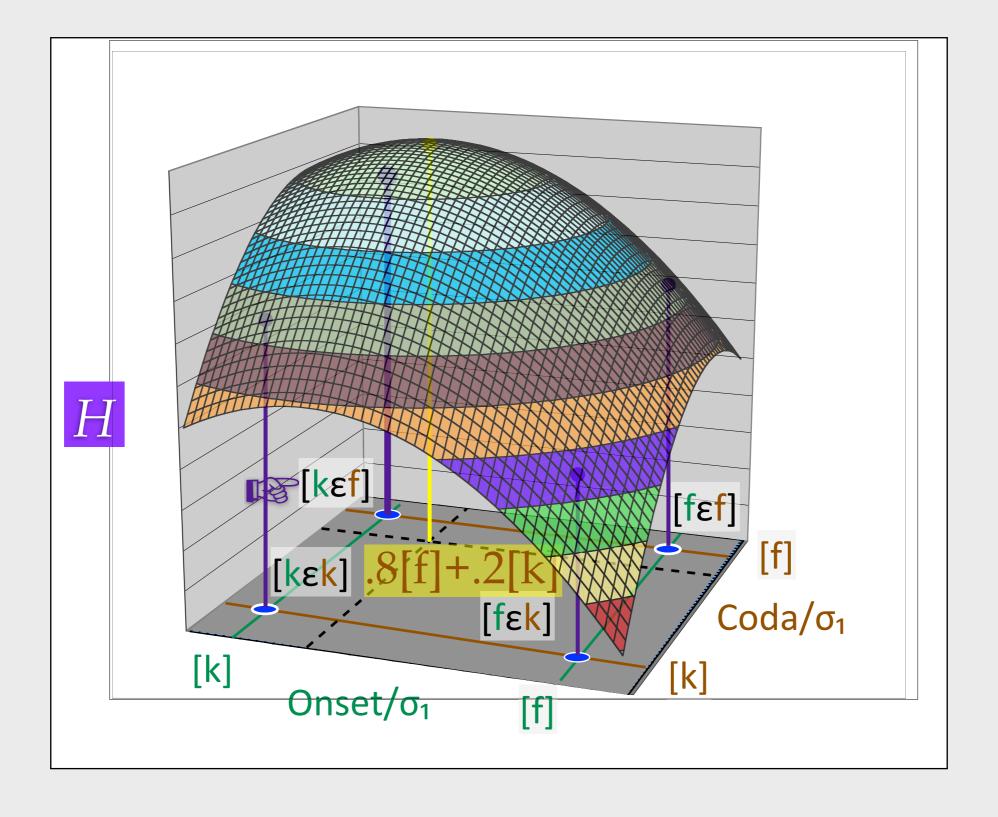
want a maximum of *H* at every grammatical structure but *H* is quadratic: it can have only one global maximum



The troubles

Problems:

want a maximum of H at every grammatical structure but H is quadratic: it can have only one global maximum argmax $\mathbf{a} \in \mathbb{R}^n H_{\mathcal{N}}(\mathbf{a}) \notin Grid$: it is a *blend* state H restricted to the grid **can** have multiple maxima



Corollary. For any Harmonic Grammar $H_{\mathcal{G}}$, we can construct a recurrent network \mathcal{N} such that as $T \to 0$, the probability the network is in a (gradient) state that is *globally* optimal w.r.t. $H_{\mathcal{G}} \to 1$.

This is a **blend** of well-formed constituents, not a globally coherent pure state. (A general problem, not limited to grammars.)

A nanogrammar ${\cal G}$

Its nanolanguage $\mathcal L$

Start symbols:
$$\{S, S2\}$$
 S $S2$ S2 $S \rightarrow A1$ Is $= [A1 Is]_S$ $= [Is A1]_{S2}$ S2 $S2 \rightarrow Is A1$ Al Is "Al is." Is A1 "Is A1?"

The global H optimum is proportional to

This is why we need *quantization*.

Need for quantization

Problems:

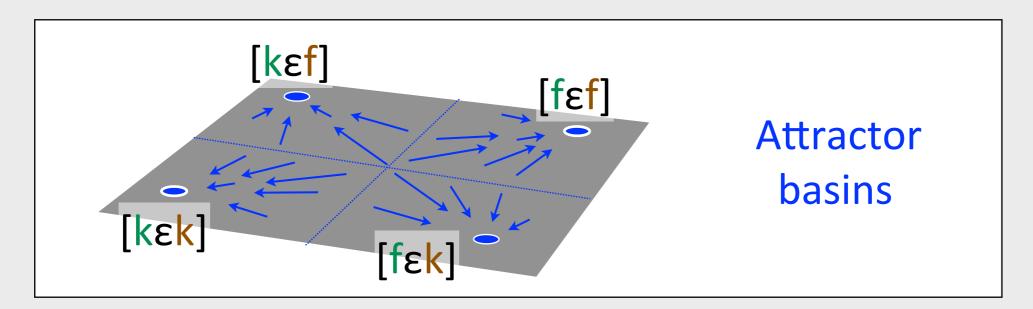
want a maximum of H at every grammatical structure but H is quadratic: it can have only one global maximum argmax $_{\mathbf{a} \in \mathbb{R}^n} H_{\mathcal{N}}(\mathbf{a}) \notin Grid$: it is a *blend* state H restricted to the grid **can** have multiple maxima H is meaningful only on the grid

