

Expressing (most of) Phonotactic Knowledge as Contrast

Bruce Tesar
Linguistics Dept. / Center for Cognitive Science
Rutgers University, New Brunswick

NECPhon 5, Yale. October 15, 2011.

Phonotactic Ranking Information

- Based on complete outputs only.
 - No morphemic identity information.
 - No independent information on phonological inputs.
- Common assumption: for well-formed outputs, fully faithful inputs will map to those outputs.
 - Justified for systems of output-driven maps (Tesar 2008, to appear).
- Phonotactic Ranking Information: what must be true of the ranking for such candidates to be optimal?

What I'm Setting Aside

- Identical violation profiles
 - candidates with distinct outputs and identical constraint violations.
- Structural ambiguity in the output
 - the gap between what is overt and complete outputs.

Phonotactic Learning

- Learning based solely on observed (phonotactically valid) outputs, using fully faithful inputs.
- Phonotactic learning (Prince & Tesar 2004, Hayes 2004).
 - Build a support of winner-loser pairs, with faithfully mapped forms as the winners
 - Find the most restrictive ranking consistent with the support.

What is Represented How?

- Phonotactic restrictions are indirectly encoded in the restrictive constraint hierarchy.
- More directly encoded (in the support) is what phonotactic restrictions can't be.
- Phonotactic ranking information:
 - generalizations about what must be allowed.

A Winner-Loser Pair

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká				L	W	W

Observed: páka Presumed: /páka/

MR must be dominated by one of {ML, ID[S]}

Two Grammatical Forms

- Suppose two distinct outputs are phonotactically valid.
 - Observed: páka, paká
- The two forms constitute a contrast in the language.
- Two things can be deduced from this:
 - The input(s) for one must differ from the input(s) for the other.
 - Some faithfulness constraint must be sensitive to a difference between the inputs.

Pairs from a Pair

Phonotactically valid: páka, paká

Create two winner-loser pairs, each using one as the winner, the other as the loser.

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká				L	W	W
/paká/	paká ~ páka				W	لــ	W

Contrast as F≫M

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká				L	W	W
/paká/	paká ~ páka				W	L	W
Fusion:					L	L	W

Faithfulness constraints never prefer losers.

Markedness constraints that are active necessarily come out L in the fusion.

$$ID[S] \gg \{MR, ML\}$$

Inventory Entailments

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/pá:ka/	pá:ka ~ páka		W	L			

Only ID[L] prefers the winner.

Short vowels are less marked than long vowels.

Surface long vowels entail underlying contrast in vowel length.

$$ID[L] \gg *V$$
:

Pointless, but Harmless

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/pá:ka/	pá:ka ~ páka		W	L			
/páka/	páka ~ pá:ka		W	W			
	Fusion:		W	L			

The second pair is uninformative.

The fusion is identical to the first pair.

Not Just "Minimal Pairs"

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká:		W	W	L	W	W
/paká:/	paká: ~ páka		W	L	W	L	W
Fusion:			W	L	L	L	W

The markedness constraints still fuse to L.

At least one of the faithfulness constraints must dominate the three active markedness constraints.

Asymmetric Faith Works the Same

Input	win ~ lose	WSP	ID[+L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká:			W	L	W	W
/paká:/	paká: ~ páka		W	L	W	L	W
Fusion:			W	L	L	L	W

ID[+L]: only violated when the input correspondent is long (and output correspondent is short).

To realize a contrast, a faithfulness constraint must be active for one of the pairs (not necessarily both) (Tesar 2006).

Neutralization

- Lack of a possible contrast requires neutralization of distinct inputs to a single output.
 - Richness of the Base
- If stress is predictably initial, there is no contrast.
 - /páka/ → páka
 - /paká/ → páka not paká
- Ranking: ML ≫ {MR, ID[S]}

Phonotactic M≫M is Different

Input	win ~ lose	WSP	ID[L]	*V:	MR	ML	ID[S]
/páka/	páka ~ paká				L	W	W

paká is not phonotactically well-formed.

Relations between markedness constraints require losers that are not phonotactically observable.

The W-L pair does **not** entail ML≫MR (it merely allows for it).

Markedness Dominated

- To be informative, an ERC must have at least one constraint preferring the loser.
- In phonotactic learning, faithfulness constraints never prefer losers.
- Any phonotactic ERC involves domination of (at least one) markedness constraint by something else.

Explicit vs. Implicit

- F≫M: explicitly indicated by contrasting forms.
 - Both winner and loser are phonotactically valid.
- M>M: implicitly indicated by occurrence of some forms without occurrence of their hypothetical contrast counterparts.
 - Loser is not phonotactically valid.

Summary

- Phonotactic contrast knowledge can be expressed in terms of pairs of phonotactically valid outputs.
- Decomposition1: phonotactic vs. non-phonotactic ranking information.
- Decomposition2: contrast vs. non-contrast phonotactic ranking information.
 - Contrast: F≫M
 - Non-contrast: M≫M

References

- Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: The early stages. In *Constraints in Phonological Acquisition*, eds. René Kager, Joe Pater and Wim Zonneveld, 158-203. Cambridge: Cambridge University Press.
- Prince, Alan, & Bruce Tesar. 2004. Learning phonotactic distributions. In Constraints in Phonological Acquisition, eds. René Kager, Joe Pater and Wim Zonneveld, 245-291. Cambridge: Cambridge University Press.
- Tesar, Bruce. 2006. Faithful contrastive features in learning. *Cognitive Science* 30, 863-903.
- Tesar, Bruce. 2008. Output-Driven Maps. Output-driven maps. Ms. Linguistics Dept., Rutgers University. ROA-956.
- Tesar, Bruce. to appear. *Output-Driven Phonology*. Cambridge University Press.