Proposal:

Add a *quantization* dynamics with an attractor at every $s \in Grid$

Discretization Dynamics

- A spreading activation algorithm that creates an attractor at all and only the points of the grid
- Isotropic/symmetric/all attractors equivalent:
 - optimization dynamics pushes towards correct basin



- Distributed winner-take-all network (non-linear mutual inhibition)
 - ◆ Lotka-Volterra equations (Baird & Eeckmann 1993)

$$\frac{dx_{\beta}}{dt} = x_{\beta} - \sum_{\mu\nu} W_{\beta\mu\nu} x_{\mu} x_{\nu} \qquad W_{\beta\mu\nu} = \sum_{jk} M_{\beta k} M_{k\mu}^{-1} M_{j\nu}^{-1} (2 - \delta_{jk})$$

 $\mathbf{M} = \mathbf{F} \otimes \mathbf{R}$, $\mathbf{F} = \text{matrix of symbol (filler) patterns}$, $\mathbf{R} = \text{of position (role)}$

Combined dynamics

Harmony Optimization Dynamics

- Diffusion; as processing proceeds, $T \rightarrow 0$
- Pushes towards best gradient (blend) state
 - ignores discreteness

Quantization Dynamics

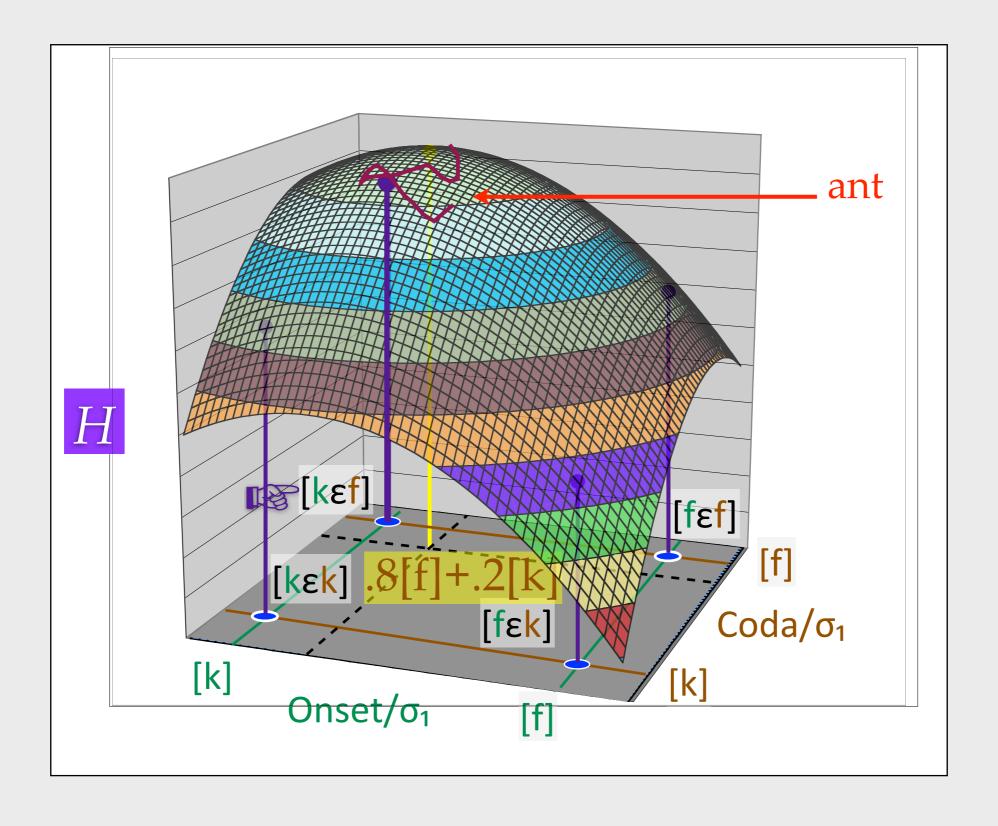
- Pushes towards the grid of discrete (pure) states
 - → ignores well-formedness

Combination

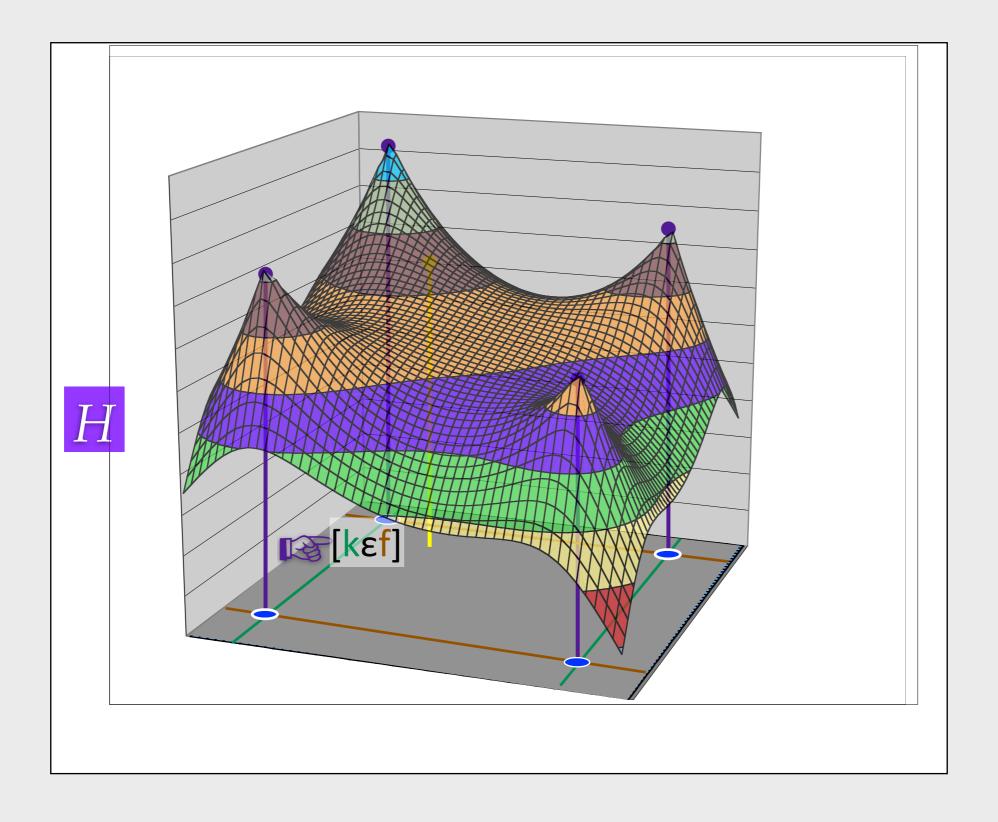
- The weighted sum of these two dynamics
- As processing proceeds, the relative weight of optimization
 - \rightarrow $\lambda \rightarrow 0$
 - ◆ discretization pressure grows, dominates final computation

$$\mathcal{D} = \lambda \mathcal{D}_{opt} + [1 - \lambda] \mathcal{D}_{quant}$$

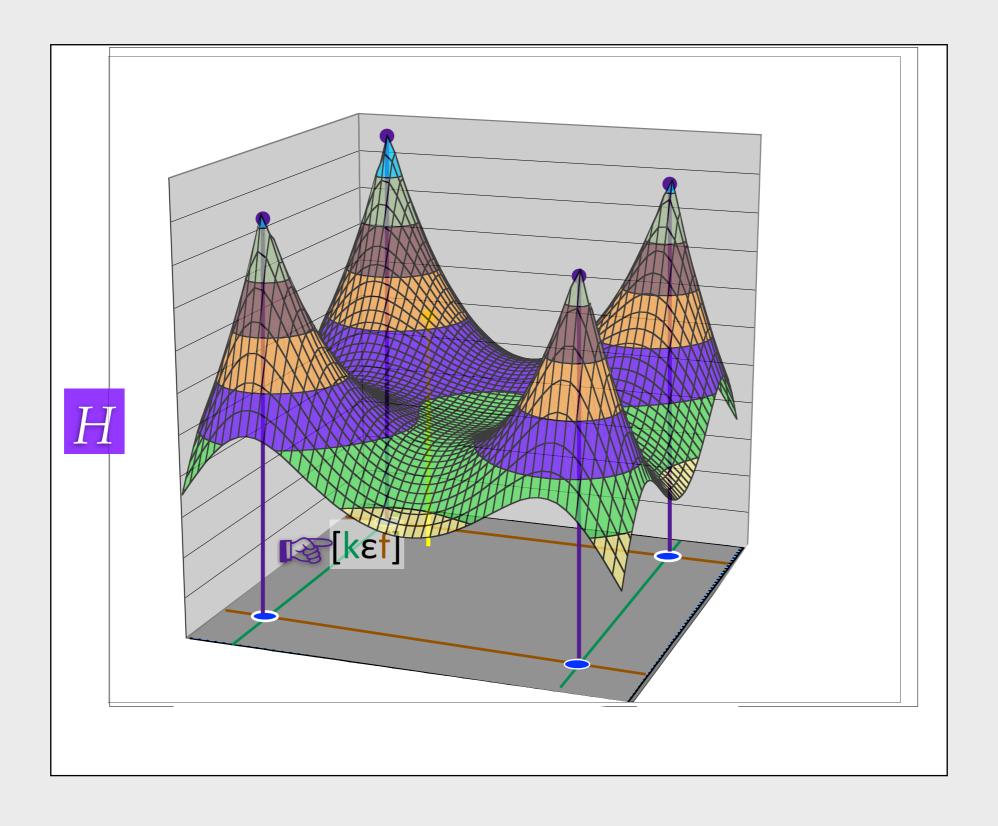
Combined dynamics as $\lambda \rightarrow 0$

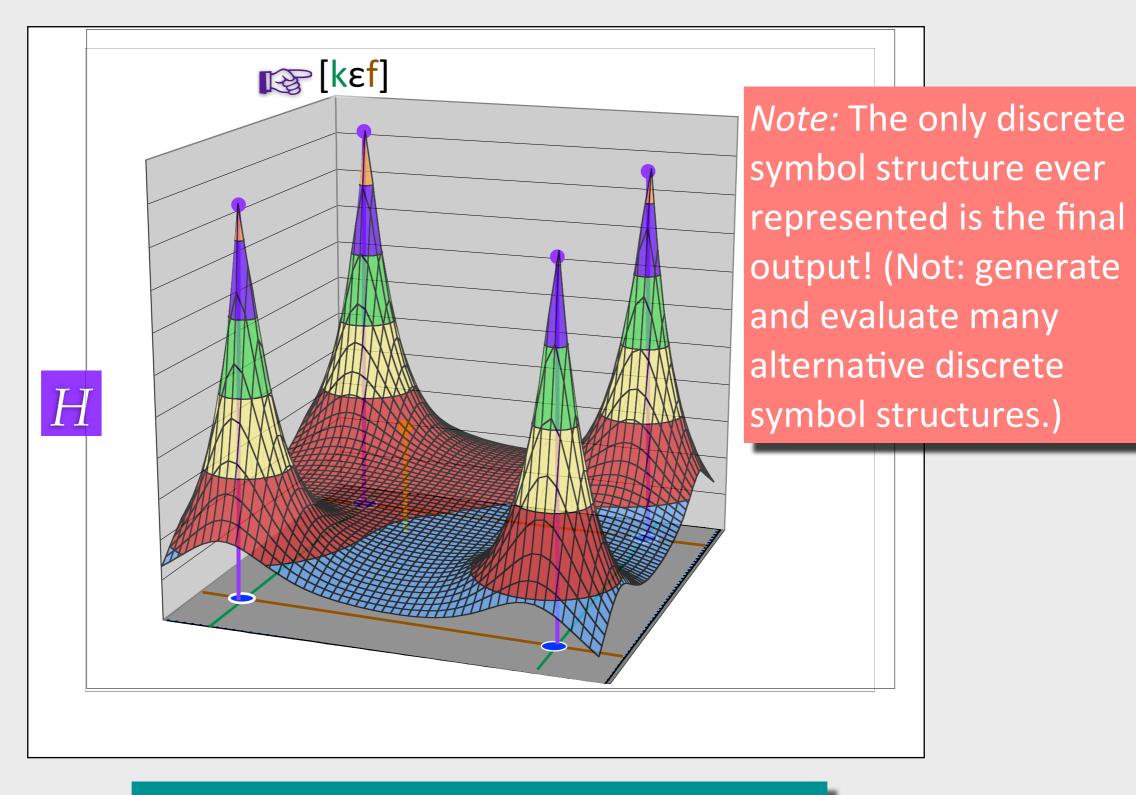


Combined dynamics as $\lambda \rightarrow 0$



Combined dynamics as $\lambda \rightarrow 0$





The ant should end up at the highest peak

— or at an erroneous peak with prob ~ H

Coupled symmetry breaking

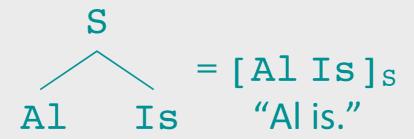
A nanogrammar ${\mathcal G}$

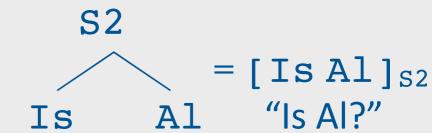
Its nanolanguage $\mathcal L$

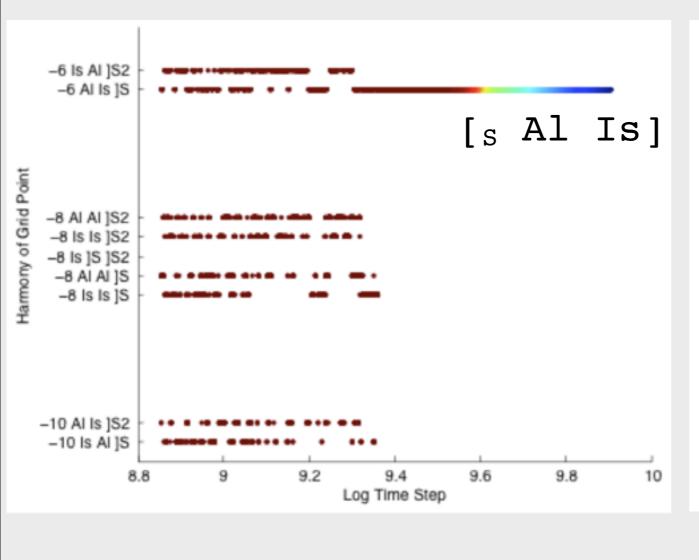
Start symbols: {S, S2}

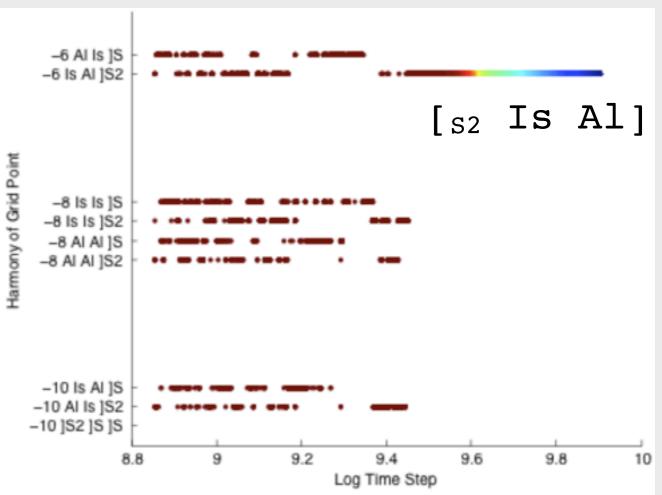
$$S \rightarrow Al Is$$

$$S2 \rightarrow Is Al$$





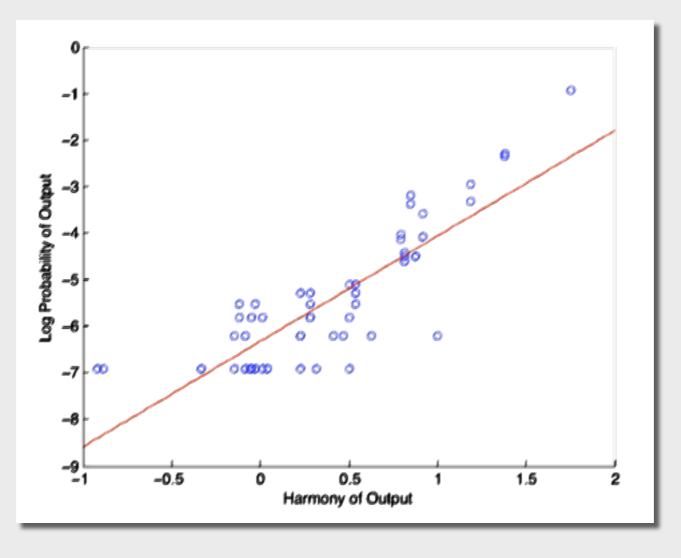




Explanation and Harmony

Explaining error patterns with Harmony

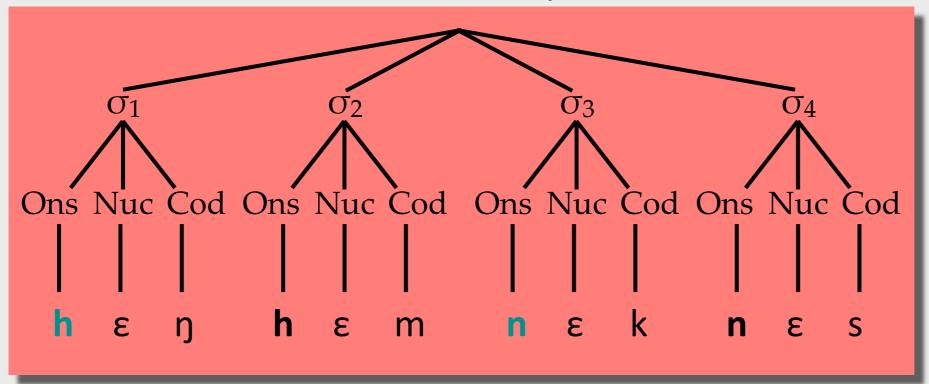
- The Harmony function is designed: we can understand it
 - → H encodes the constraints of the problem domain, such that
 - the correct answer best-satisfies these constraints
- ¿ Probability of s: $p(s) \propto e^{H(s)/T}$ (T = randomness parameter) or equivalently: $\log p(s) \propto H(s) k$
- /sag nak/ → [?]



Tongue-twister task
Incomplete neutralization
ITBerber syllabification

Phonological production (gen hem fek nes \rightarrow hen hem nek nes)*

Final state of surface form component:



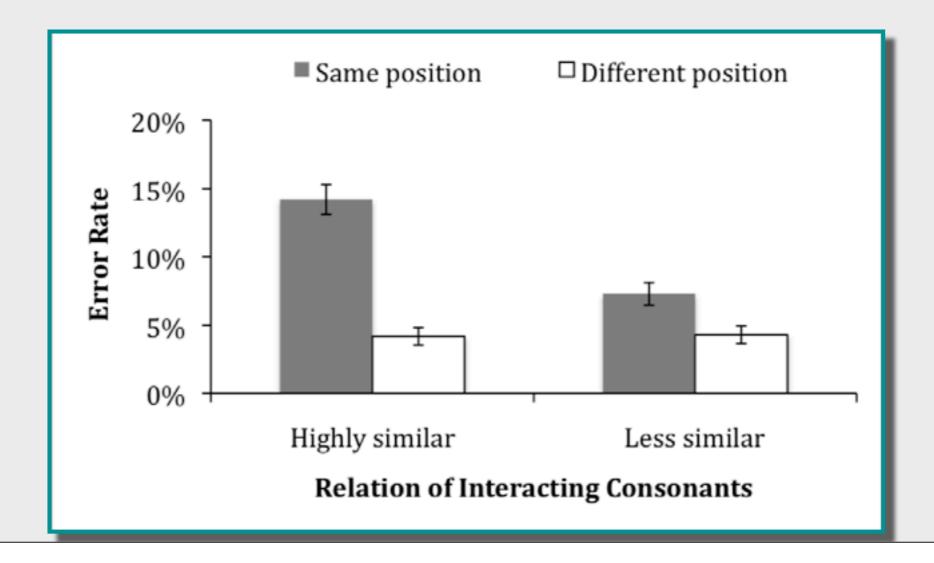
- An erroneous consonant is more likely
 - to be in a similar position (with respect to syllable structure)
 - → to replace a similar consonant
 - ◆ to be in a position where it is more frequent (phonotactic probability)
 □ never in a position forbidden by the English grammar (*kεh):
 'errors are well-formed'

^{*} Dell, Reed, Adams & Meyer 2000

Tongue-twister task

Phonological production (fen keg hem nes \rightarrow fen heg nem nes)

- An erroneous consonant is more likely
 - to be in a similar position (with respect to syllable structure)
 - → to replace a similar consonant

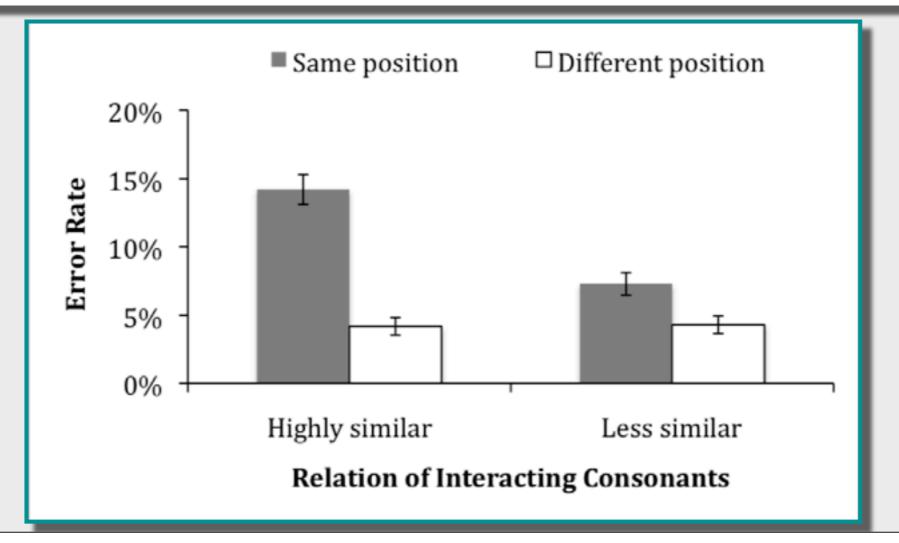


Capturing the similarity structure of roles (including recursive hierarchical structure) is a major feature of distributed tensor product representations

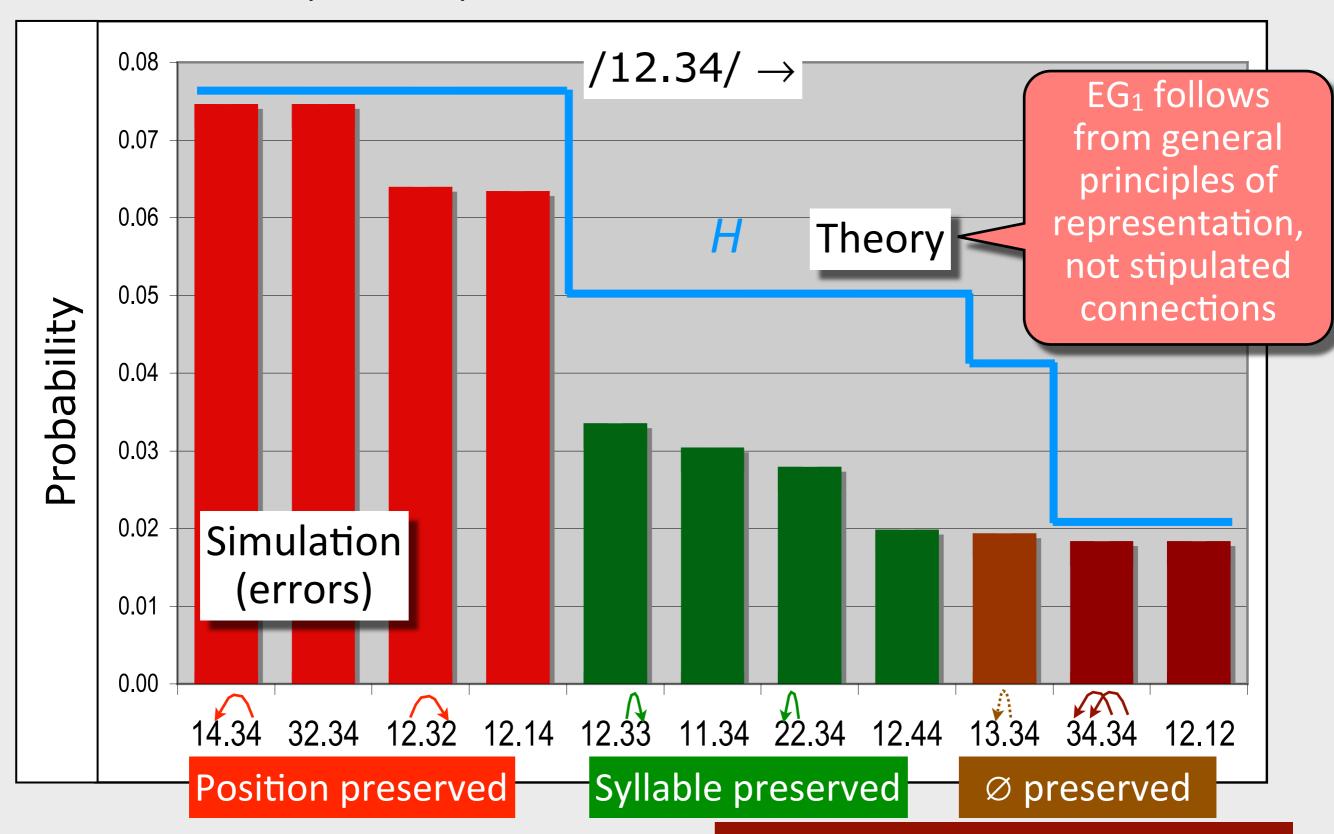
$$\mathbf{r}_{\mathsf{Ons}/\sigma_2} = \mathbf{r}_{\mathsf{Ons}} \otimes \mathbf{r}_{\sigma_2}$$

Preserve	Similarity	Simulations
Position	$\mathbf{r}_{\sigma_2} \cdot \mathbf{r}_{\sigma_1}$	0.4
Syllable	rons• rcod	0.1

 $sim(\mathbf{r}_{Ons}, \mathbf{r}_{Cod}) < sim(\mathbf{r}_{\sigma_1}, \mathbf{r}_{\sigma_2})$ \Leftarrow ? similarity of consonant behavior across different positions < across different syllables]



EG₁. Errors tend to preserve position



Gradience in alternations

/rad/ → [rat] 'wheel' (German)

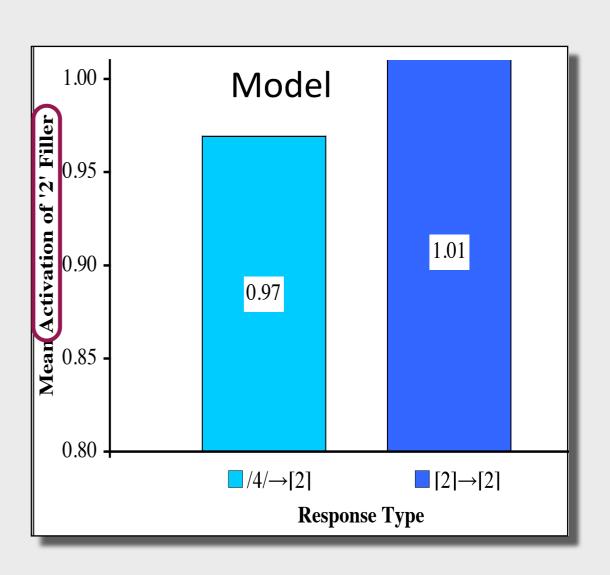
EG₇. In alternations, surface forms can show subphonemic traces of the underlying form.*

Alternations: Mark ≫ Faith

E.g., $*d_{+\text{voi}}/\text{Coda} \gg \text{FAITH(voi)}$

Model: $4+' vs. 2-' \sim d vs. t$

*4+/Coda (1.5) \gg FAITH (1.0)



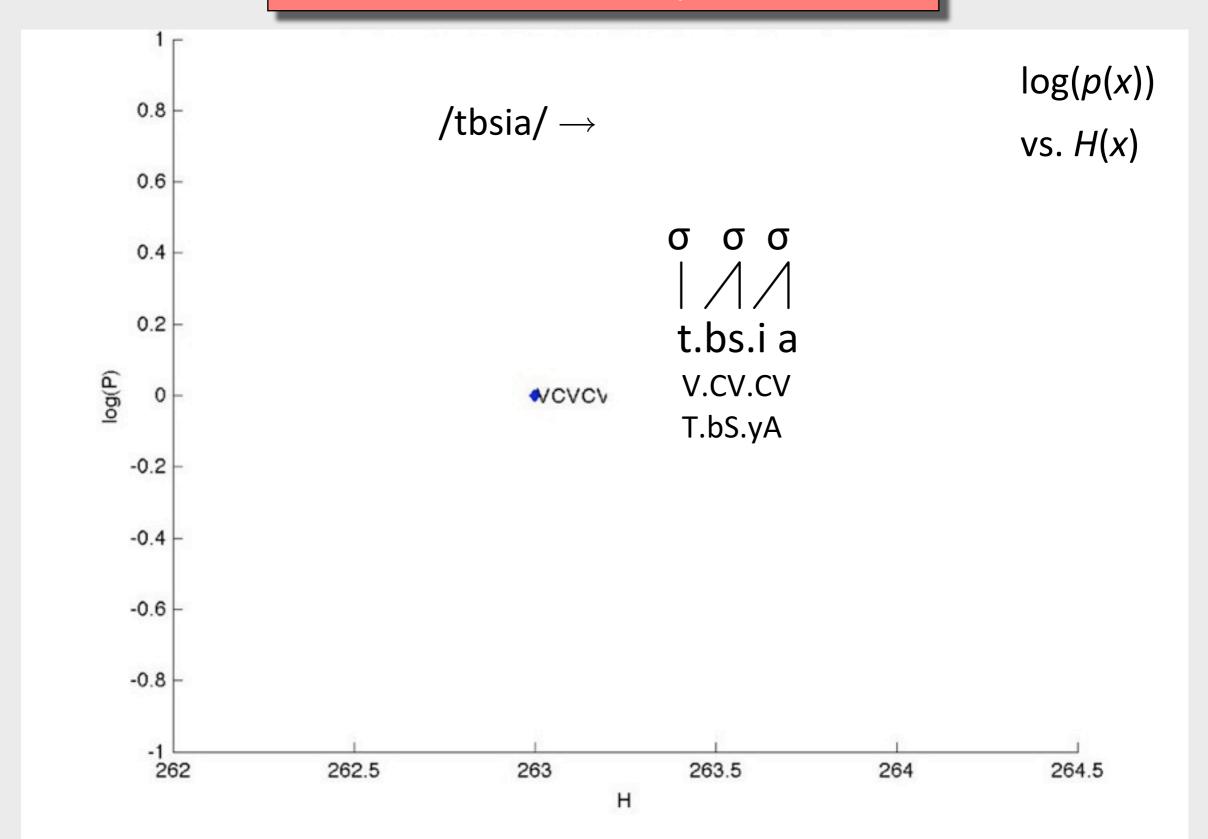
Surface forms can show subphonemic 'traces' of the underlying form.

Review: Warner, Jongman, Sereno & Kemps, 2004 (Journal of Phonetics)

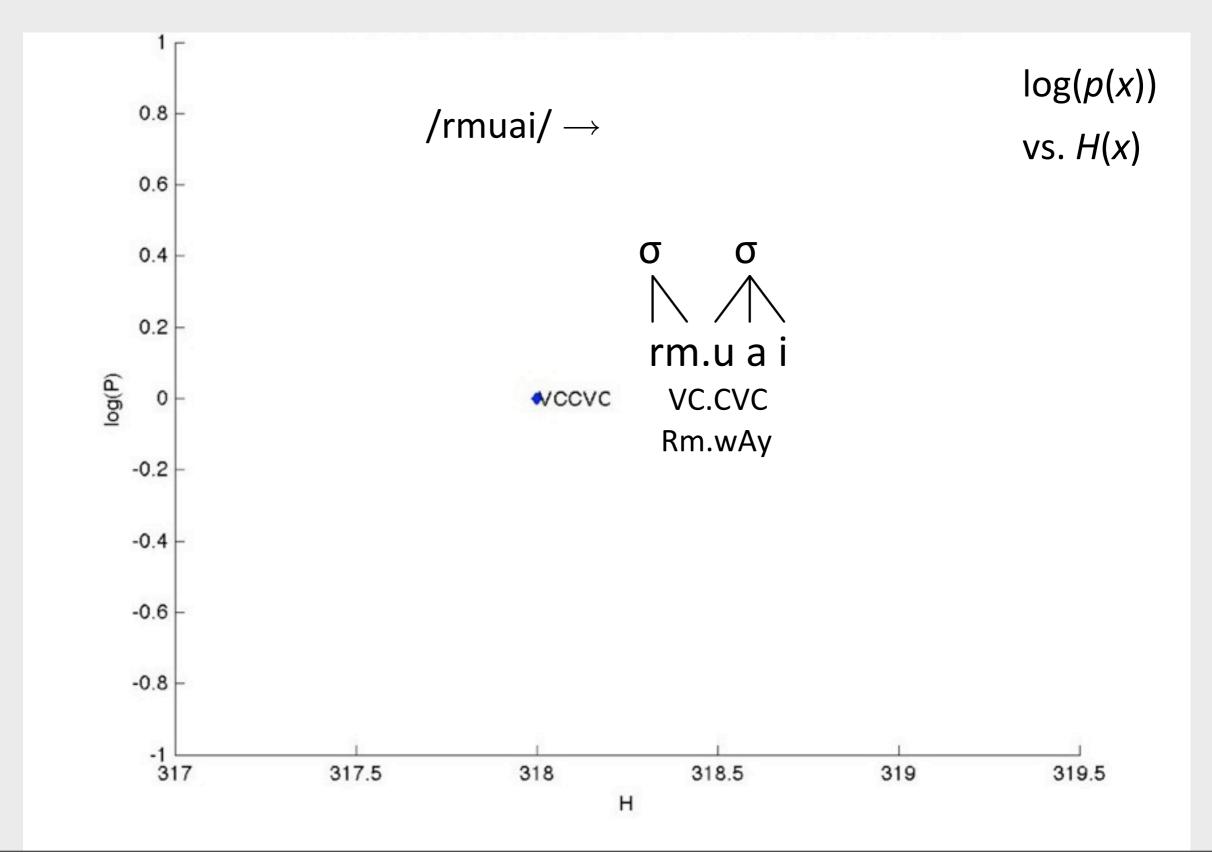
* Factors other than underlying form can also induce similar effects.

Berber syllabification

Model: derived *directly* from the HG version of the OT analysis of P&S93



Berber syllabification



Berber syllabification

